Processamento Digital de Sinais - ENG420
|
|
|
- Luiz Gustavo Geraldo Festas Van Der Vinne
- 9 Há anos
- Visualizações:
Transcrição
1 Processamento Digital de Sinais - ENG420 Fabrício Simões IFBA 24 de setembro de 2016 Fabrício Simões (IFBA) Processamento Digital de Sinais - ENG de setembro de / 19
2 1 Transformada Z - Conceito 2 Transformada Z - Propriedades 3 Transformada Z - Equação a Diferenças Fabrício Simões (IFBA) Processamento Digital de Sinais - ENG de setembro de / 19
3 Transformada de Fourier Transformada de Fourier - Vantagem Análise direta do espectro (componentes de freqüência) do sinal discreto; Transformada de Fourier - Desvantagem Não é adequado ao projeto de Filtros e Controladores Digitais Existem muitos sinais e sistemas discretos cuja transformada de Fourier não existe. Fabrício Simões (IFBA) Processamento Digital de Sinais - ENG de setembro de / 19
4 Transformada Z A Transformada de Fourier para sinais/sistemas discretos é um caso específico da Transformada Z. X (z) = x[n]z n n= X (z) = X d (ω) z=e jω Critério de convergência das Transformadas de Fourier e Z. x[n] < n= x[n] r n < n= A convergência depende também dos valores de r, ou seja do z. Fabrício Simões (IFBA) Processamento Digital de Sinais - ENG de setembro de / 19
5 Região de Convergência - ROC Qual o intervalo de valores de r que garante a convergência da Transformada Z? Exemplo: Determinar a Transformada Z e a região de convergência (ROC) do degrau unitário u[n]. X (z) = = X (z) = n= n=0 z n z z 1 u[n]z n (1) Fabrício Simões (IFBA) Processamento Digital de Sinais - ENG de setembro de / 19
6 Região de Convergência n= u[n]z n < Im ROC r n e jωn < n=0 Re n=0 ( ) 1 n < r circunferência unitária Fabrício Simões (IFBA) Processamento Digital de Sinais - ENG de setembro de / 19
7 Função Racional X (z) = (z z 1)(z z 2 )... (z z M ) (z z p1 )(z z p2 )... (z z pn ) z i, i-ésimo zero de X (z), ou seja, as raízes do polinômio do numerador N(z). z p,i, i-ésimo pólo de X (z), ou seja, as raízes do polinômio do denominador D(z). Exercício Determine a Transformada Z do sinal x[n] = a n u[n] E os pólos e zeros? X (z) = a n u[n]z n n= Fabrício Simões (IFBA) Processamento Digital de Sinais - ENG de setembro de / 19
8 Região de Convergência - Propriedades A região de convergência pode ser um disco ou um anel centrado na origem; A região de convergência não contém pólos; Se a região de convergência contém a circunferência unitária (r = 1) existe a transformada de Fourier. A região de convergência pode ser definida a partir do comportamento da função (sinal ou sistema). Para isso, as funções são classificadas como : Sequência Unilateral a Direita; Sequência Unilateral a Esquerda; Sequência Bilateral; Sequência de Duração Finita. Fabrício Simões (IFBA) Processamento Digital de Sinais - ENG de setembro de / 19
9 Sequência Unilateral a Direita Sinal de duração ilimitada que progride em direção a valores positivos de n x[n] Direção do sinal 1... n Região de Convergência A região de convergência (ROC) é composta pela área externa ao pólo de maior valor absoluto. Fabrício Simões (IFBA) Processamento Digital de Sinais - ENG de setembro de / 19
10 Exemplo 1 Im ROC x[n] = X (z) = ( ) 1 n u[n] 2 z z 1/2 zero O X 1/2 Re pólo circunferência unitária Região de Convergência ROC : r > 1/2 Fabrício Simões (IFBA) Processamento Digital de Sinais - ENG de setembro de / 19
