Exercícios Resolvidos Esboço de Conjuntos. Cortes
|
|
|
- João Pedro Gustavo Carreira de Almada
- 9 Há anos
- Visualizações:
Transcrição
1 Instituto uperior Técnico Departamento de Matemática ecção de Álgebra e Análise Eercícios Resolvidos Esboço de Conjuntos. Cortes Eercício Descreva detalhadamente os cortes perpendiculares aos eios coordenados sobre o sólido = {(,, ) R 3 : + + < ; > ; > ; > }. Resolução: Na Figura encontra-se um esboço do conjunto em que se representam os planos descritos pelas equações + + = ; = ; = ; =. + + = / = / + = Figura : Esboço do sólido Note-se que no plano = as rectas = e + = intersectam-se no ponto de coordenadas (,, ). Portanto, para descrever os cortes em, perpendiculares aos eios coordenados, devemos fiar a variável no intervalo ], [ e cada uma das variáveis e no intervalo ], [. < < / + + = + = + = = = Figura : Corte em perpendicular ao eio O. Fiando a variável no intervalo ], [ obtemos o corte em, descrito pelas inequações e que se representa na Figura. + < ; > ; >,
2 < < + + = + = + = = Figura 3: Corte em perpendicular ao eio O. Para obter o corte em perpendicular ao eio O fiamos a variável no intervalo ], [. A respectiva descrição é dada pelas inequações + < ; > ; >, e a sua representação gráfica encontra-se na Figura 3. < < + + = + = / + = = Figura : Corte em perpendicular ao eio O para < < 3. Dado que > ; > ; > ; >, da inequação + + <, obtemos < <. Portanto, sendo >, para fiar no intervalo ], [, devemos considerar dois casos:
3 < < + + = + = = / + = Figura 5: Corte em perpendicular ao eio O para < < Para < <, temos o corte descrito por e que se representa na Figura. < ; + < ; >, Para < <, a condição > é supérflua e o corte perpendicular ao eio O é descrito pelas inequações e representado na Figura 5. + < ; > ; >, Eercício Esboce detalhadamente o conjunto = {(,, ) R 3 : ; ; ; + }. Resolução: Os conjuntos descritos pelas equações = + + () = + () são superfícies de revolução em torno do eio O. Note-se que r = + é a distância de um ponto (,, ) ao eio coordenado O. Assim, para esboçar o conjunto definido pelas condições ; ; + + +, (3) basta considerar a intersecção das superfícies () e () com o plano coordenado O tal como se ilustra na Figura 6. A região descrita em (3) é a que se obtém rodando a Figura 6 em torno do eio O sobre o primeiro quadrante do plano O. Ou seja, é a região entre os gráficos dos parabolóides de revolução () e () sobre o quarto de círculo + ; ;. 3
4 = + (, ) = Figura 6: Intersecção das superfícies com o plano coordenado O + = Figura 7: O plano + = no primeiro octante O conjunto é a porção desta região que se encontra sob o plano + = () cuja intersecção com o primeiro octante é descrita na Figura 7. Assim, é limitado inferiormente pelo parabolóide () e superiormente pelo parabolóide () ou pelo plano (). Resta agora determinar a região do plano O sobre a qual é limitado superiormente pelo plano () e a região sobre a qual é limitado superiormente pelo parabolóide (). Para isso é necessário calcular a intersecção do plano com os parabolóides. A intersecção do plano () com o parabolóide () é descrita por { = + = { + + = = { + ( + ) = 5 = e, portanto, a projecção desta intersecção no plano O é o arco de circunferência + ( + ) = 5 ; ;. A intersecção do plano () com o parabolóide () é descrita por { = + + = { + + = = { + ( + ) = =.
