-- Notas de Aula -- EMC Simulação e Otimização de Sistemas Térmicos. Prof. Christian Hermes. Inverno de 2018

Tamanho: px
Começar a partir da página:

Download "-- Notas de Aula -- EMC Simulação e Otimização de Sistemas Térmicos. Prof. Christian Hermes. Inverno de 2018"

Transcrição

1 6. Otiização -- Notas de Aula -- EMC4086 Siulação e Otiização de Sisteas Téricos Prof. Christian Heres Inverno de 08 Definição: processo de procurta das condições geoétricas, operacionais que fornece o valor áxio ou íunio de ua função objetiva (variável resposta) Parâetros livres para variar: siulação n eqs = n vars otiização eqs < n vars Forulação: ( n) y = y x,,x função objetiva x,,xn = 0 restrições de igualdade x,,x = 0 n n l n l x,,x L x,,x L Note que: l restrições de desigualdade (i) y = a + Y( x,,xn) co a constante, in a + Y( x,,xn ) = a + in Y( x,,xn ) (ii) ax y( x,,x ) = in y( x,,x ) n n Otiização se restrições ótio ocorre onde as derivadas são nulas. Para y = y( x,,x ) n y y y ˆ y = 0,, = 0 y = i ˆ + in = 0 x xn x xn y vetor gradiente Sobre o vetor gradiente - Vetor unitário qualquer, Considere dx ˆi + dx ˆi ( dx ) + ( dx ) y y y = y x, x dy = dx + dx x x y x Ao longo de ua isolinha: y = cte dy = 0 dx = dx y x - -

2 Vetor tangente unitário y x ˆ ˆ y ˆ y i + i i ˆ + i y x x x ˆt = = y x y y + + y x x x Vetor gradiente unitário y ˆ y i + ˆi y x x ĝ = = y y y + x x y y ˆ ˆ y y i i ˆ ˆ + i i ˆ x x x x ˆ t g = = 0 tˆ gˆ vetor gradiente é ortogonal às isolinhas de y=cte! y y + x x Multiplicadores de Lagrange = x,x d = dx + dx Adita x x x Ao longo de ua restrição, = cte d = 0 dx = dx x Mas, y y y x y y = y( x, x ) dy = dx + dx = + dx x x x x x No ótio, y x y y x y x dy = 0 + = 0 = = ultiplicador de Lagrange x x x x x Assi, y = 0 e y = 0 co ( x,x) = 0 3 eqs x 3 vars ( x,x, ) x x x x y = 0 co ( x,x ) = 0 Método dos Multiplicadores de Lagrange (D c/ restrição) Generalizando, n eqs i i i= y = 0 x,,xn = 0 restrições x,,x = 0 n n + eqs x ( x,,xn) + (,, ) vars! - -

3 Para resolver por Newton-Raphson, y f = + = 0 x x x y f = + = 0 n x x x f = x,,x n+ n f = x,,x n+ n f f f f x xn x f fn fn fn fn x xn x n f = fn+ fn+ fn+ fn+ f x xn f n fn+ fn+ fn+ f n+ x xn n n+ + Exeplo: trocador casco-e-tubos 5 C = D L + 30DL in (o tero= tubos, o tero casco, 3o tero espaço ocupado) restrição: copriento total = 00 co densidade de 00 tubos por D 00 tubos L = 00 = 50D L 00 4 C ˆ C 3 5 C = i + ˆi = ( 750D L + 30L) ˆi + ( 00D + 30D) ˆi D L D L D L ˆ = i + ˆi = ( 00 DL) ˆi + ( 50D ) ˆi D L D L D L + = 5 00D + 30D ( 50 D ) = 0 50D L 00 = D L 30L 00 DL 0 D = 0,7 Resolvendo por NR L =,3 = 8,78 Qual seria a variação do ínio se 0 de tubo fosse epregados no lugar de 00? 5 * * H = 00 L = 0,03H C = ,7 0,03H ,7 0,03H * * C C = ,78H = 8,78 = ultiplicador: sensibilidade do ótio e relação à restrição H Considere, y( x,x) opt co ( x,x ) = b, logo y = 0 y = 0 x x x x x,x b = 0-3 -