11 Sequência Unilateral a Esquerda Sinal de duração ilimitada que progride em direção a valores negativos de n Direção do sinal x[n]... 1 n Região de Convergência A região de convergência (ROC) é composta pela área interna ao pólo de menor valor absoluto. Fabrício Simões (IFBA) Processamento Digital de Sinais - ENG de setembro de / 19
12 Exemplo 2 x[n] = (2 n +3 n )u[ n] Im ROC X (z) = 2 5z/6 (1 z/2)(1 z/3) Pólos: p 1 = 2 e p 2 = 3; Zeros: z 1 = 12/5 zero O 12/5 Re X X 2 3 circunferência unitária Região de Convergência ROC : r < 2 Fabrício Simões (IFBA) Processamento Digital de Sinais - ENG de setembro de / 19
13 Sequência Bilateral Sinal de duração ilimitada que progride em direção aos valores negativos e positivos de n. Direção do sinal x[n] Direção do sinal n Região de Convergência ROC: p 1 < r < p 2 ; p 1 pólo de maior absoluto que contribui para n > 0; p 2 pólo de menor absoluto que contribui para n < 0. Fabrício Simões (IFBA) Processamento Digital de Sinais - ENG de setembro de / 19
14 Exemplo 3 ( x[n] = 1 n ( ) 1 n u[n] u[ n 1] 3) 2 X (z) = 2z(z 1/12) ( ) ( ) z z 1 2 1/12 1/3 X Im O O X ROC 1/2 Re Pólos: p 1 = 1/3 e p 2 = 1/2; Zeros: z 1 = 0 e z 2 = 1/12 circunferência unitária Região de Convergência ROC : 1/2 < r < 1/3 Fabrício Simões (IFBA) Processamento Digital de Sinais - ENG de setembro de / 19
15 Sequência de Duração Finita Sinal de duração limitada. x[n] 1... N 1 n Região de Convergência A ROC contém todo plano z, exceto possivelmente em z = 0 e/ou z =. Exemplo 3 x[n] = δ[n], ROC contém todos os valores de z, incluindo z = 0 e z = Fabrício Simões (IFBA) Processamento Digital de Sinais - ENG de setembro de / 19
16 Estabilidade O sistema é estável se n= h[n] < Critério de Estabilidade Um sistema é estável se a ROC contém a circunferência unitária. Um sistema Causal é Estável se todos os pólos estiverem dentro do círculo unitário Fabrício Simões (IFBA) Processamento Digital de Sinais - ENG de setembro de / 19
17 Propriedades da Transformada Z Linearidade Z[x 1 [n]] = X 1 (z), ROC : R 1 Z[x 2 [n]] = X 2 (z), ROC : R 2 Z[α 1 x 1 [n] + α 2 x 2 [n]] = α 1 X 1 (z) + α 2 X 2 (z), ROC : R 1 R 2 Deslocamento no Tempo Z[x[n]] = X (z), ROC : R x Z[x[n n o ]] = X (z)z no ROC : R x A região de convergência ROC do sinal/sistema com deslocamento é igual a R x, exceto pela inserção ou retirada de z = 0 ou z = Fabrício Simões (IFBA) Processamento Digital de Sinais - ENG de setembro de / 19
18 Propriedades da Transformada Z Deslocamento no Tempo - Exemplo Z[δ[n]] = 1, ROC : z Z[δ[n n o ]] = z no, ROC : z, exceto z = 0 Convolução no Tempo Z[x 1 [n]] = X 1 (z), ROC : R 1 Z[x 2 [n]] = X 2 (z), ROC : R 2 Z[x 1 [n] x 2 [n]] = X 1 (z)x 2 (z), ROC : R 1 R 2 Fabrício Simões (IFBA) Processamento Digital de Sinais - ENG de setembro de / 19
19 Relação Equação a Diferenças e Transformada Z Aplicando Transformada Z sobre a Equação a Diferenças [ N ] [ M ] Z a k y[n k] = Z b m x[n m] k=0 N a k Z [y[n k]] = k=0 N a k Y (z)z k = k=0 Função de Transferência H(z) = Y (z) X (z) = m=0 M b m Z [x[n m]] m=0 M b m X (z)z m m=0 M m=0 b mz m N k=0 a kz k Fabrício Simões (IFBA) Processamento Digital de Sinais - ENG de setembro de / 19
Transformada Z. A transformada Z de uma sequência x n é definida como:
Transformada Z Vimos que as DTFTs de algumas sequências não convergem uniformemente para funções contínuas de ω, porque as sequências não são absolutamente somáveis. A transformada Z permitirá a análise
Transformada Z. Transformada Z Bilateral. Transformada de Fourier e Transformada Z. A transformada de Fourier não converge para todas as sequências.