5 endo a projecção desta intersecção no plano O o arco de circunferência + ( + ) = ; ;. Estas projecções estão representadas na Figura 8. (,, ) 5 I II 5 II + ( + ) = 5 I + ( + ) = 5 + ( + ) = (,, ) + ( + ) = Figura 8: Esboço de e respectiva projecção no plano O Na região I, é o conjunto de pontos entre os dois parabolóides e na região II é o conjunto de pontos entre o parabolóide () e o plano (). Na Figura 8 encontra-se o esboço do conjunto. Eercício 3 Esboce o subconjunto situado no primeiro octante de R 3 e limitado pelos planos + + = 3 ; + = ; =. Descreva os cortes em perpendiculares aos eios coordenados. Resolução: Do sistema de equações { + + = 3 + =, obtemos { + = =, ou seja, os planos + + = 3 e + = intersectam-se segundo a recta definida por + = ; =. Esta recta intersecta o plano coordenado = no ponto (,, ). Os planos = e + + = 3 intersectam-se segundo a recta definida por + = ; =. Esta recta intersecta o plano = no ponto (,, ). Note-se também que o plano definido por + = passa pela origem e que o conjunto é simétrico em relação ao plano =. Portanto, podemos concluir que 5
6 Na direcção do eio O eistem duas regiões a distinguir: uma em que < < e outra em que < <. Para a região em que < <, os cortes com fio (perpendiculares ao eio O) são triângulos limitados pelos eios O e O e pela recta de equação + = 3, tal como se ilustra na Figura 9. = (,, ) + + = 3 < < + = 3 (,, ) + = Figura 9: Esboço de e corte com fio Para < <, os cortes com fio são também triângulos limitados pelos eios O e O e pela recta de equação + =. Na direcção do eio O eistem também duas regiões distintas: uma em que < < e outra em que < <. Para a região em que < <, os cortes perpendiculares ao eio O são quadriláteros limitados pelo eio O, pela recta =, pela recta + = 3 e pela recta =, tal com se mostra na Figura. = (,, ) + + = 3 (,, ) + = < < + = 3 = Figura : Corte em perpendicular a O com ], [ Para a região em que < <, os cortes com fio são triângulos limitados pelo eio O, pela recta + = 3 e pela recta =, como se ilustra na Figura. 6
7 = (,, ) + + = 3 (,, ) + = < < + = 3 = Figura : Corte em perpendicular a O com ], [ Devido à simetria de, na direcção do eio O passa-se o mesmo que na direcção do eio O com as devidas modificações. 7
8 Eercício Considere o conjunto = {(,, ) R 3 : < < ; + < < ; + + ( ) > }. a) Esboce o conjunto. b) Descreva os cortes em perpendiculares ao eio O. c) Descreva os cortes em perpendiculares ao eio O. Resolução: a) A região é limitada pelos planos verticais = e =, pelos planos horiontais = e =, pela superfície cónica = + e pela superfície esférica de centro no ponto (,, ) e raio, definida pela equação + + ( ) =. Na Figura apresenta-se um esboço do conjunto. 3 + = 6 = Figura : Esboço do sólido b) Um corte em, perpendicular ao eio O, é um plano em descrito pela equação = a, em que a é uma constante, ou seja, é o subconjunto de em que a variável está fia ( = a): {(a,, ) R 3 : < a < ; a + < < ; + ( ) > a }. Note-se que, neste corte, a recta = a intersecta a circunferência + ( ) = a para a a, ou seja, para a. Portanto há dois casos a considerar: ou < a ou < a <. Na Figura 3 encontram-se representados os cortes em perpendiculares ao eio O. c) Os cortes em perpendiculares ao eio O são os subconjuntos de em que a variável está fia ( = c): {(,, c) R 3 : < < ; + < c ; + > (c ) }. 8
9 < a < = a + < a < = a + + < a < a < a < a a a 6 a + a a a a 6 a Figura 3: Cortes em perpendiculares ao eio O e (c ) c ou c 3, então a última condição verifica-se automaticamente porque + >. c < c < 3c (c ) < c < ou 3 < c < + = c = c < c < ou 3 < c < (c ) c < c < 3 + = c = Figura : Cortes em perpendiculares ao eio O e c 3, então o corte consiste num sector entre as circunferências de raio (c ) e c, respectivamente, tal como se ilustra na Figura. 9
Exercícios Resolvidos Esboço e Análise de Conjuntos
Instituto uperior Técnico Departamento de Matemática ecção de Álgebra e Análise Eercícios Resolvidos Esboço e Análise de Conjuntos Eercício Esboce detalhadamente o conjunto descrito por = {(,, ) R 3 :,,
Teorema de Fubini. Cálculo de Integrais
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Prof. Gabriel Pires Teorema de Fubini. Cálculo de Integrais Recordemos que o teorema de Fubini estabelece uma forma epedita
Exercícios Resolvidos Mudança de Coordenadas
Instituto uperior écnico Departamento de Matemática ecção de Álgebra e Análise Eercícios Resolvidos Mudança de Coordenadas Eercício Considere o conjunto {(, R : < < ; < < + } e a função g : R R definida
Teorema de Fubini. Cálculo de volumes
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Prof. Gabriel Pires Teorema de Fubini. Cálculo de volumes Teorema de Fubini O teorema de Fubini (cf. [,, 3] permite relacionar
Cálculo III-A Lista 1
Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada Cálculo III-A Lista Eercício : Calcule as seguintes integrais duplas: a) b) c) dd, sendo [,] [,].