Transformada Z Luís Caldas de Oliveira Introdução A transformada de Fourier não converge para todas as sequências. A transformada Z abrange uma maior classe de sinais. sumo 1. Definição 2. gião de Convergência
A TRANSFORMADA Z. Métodos Matemáticos I C. Prof. Hélio Magalhães de Oliveira, Texto por R. Menezes Campello de Souza
A TRANSFORMADA Z Métodos Matemáticos I C Prof. Hélio Magalhães de Oliveira, Texto por R. Menezes Campello de Souza Notação x(t) é o sinal analógico x(nt) = x[n], n inteiro, é a seqüência T é o período
Análise e Processamento de Bio-Sinais. Mestrado Integrado em Engenharia Biomédica. Sinais e Sistemas. Licenciatura em Engenharia Física
Análise e Processamento de Bio-Sinais Mestrado Integrado em Engenharia Biomédica Licenciatura em Engenharia Física Faculdade de Ciências e Tecnologia Slide 1 Slide 1 Tópicos: Representação de Sinais por
Transformada z. Carlos Alberto Ynoguti. September 14, / 53
Carlos Alberto Ynoguti September 14, 2007 1 / 53 Introdução Relação entre a DTFT e a convergência Exemplo 3.22 Observação Exemplo 3.23 Alguns pares de transformadas z 2 / 53 Introdução Introdução Relação
Análise de Sistemas em Tempo Discreto usando a Transformada Z
Análise de Sistemas em Tempo Discreto usando a Transformada Z Edmar José do Nascimento (Análise de Sinais e Sistemas) http://www.univasf.edu.br/ edmar.nascimento Universidade Federal do Vale do São Francisco
Processamento Digital de Sinais. Notas de Aula. Transformada Z. Transformada Z - TZ
Transformada Z Transformada Z 2 Transformada Z - TZ Processamento Digital de Sinais É uma generalização da Transformada de Fourier de Tempo Discreto (DTFT) Útil para representação e análise de sistemas
Resposta em Frequência de Sistemas LTI
Resposta em Frequência de Sistemas LTI Vimos que a resposta y(n) de um sistema LTI em estado zero é dada pela convolução linear do sinal de entrada x(n) com a sua resposta ao impulso h(n). Em particular,
Processamento Digital de Sinais. Notas de Aula. Transformada Z. Transformada Z - TZ
Transformada Z Transformada Z 2 Transformada Z - TZ Processamento Digital de Sinais Notas de Aula Transformada Z É uma generalização da Transformada de Fourier de Tempo Discreto (DTFT) Útil para representação
Análise de Sistemas LTI através das transformadas
Análise de Sistemas LTI através das transformadas Luis Henrique Assumpção Lolis 23 de setembro de 2013 Luis Henrique Assumpção Lolis Análise de Sistemas LTI através das transformadas 1 Conteúdo 1 Resposta
Introdução ao Processamento Digital de Sinais Soluções dos Exercícios Propostos Capítulo 3
Introdução ao Soluções dos Exercícios Propostos Capítulo 3. Calcule a transformada z, a região de convergência e a localização de pólos e zeros das sequências abaixo a) x[n] 4δ[n ]+3δ[n] δ[n+]+3δ[n+] Solução:
Filtros IIR. 27 de outubro de 2015 IFBA. Fabrício Simões (IFBA) Filtros IIR 27 de outubro de / 49
Filtros IIR Fabrício Simões IFBA 27 de outubro de 2015 Fabrício Simões (IFBA) Filtros IIR 27 de outubro de 2015 1 / 49 1 Filtragem Digital 2 Filtro IIR Filtros de Primeira Ordem Filtros de Segunda Ordem
INTRODUÇÃO À TRANSFORMADA Z. Wilson Arnaldo Artuzi Junior Ricardo Rodrigo Wolf Cruz
INTRODUÇÃO À TRANSFORMADA Z Wilson Arnaldo Artui Junior Ricardo Rodrigo Wolf Cru CURITIBA 2010 Sumário 1 - Introdução...1 1.1 - Definição:...1 a) Domínio do tempo discreto n...1 b) Domínio...2 c) Par transformado...2
Processamento Digital de Sinais II Exercícios sobre Transformada z Data de entrega: 17/11/2015
Processamento Digital de Sinais II Exercícios sobre Transformada z Data de entrega: 17/11/2015 1) Determine a transformada inversa de, aplicando: a) Desenvolvimento em série de potências b) Divisão direta
Transformada Z. Carlos Alexandre Mello. Carlos Alexandre Mello 1
Carlos Alexandre Mello Carlos Alexandre Mello [email protected] 1 Transformada de Fourier de uma Sequência Problema: Há casos onde a Transformada de Fourier não converge Solução Transformada Z A Transformada
Transformada Z. Transformada Z
Semelhante ao apresentado anteriormente, entre a relação das transformadas de Fourier e de Laplace, será visto que a generalização da representação senoidal complexa de um sinal de tempo discreto pela
Exercícios para Processamento Digital de Sinal. 1 Transformada e Série de Fourier
Exercícios para Processamento Digital de Sinal Transformada e Série de Fourier Exercício Considere o seguinte sinal x(t) = sin 2 (0πt). Encontre uma forma aditiva para este sinal e represente graficamente
O processo de filtragem de sinais pode ser realizado digitalmente, na forma esquematizada pelo diagrama apresentado a seguir:
Sistemas e Sinais O processo de filtragem de sinais pode ser realizado digitalmente, na forma esquematizada pelo diagrama apresentado a seguir: 1 Sistemas e Sinais O bloco conversor A/D converte o sinal
Resumo. Sinais e Sistemas Transformada de Laplace. Resposta ao Sinal Exponencial
Resumo Sinais e Sistemas Transformada de aplace uís Caldas de Oliveira lco@istutlpt Instituto Superior Técnico Definição da transformada de aplace Região de convergência Propriedades da transformada de
TRANSFORMADA Z. A transformada Z de um sinal x(n) é definida como a série de potências: Onde z é uma variável complexa e pode ser indicada como.
TRANSFORMADA Z A transformada Z (TZ) tem o mesmo papel, para a análise de sinais e sistemas discretos LTI, que a transformada de Laplace na análise de sinais e sistemas nos sistemas contínuos do mesmo
Processamento de sinais digitais
Processamento de sinais digitais Aula 2: Descrição discreta no tempo de sinais e sistemas [email protected] Tópicos Sequências discretas no tempo. Princípio da superposição para sistemas lineares.
Sistemas lineares. Aula 6 Transformada de Laplace
Sistemas lineares Aula 6 Transformada de Laplace Introdução Transformada de Laplace Convergência da transformada de laplace Exemplos Região de Convergência Introdução Transformações matemáticas: Logaritmo:
Aula 6 Transformada de Laplace
Aula 6 Transformada de Laplace Introdução Propriedades da Transformada de Laplace Tabela Transformada ade Laplace Transformada Inversa de Laplace Função de transferência Definição: X s = L x t = s é uma
Transformada de Laplace. Transformada de Laplace
A generalização da representação por senóides complexas de um sinal de tempo contínuo fornecida pela Transformada de Fourier é realizada em termos de sinais exponenciais complexos pela. A Transformada
Transformada de Laplace
Sinais e Sistemas Transformada de Laplace [email protected] Instituto Superior Técnico Sinais e Sistemas p.1/60 Resumo Definição da transformada de Laplace. Região de convergência. Propriedades da transformada
Processamento Digital de Sinais - ENG420
Processamento Digital de Sinais - ENG420 Fabrício Simões IFBA 22 de julho de 2016 Fabrício Simões (IFBA) Processamento Digital de Sinais - ENG420 22 de julho de 2016 1 / 46 Fabrício Simões (IFBA) Processamento
Transformada de Fourier Discreta no Tempo (DTFT)
Transformada de Fourier Discreta no Tempo (DTFT) Transformada de Fourier de um sinal discreto no tempo x(n): X e jω = x(n)e jωn n= A DTFT é uma função complexa da variável real e contínua ω. A DTFT é uma
Pólos, Zeros e Estabilidade
Pólos, Zeros e Estabilidade Definindo Estabilidade A condição para estabilidade pode também ser expressa da seguinte maneira: se um sistema é estável quando sujeito a um impulso, a saída retoma a zero.