Exercícios Resolvidos Integral de Linha de um Campo Escalar
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Eercícios Resolvidos Integral de Linha de um ampo Escalar Eercício onsidere o caminho g : [, ] R definido por g(t) = (e
1. Superfícies Quádricas
. Superfícies Quádricas álculo Integral 44. Identifique e esboce as seguintes superfícies quádricas: (a) x + y + z = (b) x + z = 9 x + y + z = z (d) x + y = 4 z (e) (z 4) = x + y (f) y = x z = + y (g)
3 Cálculo Integral em R n
3 Cálculo Integral em n Exercício 3.. Calcule os seguintes integrais. Universidade da Beira Interior Matemática Computacional II Engenharia Informática 4/5 Ficha Prática 3 3 x + y dxdy x y + x dxdy e 3
Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada. Cálculo 3A Lista 1
Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada Cálculo 3A Lista Eercício : Calcule as seguintes integrais duplas: a) b) c) dd, sendo [,] [,]. +
UC: Análise Matemática II. Representação geométrica para Integrais Múltiplos - Volumes
ETI / EI, 1 o Ano UC: Análise Matemática II Representação geométrica para Integrais Múltiplos - Volumes Elaborado de: Diana Aldea Mendes e Rosário Laureano Departamento de Métodos Quantitativos Fevereiro
LISTA DE PRÉ-CÁLCULO
LISTA DE PRÉ-CÁLCULO Instituto de Matemática - UFRJ Prof. Nei Rocha Rio de Janeiro 2018-2 Eercício 1 Resolva: (a) 1 = + 1 (b) 6 3 1 = 3 (1 + 2 2 ) (c) 8 < 3 4 (d) 2 2 + 10 12 < 0 (e) 1 2 + 2 3 4 (f) +
Universidade Federal da Bahia
Universidade Federal da Bahia Instituto de Matemática DISCIPLINA: MATA0 - CÁLCULO B UNIDADE I - LISTA DE EXERCÍCIOS Atualizada 0. Áreas de figuras planas em coordenadas cartesianas [] Determine a área
1 Axiomatização das teorias matemáticas 30 2 Paralelismo e perpendicularidade de retas e planos 35 3 Medida 47
ÍNDICE Números e operações Geometria e medida Relação de ordem em R 4 Intervalos de números reais 8 Valores aproimados de resultados de operações Eercícios resolvidos 6 Eercícios propostos 0 Eercícios
Universidade Federal da Bahia
Universidade Federal da Bahia Instituto de Matemática DISCIPLINA: MATA0 - CÁLCULO B UNIDADE I - LISTA DE EXERCÍCIOS Atualizada 00. Áreas de figuras planas em coordenadas cartesianas [] Determine a área
Lista 5: Superfícies. (e) x = 4 tan(t) (f) x = (g) x = 1 4 csc(t) y = cosh(2t)
1. Parametrize as seguintes curvas. + = 16 + 5 = 15 = 4 = 16 + 5 + 8 7 = 0 (f) + 4 + 1 + 6 = 0. Lista 5: Superfícies (g) = + (h) + = (i) + = 4 (j) + = 1 (k) 6 + 18 = 0 (l) r = sin(θ). Determine a equação
ANÁLISE MATEMÁTICA III A TESTE 2 31 DE OUTUBRO DE :10-16H. Duração: 50 minutos
Departamento de Matemática Secção de Álgebra e Análise Última actualização: 3/Out/5 ANÁLISE MATEMÁTICA III A TESTE 3 DE OUTUBRO DE 5 5:-6H RESOLUÇÃO (As soluções aqui propostas não são únicas!) Duração:
ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO
ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO Matemática 10º ANO Novembro 004 Ficha de Trabalho nº 4 - Conjuntos de pontos e condições Distância entre dois pontos Mediatriz de um segmento de recta Circunferência
Exercícios de Matemática Geometria Analítica
Eercícios de Matemática Geometria Analítica. (UFRGS) Considere um sistema cartesiano ortogonal e o ponto P(. ) de intersecção das duas diagonais de um losango. Se a equação da reta que contém uma das diagonais
Exercícios Resolvidos Variedades
Instituto Superior Técnico Departamento de atemática Secção de Álgebra e Análise Eercícios Resolvidos Variedades Eercício 1 Considere o conjunto = {(,, ) R : + = 1 ; 0 < < 1}. ostre que é uma variedade,
Lista 5: Superfícies Engenharia Mecânica - Professora Elisandra Bär de Figueiredo
Lista 5: Superfícies Engenharia Mecânica - Professora Elisandra Bär de Figueiredo Nos eercícios 1 ao 18 identique e represente geometricamente as superfícies dadas pelas equações: 1. + 9 = 6. = 16. = 9.
ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 10º ANO DE MATEMÁTICA A Teste de avaliação Grupo I
ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 10º ANO DE MATEMÁTICA A 0 05 007 Teste de avaliação Grupo I As cinco questões deste grupo são de escolha múltipla. Para cada uma delas são indicadas quatro alternativas,
CDI-II. Resumo das Aulas Teóricas (Semana 2) lim. k f(x k) = f(a)
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Prof. Gabriel Pires CDI-II Resumo das Aulas Teóricas (Semana 2) 1 Funções Contínuas. Classificação de Conjuntos Seja f
ANÁLISE MATEMÁTICA III CURSOS: LEAB, LEB, LEMG, LEMAT, LEN, LEQ, LQ. disponível em acannas/amiii
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualização: 9// ANÁLISE MATEMÁTICA III CURSOS: LEAB, LEB, LEMG, LEMAT, LEN, LEQ, LQ PROPOSTA DE) RESOLUÇÃO DA
Superfícies e Curvas no Espaço
Superfícies e Curvas no Espaço Reginaldo J. Santos Departamento de Matemática-ICE Universidade Federal de Minas Gerais http://www.mat.ufmg.br/~regi [email protected] 11 de deembro de 2001 1 Quádricas Nesta
UNIDADE III LISTA DE EXERCÍCIOS
Universidade Federal da Bahia Instituto de Matemática. - Departamento de Matemática. Disciplina: MATA álculo B UNIDADE III LISTA DE EXERÍIOS Atualizada. Derivada Direcional e Gradiente alcule o gradiente
Exercícios sobre Trigonometria
Universidade Federal Fluminense Campus do Valonguinho Instituto de Matemática e Estatística Departamento de Matemática Aplicada - GMA Prof Saponga uff Rua Mário Santos Braga s/n 400-40 Niterói, RJ Tels:
FICHA DE TRABALHO N.º 5 MATEMÁTICA A - 10.º ANO GEOMETRIA ANALÍTICA E CÁLCULO VECTORIAL NO PLANO
Geometria nalítica e álculo Vectorial no Plano FIH E TRLH N.º 5 MTEMÁTI - 0.º N GEMETRI NLÍTI E ÁLUL VETRIL N PLN onhece a Matemática e dominarás o Mundo. Galileu Galilei GRUP I ITENS E ESLH MÚLTIPL. Num
ESCOLA SECUNDÁRIA FERREIRA DIAS
ESCOLA SECUNDÁRIA FERREIRA DIAS ENSINO RECORRENTE DE NÍVEL SECUNDÁRIO POR MÓDULOS CAPITALIZÁVEIS CURSO DE CIÊNCIAS E TECNOLOGIAS DISCIPLINA : MATEMÁTICA A ANO: 10.º - CONJUNTO DOS MÓDULOS 1-2-3 DURAÇÃO
Escola Secundária da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo de 2003/04 Trigonometria 1 (Revisões) 12.º Ano
Escola Secundária da Sé-Lamego Ficha de Trabalho de Matemática no Lectivo de 00/04 Trigonometria 1 (Revisões) 1º no Nome: Nº: Turma: 1 Um cone, cuja base tem raio r e cuja geratriz tem comprimento l, roda
SUPERFÍCIES QUÁDRICAS
1 SUPERFÍCIES QUÁDRICAS Dá-se o nome de superfície quádrica ou simplesmente quádrica ao gráfico de uma equação do segundo grau, nas variáveis, e, da forma: A + B + C + D + E + F + G + H + I + K = 0, que
3. Achar a equação da esfera definida pelas seguintes condições: centro C( 4, 2, 3) e tangente ao plano π : x y 2z + 7 = 0.
Universidade Federal de Uerlândia Faculdade de Matemática Disciplina : Geometria Analítica (GMA00) Assunto: Superfícies, Quádricas, Curvas e Coordenadas Professor Sato 4 a Lista de exercícios. Determinar
FICHA DE TRABALHO 2 - RESOLUÇÃO
Secção de Álgebra e Análise, Departamento de Matemática, Instituto Superior Técnico Análise Matemática III A - 1 o semestre de 2003/04 FICHA DE TRABALHO 2 - RESOLUÇÃO 1) Seja U R n um aberto e f : U R
Cursos de Estatística, Informática, Ciências de Informação Geográfica ALGA, Ficha 10 Cónicas
Cursos de Estatística, Informática, Ciências de Informação Geográfica ALGA, Ficha 10 Cónicas EXERCÍCIOS: Circunferência 1. Escreva a equação da circunferência de centro em C e de raio r, onde: a) C está
Solução Comentada Prova de Matemática
18. Se f é uma função real de variável real definida por f() = a + b + c, onde a, b e c são números reais negativos, então o gráfico que melhor representa a derivada de f é: A) y B) y C) y D) y E) y Questão
Preparação para o Teste de Maio 2012 (GEOMETRIA)
Nº8 Matemática: ºA Preparação para o Teste de Maio (GEOMETIA) Grupo I. Num referencial o.n. Oy, considera um ponto A pertencente ao semieio positivo O e um ponto B pertencente ao semieio positivo Oy. Quais
Matemática B Extensivo v. 8
Etensivo v. 8 Eercícios 0) 9 6 = ; e = 3 centro Note que C = (0, 0). Também, c = e a = 3. Então, da equação c = b + a temos = b + 3 b = 4. Assim, a equação dessa hipérbole fica: = = 3 4 9 6 A ecentricidade
Capítulo 3 - Geometria Analítica
1. Gráficos de Equações Capítulo 3 - Geometria Analítica Conceito:O gráfico de uma equação é o conjunto de todos os pontos e somente estes pontos, cujas coordenadas satisfazem a equação. Assim, o gráfico
3. Esboce a região de integração e inverta a ordem nas seguintes integrais: 4., onde R é a região delimitada por y x +1, y x
Universidade Salvador UNIFACS Cursos de Engenharia Cálculo Avançado / Métodos Matemáticos / Cálculo IV Profa: Ilka Freire ª Lista de Eercícios: Integrais Múltiplas 9., sendo:. Calcule f, da a) f, e ; =,
MATEMÁTICA 9.º ANO TERCEIRO CICLO BRUNO SILVA CRISTINA SERRA ISABEL OLIVEIRA RAQUEL OLIVEIRA
MATEMÁTICA 9.º ANO TERCEIRO CICLO BRUNO SILVA CRISTINA SERRA ISABEL OLIVEIRA RAQUEL OLIVEIRA ÍNDICE Números e operações Geometria e medida 1 Relação de ordem em R 4 2 Intervalos de números reais 8 3 Valores
Cálculo 3A Lista 6. Exercício 1: Apresente uma parametrização diferenciável para as seguintes curvas planas:
Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada álculo 3A Lista 6 Eercício : Apresente uma parametrização diferenciável para as seguintes curvas
Cálculo III-A Lista 6
Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada álculo III-A Lista 6 Eercício : Apresente uma parametrização diferenciável para as seguintes curvas
Matemática A. Teste Intermédio de Matemática A. Versão 1. Teste Intermédio. Versão 1. Duração do Teste: 90 minutos º Ano de Escolaridade
Teste Intermédio de Matemática A Versão 1 Teste Intermédio Matemática A Versão 1 Duração do Teste: 90 minutos 29.01.2009 11.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de Março Na sua folha de
Matemática. Resolução das atividades complementares. M21 Geometria Analítica: Cônicas
Resolução das atividades complementares Matemática M Geometria Analítica: Cônicas p. FGV-SP) Determine a equação da elipse de centro na origem que passa pelos pontos A, 0), B, 0) e C0, ). O centro da elipse
Departamento de Matemática Faculdade de Ciências e Tecnologia Universidade de Coimbra Cálculo III - Engenharia Electrotécnica Caderno de Exercícios
Departamento de Matemática Faculdade de iências e Tecnologia Universidade de oimbra álculo III - Engenharia Electrotécnica aderno de Exercícios álculo Integral álculo do integral triplo em coordenadas
Escola Secundária com 3º ciclo D. Dinis. 10º Ano de Matemática A. Geometria no Plano e no Espaço I
Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A Geometria no Plano e no Espaço I Trabalho de casa nº 7 GRUPO I 1. Num certo prisma, cada uma das bases tem n vértices. Quantas faces e quantas