Sistemas e Sinais. Universidade Federal do Rio Grande do Sul Departamento de Engenharia Elétrica
O método das frações parciais usa o conhecimento de diversos pares de transformada Z básicos e as propriedades da transformada Z para obtenção da transformada Z inversa das funções de interesse Admite-se
EES-20: Sistemas de Controle II. 02 Outubro 2017
EES-20: Sistemas de Controle II 02 Outubro 2017 1 / 39 Recapitulando Ementa de EES-20 Relações entre as equações de estado e a função de transferência. Realizações de funções de transferência. Análise
Filtro FIR. Processamento Digital de Sinais - ENG de julho de 2016 IFBA. Fabrício Simões (IFBA) Filtro FIR 22 de julho de / 30
Filtro FIR Processamento Digital de Sinais - ENG420 Fabrício Simões IFBA 22 de julho de 2016 Fabrício Simões (IFBA) Filtro FIR 22 de julho de 2016 1 / 30 1 Método de Projeto Usando Janelas 2 Tipos de Filtros
Processamento Digital de Sinais
Processamento Digital de Sinais Carlos Alexandre Mello Carlos Alexandre Mello [email protected] 1 Sinais Digitais Um sinal pode ser entendido como uma função que carrega uma informação Sinal de voz O sinal
EES-20: Sistemas de Controle II. 20 Outubro 2017 (Tarde)
EES-20: Sistemas de Controle II 20 Outubro 2017 (Tarde) 1 / 58 Recapitulando: Modelo da planta amostrada G z G c s u k u t y t y k T T G(z) = (1 z 1 ) Z { } G c (s) s Importante: Trata-se de discretização
Sistemas Lineares e Invariantes de Tempo Discreto
Sistemas Lineares e Invariantes de Tempo Discreto 28 Sistemas Lineares de Tempo Discreto Um sistema linear satisfaz o teorema da superposição e implica que o sistema tem condições iniciais iguais a zero
Técnicas de Desenho de Filtros Digitais
Técnicas de Desenho de Filtros Digitais Luís Caldas de Oliveira lco@istutlpt Instituto Superior Técnico Técnicas de Desenho de Filtros Digitais p1/38 Resumo Desenho de filtros discretos com base em filtros
Teste Tipo. Sinais e Sistemas (LERCI) 2004/2005. Outubro de Respostas
Teste Tipo Sinais e Sistemas (LERCI) 2004/2005 Outubro de 2004 Respostas i Problema. Considere o seguinte integral: + 0 δ(t π/4) cos(t)dt em que t e δ(t) é a função delta de Dirac. O integral vale: 2/2
Fundamentos de sinais e sistemas em tempo discreto
Fundamentos de sinais e sistemas em tempo discreto ENGC33: Sinais e Sistemas II Departamento de Engenharia Elétrica - DEE Universidade Federal da Bahia - UFBA 21 de novembro de 2016 Prof. Tito Luís Maia
4 Funções de Transferência de Sistemas em Tempo Discreto
Rio de Janeiro, 22 de agosto de 2017. 1 a Lista de Exercícios de Controle por Computador Tópicos: Sinais e sistemas em tempo discreto, equações a diferenças, transformada z e funções de transferência.
Parte I O teste tem uma parte de resposta múltipla (Parte I) e uma parte de resolução livre (Parte II)
Instituto Superior Técnico Sinais e Sistemas o teste 4 de Novembro de 0 Nome: Número: Duração da prova: horas Parte I O teste tem uma parte de resposta múltipla (Parte I) e uma parte de resolução livre
Processamento de sinais digitais Aula 3: Transformada de Fourier (Parte 1)
Processamento de sinais digitais Aula 3: Transformada de Fourier (Parte 1) [email protected] Tópicos Definição da Transformada de Fourier (TF) Propriedades importantes (ex: linearidade e periodicidade)
Sinais e Sistemas Discretos
Sinais e Sistemas Discretos Luís Caldas de Oliveira Resumo 1. Sinais em Tempo Discreto 2. Sistemas em Tempo Discreto 3. Sistemas Lineares e Invariantes no Tempo 4. Representações em requência 5. A Transformada
Transformada Discreta de Fourier (DFT)
Transformada Discreta de Fourier DFT) Processamento de Sinais 5/6 Engenharia Aeroespacial Sinais periódicos Seja x[n] um sinal periódico com período x[n + r] = x[n] para r Z) O sinal x[n] é determinado
Sinais e Sistemas - ESP208