Proposta de Teste Intermédio Matemática A 11.º ano
Nome da Escola no letivo 20-20 Matemática 11.º ano Nome do luno Turma N.º Data Professor - - 20 GRUP I s cinco itens deste grupo são de escolha múltipla. Em cada um deles, são indicadas quatro opções,
INSTITUTO FEDERAL DE BRASILIA 4ª Lista. Nome: DATA: 09/11/2016
INSTITUTO FEDERAL DE BRASILIA 4ª Lista MATEMÁTICA GEOMETRIA ANALÍTICA Nome: DATA: 09/11/016 Alexandre Uma elipse tem centro na origem e o eixo maior coincide com o eixo Y. Um dos focos é 1 F1 0, 3 e a
Capítulo 19. Coordenadas polares
Capítulo 19 Coordenadas polares Neste capítulo, veremos que há outra maneira de expressar a posição de um ponto no plano, distinta da forma cartesiana. Embora os sistemas cartesianos sejam muito utilizados,
MATEMÁTICA A - 11o Ano. Propostas de resolução
MATEMÁTICA A - o Ano Funções racionais Propostas de resolução Eercícios de eames e testes intermédios. Como o conjunto solução da condição f 0 é o conjunto das abcissas dos pontos do gráfico da função
Cálculo IV EP2 Tutor
Eercício : Calcule + e +. Fundação Centro de Ciências e Educação Superior a istância do Estado do Rio de Janeiro Centro de Educação Superior a istância do Estado do Rio de Janeiro Cálculo IV EP Tutor da
Aula Exemplos diversos. Exemplo 1
Aula 3 1. Exemplos diversos Exemplo 1 Determine a equação da hipérbole equilátera, H, que passa pelo ponto Q = ( 1, ) e tem os eixos coordenados como assíntotas. Como as assíntotas da hipérbole são os
Descrevendo Regiões no Plano Cartesiano e no Espaço Euclidiano
Descrevendo Regiões no Plano Cartesiano e no Espaço Euclidiano Americo Cunha Débora Mondaini Ricardo Sá Earp Departamento de Matemática Pontifícia Universidade Católica do Rio de Janeiro Regiões no Plano
SUMÁRIO. Unidade 1 Matemática Básica
SUMÁRIO Unidade 1 Matemática Básica Capítulo 1 Aritmética Introdução... 12 Expressões numéricas... 12 Frações... 15 Múltiplos e divisores... 18 Potências... 21 Raízes... 22 Capítulo 2 Álgebra Introdução...
MATEMÁTICA A - 11o Ano Geometria -Trigonometria Propostas de resolução
MTEMÁTI - o no Geometria -Trigonometria ropostas de resolução Eercícios de eames e testes intermédios. bservando que os ângulos e RQ têm a mesma amplitude porque são ângulos de lados paralelos), relativamente
7. f(x,y,z) = y + 25 x 2 y 2 z f(x,y,z) = f : D R 2 R (x,y) z = f(x,y) = x 2 + y 2
Lista Cálculo II -B- 007- Universidade Federal Fluminense EGM - Instituto de Matemática GMA - Departamento de Matemática Aplicada LISTA - 007- Domínio, curva de nível e gráfico de função real de duas variáveis
Gráco de funções de duas variáveis
UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 09 Assunto:Gráco de funções de duas variáveis, funções de três variáveis reais a valores reais, superfícies de nível,funções limitadas Palavras-chaves:
Borja ESTABILIDADE DAS CONSTRUÇÕES NOTAS DE AULA: - Prof. INSTITUTO FEDERAL DE EDUCAÇÃO CIÊNCIA e TECNOLOGIA DO RIO GRANDE DO NORTE
INSTITUTO FEDERAL DE EDUCAÇÃO CIÊNCIA e TECNOLOGIA DO RIO GRANDE DO NORTE DIRETORIA ACADÊMICA DE CONSTRUÇÃO CIVIL TEC. EM CONSTR. DE EDIFICIOS EDIFICAÇÕES TÉCNICO SUBSEQUENTE ESTABILIDADE DAS CONSTRUÇÕES
Concluimos dai que o centro da circunferência é C = (6, 4) e o raio é
QUESTÕES-AULA 17 1. A equação x 2 + y 2 12x + 8y + 0 = 0 representa uma circunferência de centro C = (a, b) e de raio R. Determinar o valor de a + b + R. Solução Completamos quadrados na expressão dada.
MATEMÁTICA MÓDULO 16 CONE E CILINDRO. Professor Haroldo Filho
MATEMÁTICA Professor Haroldo Filho MÓDULO 16 CONE E CILINDRO 1. CILINDRO CIRCULAR Considere dois planos paralelos, α e β, seja R um círculo no plano α, seja s uma reta secante aos dois planos que não intersecta
(j) e x. 2) Represente geometricamente e interprete o resultado das seguintes integrais: (i) 1x dx Resposta: (ii)
MINISTÉRIO DA EDUCAÇÃO DESEMPENHO UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ CÂMPUS PATO BRANCO Atividades Práticas Supervisionadas (APS) de Cálculo Diferencial e Integral Prof a Dayse Batistus, Dr a.
1 Distância entre dois pontos do plano
Noções Topológicas do Plano Americo Cunha André Zaccur Débora Mondaini Ricardo Sá Earp Departamento de Matemática Pontifícia Universidade Católica do Rio de Janeiro 1 Distância entre dois pontos do plano
UNIVERSIDADE FEDERAL DE ALAGOAS INSTITUTO DE MATEMÁTICA Aluno(a): Professor(a): Curso:
5 Geometria Analítica - a Avaliação - 6 de setembro de 0 Justique todas as suas respostas.. Dados os vetores u = (, ) e v = (, ), determine os vetores m e n tais que: { m n = u, v u + v m + n = P roj u
REBATIMENTOS 3- OS REBATIMENTOS E A MUDANÇA DE DIEDROS DE PROJECÇÃO
REBATIMENTOS 1- NOÇÃO Sabemos que dois planos se intersectam segundo uma recta. Quando temos dois planos, se fizermos um deles rodar em torno da recta de intersecção até ficar coincidente com o outro,
EXERCÍCIOS RESOLVIDOS - SUPERFÍCIES - Ano lectivo 2010/2011
EXERCÍCIOS RESOLVIDOS - SUPERFÍCIES - Ano lectivo 2010/2011 Este documento contém um conjunto de exercícios resolvidos sobre o tema das superfícies. Os exercícios foram retirados de provas de frequências
a) b) 5 3 sen 60 o = x. 2 2 = 5. 3 x = x = No triângulo da figura abaixo, o valor do x é igual a: a) 7 c) 2 31 e) 7 3 b) 31 d) 31 3
Matemática a. série do Ensino Médio Frentes e Eercícios propostos AULA FRENTE Num triângulo ABC em que AB = 5, B^ = º e C^ = 5º, a medida do lado AC é: a) 5 b) 5 c) 5 d) 5 e) 5 Sabendo-se que um dos lados
4.4 Secções planas de superfícies e sólidos
4.4 Secções planas de superfícies e sólidos Geometria Descritiva 2006/2007 e sólidos Quando um plano intersecta uma superfície geométrica determina sobre ela uma linha plana que pertence à superfície A
Cálculo 3A Lista 4. Exercício 1: Seja a integral iterada. I = 1 0 y 2
Eercício : Seja a integral iterada Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada Cálculo A Lista 4 I = ddd. a) Esboce o sólido cujo volume é
Universidade Federal do Pará Curso de Licenciatura em Matemática PARFOR Lista de Exercícios Referentes a Prova Substitutiva de Geometria Analítica
1 Universidade Federal do Pará Curso de Licenciatura em Matemática PARFOR Lista de Exercícios Referentes a Prova Substitutiva de Geometria Analítica 1. Determine a distância entre os pontos A(-2, 7) e
MATEMÁTICA A - 11o Ano Geometria -Trigonometria
MTEMÁTI - 11o no Geometria -Trigonometria Eercícios de eames e testes intermédios 1. Na figura ao lado, está representada uma circunferência de centro no ponto e raio 1 os diâmetros [ e [ são perpendiculares;
Ano lectivo 2010 / 2011 Conteúdos programáticos essenciais
Ano de escolaridade: 7º Área curricular disciplinar de Matemática 1. Números inteiros Números naturais Números primos e números compostos. Múltiplos e divisores de um número natural. Decomposição de um
UNIDADE 1 ESTATÍSTICA E PROBABILIDADES 9 tempos de 45 minutos
EBIAH 9º ANO PLANIFICAÇÃO A LONGO E MÉDIO PRAZO EBIAH PLANIFICAÇÃO A MÉDIO PRAZO 9º ANO - 1º Período Integração dos alunos 1 tempo ESTATÍSTICA A aptidão para entender e usar de modo adequado a linguagem
Objetivos. Aprender a propriedade reflexiva da parábola.
Aula 16 Parábola - continuação MÓDULO 1 - AULA 16 Objetivos Descrever a parábola como um lugar geométrico, determinando a sua equação reduzida nos sistemas de coordenadas com eixo y paralelo à diretriz
FUNÇÃO QUADRÁTICA. Vamos fazer agora o estudo da função, tendo em conta a sua representação geométrica.
FUNÇÃO QUADRÁTICA Definição: Uma função quadrática é uma função f definida por f () a b c, a 0 a, b e c são números reais. - O domínio de uma função quadrática é o conjunto dos números reais. - O gráfico
Análise Matemática III Resolução do 2 ō Teste e 1 ō Exame - 20 de Janeiro horas
Instituto uperior Técnico Departamento de Matemática ecção de Álgebra e Análise Análise Matemática III Resolução do ō Teste e ō Exame - de Janeiro - 9 horas. O sólido tem simetria cilíndrica em torno do
Prova Escrita de MATEMÁTICA A - 12o Ano a Fase
Prova Escrita de MATEMÁTICA A - o Ano 05 - a Fase Proposta de resolução GRUPO I. Escolhendo os lugares das etremidades para os dois rapazes, eistem hipóteses correspondentes a uma troca entre os rapazes.
ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO
ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO 2011-2012 Sólidos Geométricos NOME: Nº TURMA: Polígonos Um polígono é uma figura geométrica plana limitada por uma linha fechada.
Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A Funções e Gráficos Generalidades. Funções polinomiais. Função módulo.
Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A Funções e Gráficos Generalidades. Funções polinomiais. Função módulo. Trabalho de casa nº 11 1. Considere as funções f e g, representadas
UFRJ - Instituto de Matemática Programa de Pós-Graduação em Ensino de Matemática Mestrado em Ensino de Matemática
UFRJ - Instituto de Matemática Programa de Pós-Graduação em Ensino de Matemática www.pg.im.ufrj.br/pemat Mestrado em Ensino de Matemática Seleção 0 Etapa Questão. Considere f : [, ] R a função cujo gráfico
Aula 4. Coordenadas polares. Definição 1. Observação 1
Aula Coordenadas polares Nesta aula veremos que há outra maneira de expressar a posição de um ponto no plano, distinta da forma cartesiana Embora os sistemas cartesianos sejam muito utilizados, há curvas
CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1. CAPÍTULO 2 Sistemas de Coordenadas Retangulares 9. CAPÍTULO 3 Retas 18
Sumário CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1 Sistema de Coordenadas Lineares 1 Intervalos Finitos 3 Intervalos Infinitos 3 Desigualdades 3 CAPÍTULO 2 Sistemas de
MATEMÁTICA A - 10o Ano Geometria
MTEMÁTI - 10o no Geometria Eercícios de eames e testes intermédios 1. Na figura ao lado, está representado, num referencial o.n., um cilindro de revolução de altura 3 o ponto tem coordenadas (1,2,0) e
Matemática Régis Cortes GEOMETRIA ANALÍTICA
GEOMETRI NLÍTIC 1 GEOMETRI NLÍTIC Foi com o francês René Descartes, filósofo e matemático que surgiu a geometria analítica. issetriz dos quadrantes pares º QUDRNTE ( -, + ) Y ( eio das ORDENDS ) 1º QUDRNTE
1 Geometria Analítica Plana
UNIVERSIDADE ESTADUAL DO PARANÁ CAMPUS DE CAMPO MOURÃO Curso: Matemática, 1º ano Disciplina: Geometria Analítica e Álgebra Linear Professora: Gislaine Aparecida Periçaro 1 Geometria Analítica Plana A Geometria
Ficha de avaliação nº2 Versão A1
st ireção-eral dos stabelecimentos scolares SRAI ireção de Serviços da Região Algarve ARUPAMNT SLAS JÚLI ANTAS LAS (145415) Matemática A- 10ºAN 1/11/013 Ano letivo 013/014 icha de avaliação nº Versão A1
Tema 0: Módulo Inicial Nº de Aulas Previstas (90 m): 18
Planificação Anual Matemática A 0º Ano Ano Lectivo 0/0 Tema 0: Módulo Inicial Nº de Aulas Previstas (90 m): 8 (BLOCOS DE 90M) Revelar espírito crítico, de rigor e confiança nos seus raciocínios. Abordar
Cálculo III-A Módulo 4
Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada Cálculo III-A Módulo 4 Aula 7 Integrais Triplas Objetivo Compreender a noção de integral tripla.
Proposta de teste de avaliação
Proposta de teste de avaliação Matemática 10. O NO DE ESOLRIDDE Duração: 90 minutos Data: Grupo I Na resposta aos itens deste grupo, selecione a opção correta. Escreva, na folha de respostas, o número
CDI-II. Resumo das Aulas Teóricas (Semana 5) 1 Extremos de Funções Escalares. Exemplos
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Prof. Gabriel Pires CDI-II Resumo das Aulas Teóricas (Semana 5) 1 Etremos de Funções Escalares. Eemplos Nos eemplos seguintes
Este trabalho foi licenciado com a Licença Creative Commons Atribuição - NãoComercial - SemDerivados 3.0 Não Adaptada
1. Introdução Definição: Parábola é o lugar geométrico dos pontos do plano cujas distâncias entre uma reta fixa, chamada de reta diretriz, e a um ponto fixo situado fora desta reta, chamado de foco da
Matemática A. Teste Intermédio de Matemática A. Versão 2. Teste Intermédio. Versão 2. Duração do Teste: 90 minutos º Ano de Escolaridade
Teste Intermédio de Matemática A Versão 2 Teste Intermédio Matemática A Versão 2 Duração do Teste: 90 minutos 29.01.2009 11.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de Março Na sua folha de