Sinais e Sistemas - ESP208 Mestrado Profissional em Engenharia de Sistemas e Produtos Filtros Digitais FIR e IIR Fabrício Simões IFBA 01 de novembro de 2017 Fabrício Simões (IFBA) Sinais e Sistemas - ESP208
REPRESENTAÇÃO DE SISTEMAS NO DOMÍNIO Z. n +
REPRESETAÇÃO DE SISTEMAS O DOMÍIO Z [ ] x h y h h n RC RC RC X H Y Y H X R R n h n h Z H < < + : ) ( ) ( ) ( ) ( ) ( ) ( ; ) ( ) ( ) ( Função de Sistema : FUÇÃO DE SISTEMA A PARTIR DA REPRESETAÇÃO POR
Introdução ao Processamento Digital de Sinais Soluções dos Exercícios Propostos Capítulo 2
Introdução ao Soluções dos Exercícios Propostos Capítulo 2. Verifique se os sinais abaixo têm ou não transformada de Fourier. Em caso positivo, calcule a transformada correspondente: a) x[n] 2δ[n+2]+3δ[n]
Função de transferência
Função de transferência Osmar Tormena Junior, Prof. Me. 1 1 [email protected] A função de transferência tem sido uma representação matemática comum para sistemas clássicos. Dada por uma função racional
Sinais e Sistemas - Lista 3 Gabarito
UNIVERSIDADE DE BRASÍLIA, FACULDADE GAMA Sinais e Sistemas - Lista Gabarito 7 de novembro de 05. Calcule a Transformada de Fourier dos seguintes sinais: a) x[n] = ( n ) u[n ] b) x[n] = ( ) n c) x[n] =
Transformada de Fourier Discreta (DFT)
UNIVERSIDADE FEDERAL DA PARAÍBA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA Transformada de Fourier Discreta (DFT) Prof. Juan Moises Mauricio Villanueva [email protected] 1 Transformada de Fourier
Sinais e Sistemas - Lista 3
UNIVERSIDADE DE BRASÍLIA, FACULDADE GAMA Sinais e Sistemas - Lista 3 7 de novembro de 0. Calcule a Transformada de Fourier dos seguintes sinais: a) x[n] = ( n ) u[n ] b) x[n] = ( ) n c) x[n] = u[n ] u[n
Caderno de Exercícios
Caderno de Exercícios Orlando Ferreira Soares Índice Caracterização de Sinais... Caracterização de Sistemas...0 Sistemas LIT - Convolução...5 Série de Fourier para Sinais Periódicos Contínuos...0 Transformada
Disciplina: Processamento Digital de Sinais Aula 02 - Operações e Transformações em
de de Disciplina: Processamento Digital de Sinais Aula 02 - Operações e Transformações em Prof. ([email protected]) Departamento de Engenharia Elétrica Universidade Federal da Bahia Conteúdo de de
Sinais e Sistemas Exame Data: 18/1/2018. Duração: 3 horas
Sinais e Sistemas Exame Data: 8//28. Duração: 3 horas Número: Nome: Identique este enunciado e a folha de respostas com o seu número e os seus primeiro e último nomes. Para as questões a 9, indique as
Filtros Digitais: Estudo, Projeto e Simulação
Filtros Digitais: Estudo, Projeto e Simulação Fabrício Simões IFBA 27 de outubro de 2015 Fabrício Simões (IFBA) Filtros Digitais: Estudo, Projeto e Simulação 27 de outubro de 2015 1 / 69 1 Filtragem Digital
Resumo. Sinais e Sistemas Transformada Z. Introdução. Transformada Z Bilateral
Resumo Sinis e Sistems Trnsformd Luís Clds de Oliveir lco@istutlpt Instituto Superior Técnico Definição Região de convergênci Trnsformd invers Proprieddes d trnsformd Avlição geométric d DTFT Crcterição
Sistemas a Tempo Discreto
Sistemas a Tempo Discreto 1. Caracterização de sistemas dinâmicos a tempo discreto 2. Transformada-Z 3. FT discreta, estabilidade e analogia com domínio-s 4. Sistemas amostrados 4.1 Amostragem e retenção
Sinais e Sistemas. Série de Fourier. Renato Dourado Maia. Faculdade de Ciência e Tecnologia de Montes Claros. Fundação Educacional Montes Claros
Sinais e Sistemas Série de Fourier Renato Dourado Maia Faculdade de Ciência e Tecnologia de Montes Claros Fundação Educacional Montes Claros Lembremos da resposta de um sistema LTI discreto a uma exponencial
Processamento (Digital) de Sinal. Caderno de exercícios para as horas não presenciais
Caderno de exercícios para as horas não presenciais João Paulo Teixeira ESTiG, 014 Capítulo 1 Sinais 1. Considere o Considere o seguinte sinal contínuo: x(t) 1-1 0 1 3 t a. Represente y1(t)=x(t+1). b.
Estabilidade entrada-saída (externa).
Estabilidade entrada-saída (externa) ENGC33: Sinais e Sistemas II Departamento de Engenharia Elétrica - DEE Universidade Federal da Bahia - UFBA 05 de junho de 2019 Prof Tito Luís Maia Santos 1/ 38 Sumário
EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 3 quadrimestre 2012
EN607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 fevereiro 03 EN607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 3 quadrimestre 0
Projeto de Filtros IIR. Transformações de Funções de Transferências Analógicas para Digitais e Transformações Espectrais
Projeto de Filtros IIR Transformações de Funções de Transferências Analógicas para Digitais e Transformações Espectrais Introdução Métodos mais usados para obtenção de funções de transferência de filtros
Transformada Discreta de Fourier (DFT)
Transformada Discreta de Fourier (DFT) A DFT de uma sequência x n de comprimento finito N é definida como: X k = x n e j2π N kn, 0 k N 1 A DFT mapeia uma sequência de comprimento N, x n, em outra sequência,
Sinais e Sistemas. Tempo para Sistemas Lineares Invariantes no Tempo. Representações em Domínio do. Profª Sandra Mara Torres Müller.
Sinais e Sistemas Representações em Domínio do Tempo para Sistemas Lineares Invariantes no Tempo Profª Sandra Mara Torres Müller Aula 7 Representações em Domínio do Tempo para Sistemas Lineares e Invariantes
Resumo. Sinais e Sistemas Transformada Z. Introdução. Transformada Z Bilateral
Resumo Sinis e Sistems Trnsformd [email protected] Instituto Superior Técnico Definição Região de convergênci Trnsformd invers Proprieddes d trnsformd Avlição geométric d DTFT Crcterição de SLITs usndo trnsformd.
Licenciatura em Engenharia Biomédica. Faculdade de Ciências e Tecnologia. Universidade de Coimbra. Análise e Processamento de Bio-Sinais - MIEBM
Licenciatura em Engenharia Biomédica Faculdade de Ciências e Tecnologia Slide Slide 1 1 Tópicos: Representações de Fourier de Sinais Compostos Introdução Transformada de Fourier de Sinais Periódicos Convolução
Sistemas lineares. Aula 7 Transformada Inversa de Laplace
Sistemas lineares Aula 7 Transformada Inversa de Laplace Transformada Inversa de Laplace Transformada Inversa de Laplace e RDC x(t) única Metódos Inversão pela Definição Inversão pela Expansão em Frações
Resumo. Sinais e Sistemas Amostragem. Introdução. Amostragem Periódica
Resumo Sinais e Sistemas Amostragem [email protected] Instituto Superior écnico Representação da Amostragem no Domínio da Frequência Reconstrução do Sinal Amostrado Processamento em empo Discreto de Sinais
Revisão Análise em frequência e amostragem de sinais. Hilton de Oliveira Mota
Revisão Análise em frequência e amostragem de sinais Hilton de Oliveira Mota Introdução Análise em frequência (análise espectral): Descrição de quais frequências compõem um sinal. Por quê? Senóides são
Capítulo 2 Dinâmica de Sistemas Lineares
Capítulo 2 Dinâmica de Sistemas Lineares Gustavo H. C. Oliveira TE055 Teoria de Sistemas Lineares de Controle Dept. de Engenharia Elétrica / UFPR Gustavo H. C. Oliveira Dinâmica de Sistemas Lineares 1/57
Controle e Sistemas Não lineares
Controle e Sistemas Não lineares Prof. Marcus V. Americano da Costa F o Departamento de Engenharia Química Universidade Federal da Bahia Salvador-BA, 01 de dezembro de 2016. Sumário Objetivos Introduzir
Resumo. Sinais e Sistemas Representação de Sinais Periódicos em Séries de Fourier. Objectivo. Função Própria de um Sistema
Resumo Sinais e Sistemas Representação de Sinais Periódicos em Séries de Fourier [email protected] Instituto Superior Técnico Resposta de SLITs a exponenciais complexas Série de Fourier de sinais contínuos
Sinais e Sistemas - Lista 1
UNIVERSIDADE DE BRASÍLIA, FACULDADE GAMA Sinais e Sistemas - Lista 1 4 de setembro de 2015 1. Considere o sinal x(t) mostrado na figura abaixo. O sinal é zero no intervalo 2 < t < 2. a) O gráfico a seguir
Processamento de Sinais DEL/Poli/UFRJ. Estruturas de Filtros Digitais
Processamento de Sinais DEL/Poli/UFRJ Estruturas de Filtros Digitais Elementos Básicos Os filtros discretos no tempo são formados por 4 elementos básicos: somador ponto de tomada atrasador unitário multiplicador
Aula 15 Propriedades da TFD
Processamento Digital de Sinais Aula 5 Professor Marcio Eisencraft abril 0 Aula 5 Propriedades da TFD Bibliografia OPPENHEIM, A. V.; SCHAFER. Discrete-time signal processing, 3rd. ed., Prentice-Hall, 00.
Sistemas Lineares e Invariantes: Tempo Contínuo e Tempo Discreto
Universidade Federal da Paraíba Programa de Pós-Graduação em Engenharia Elétrica Sistemas Lineares e Invariantes: Tempo Contínuo e Tempo Discreto Prof. Juan Moises Mauricio Villanueva [email protected]
EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 2 2 quadrimestre 2011
EN607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares quadrimestre 0 (P-0003D) (HAYKIN, 00, p 9) Use a equação de definição da TF para obter a representação no domínio da
A Transformada de Laplace
MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA CAMPUS JOINVILLE DEPARTAMENTO DO DESENVOLVIMENTO DO ENSINO
3 o Teste (1 a data) Sistemas e Sinais (LEIC-TP) 2008/ de Junho de Respostas
3 o Teste (1 a data) Sistemas e Sinais (LEIC-TP) 2008/2009 12 de Junho de 2009 Respostas i Problema 1. (0,75v) Considere o sinal ( n n, x(n)=cos 8 4) +π Assinale a afirmação correcta x(n) é um sinal periódico
Sinais e Sistemas. Sistemas Lineares Invariantes no Tempo. Renato Dourado Maia. Universidade Estadual de Montes Claros. Engenharia de Sistemas
Sinais e Sistemas Sistemas Lineares Invariantes no Tempo Renato Dourado Maia Universidade Estadual de Montes Claros Engenharia de Sistemas Lembrando... xt () yt () ht () OK!!! xn [ ] yn [ ] hn [ ] ht (
Sinais e Sistemas. Sistemas Lineares Invariantes no Tempo. Renato Dourado Maia. Faculdade de Ciência e Tecnologia de Montes Claros
Sinais e Sistemas Sistemas Lineares Invariantes no Tempo Renato Dourado Maia Faculdade de Ciência e Tecnologia de Montes Claros Fundação Educacional Montes Claros Introdução xt () yt () ht () xn [ ] yn
Estabilidade. 1. Estabilidade Entrada-Saída Sistemas LIT. 2. Estabilidade BIBO Sistemas LIT. 3. Estabilidade BIBO de Equações Dinâmicas Sistemas LIT
Estabilidade 1. Estabilidade Entrada-Saída Sistemas LIT 2. Estabilidade BIBO Sistemas LIT 3. Estabilidade BIBO de Equações Dinâmicas Sistemas LIT 4. Sistemas Discretos LIT 5. Estabilidade BIBO Sistemas
Filtros Digitais 1 FILTROS DIGITAIS (5.1) y = A. x B. y. onde A = C / D e B = D / D
Filtros Digitais FILTROS DIGITAIS Um filtro digital é um sistema temporal discreto projetado para passar o conteúdo espectral de um sinal de entrada em uma determinada banda de freqüências [DEF 88],isto
Introdução aos Circuitos Elétricos
1 / 47 Introdução aos Circuitos Elétricos Séries e Transformadas de Fourier Prof. Roberto Alves Braga Jr. Prof. Bruno Henrique Groenner Barbosa UFLA - Departamento de Engenharia 2 / 47 Séries e Transformadas