4 Adita que, y y x y x SC = = + b x b x b x x x x Mas, = + = 0 + = 0 b x b x b x b x b Co, y = x x e y = x x y x y x = + = SC x b x b Prograação Geoétrica obté o valor da função no ponto ótio Aplicável à funções cujos teros são soas de polinôios das variáveis: T N T atn t n t t= n= t= y = c x = u função objetiva Especialente útil quando o grau de dificuldade, DoD=TT-(N+), é zero, onde TT é o No. total de teros polinoiais na função objetiva e nas restrições e N é o No. de variáveis. y = x + x + 7x x DoD = 3 + = Exeplo: Neste caso, pode-se fabricar ua função g, g w T t u t = t= w t tal que y w T t c t = g = t= w t, T wt = e t= T atnw t = no ponto ótio. t= Ainda, u u w i = = y i T ut t= i i=,t y = 50x x DoD = + = 0 5 Exeplo: y u u c x c x a a = + = + c = 50; c = 500; a = ; a = 5 w w w w a a u u c x c x g = = w w w w w w * c c g = w w co w + w = e a w a w 0w 5w = 0 w 5 w = 0 w = 5 6 w = 5 6 = 6 + = * * * 5 * y = = $70 u = wy 50x = 70 x = dy 6 * * Através do cálculo, x 0 y $70; x 4" dx = = = = - 4 -

5 Por que PG funciona? Considere o problea de otiização, lng = w lnu ln w + w lnu ln w = w + w = 0 Aplicando Lagrange, ( lng) = 0 lnu ln w = 0 lnu ln w = 0 w u = w + w = 0 u + u e u w = u u + Voltando e g, u u + u u u + u u u g = = u+ u = y u ( u + u ) u ( u + u ) Note que qualquer outra cobinação de w e w resultaria e g u + u = y! No ótio, g = y, as fora do ótio, g y. Assi, w w u u + w w y g u u Se Y = u w e Y u w Cauchy) w Y + w Y Y Y co w + w = (desigualdade de w w = Co g = y no ótio, fazendo dg 0 dx = a a acx + acx = 0 a a Multiplicando por x a c x + a c x = a u + a u = 0 u = u a a Logo, u u a a a w = = = u u u a a u + + a a e w u a = = u a a + u a a Voltando e g, a a a a a a a cx c x g = a a a a a a a w w * c c g = w w Note ainda que o ótio sepre ocorre quando os teros w,w estão a ua certa fração do total

6 Quando houver restrições, co DoD=0. Adita o seguinte exeplo: y u u u u4 + u5 = = DoD=5-(N+)=0 4 variáveis y w w w 3 u u u 3 = g= w w w3 w 4 w 5 u 4 u 5 e, u4 + u5 = = w4 w5 co w + w + w3 = (*) co w4 + w5 = onde w4 = u4 = u4 e w5 = u5 = u5 (**) Elevando (**) a u expoente M arbitrário, u Mw 4 Mw 5 u 4 5 = w4 w5 Multiplicando e (*), o que equivale a ultiplicar por, y w w w3 Mw4 Mw5 u u u 3 u 4 u 5 = g= w w w3 w4 w5 Resolvendo por Lagrange, após algua anipulação algébrica, obté-se: aw + aw + a3w3 + Ma4w 4 + Ma5w5 = 0 a4w + a4w + a34w3 + Ma44w 4 + Ma54w5 = 0 w + w + w3 = Mw 4 + Mw5 = M resolver para w,w,w 3,M,w 4,w 5 40 Exeplo: y = + 40xx3 in co xx3 + xx = 4 DoD=4-(3+)=0! xxx 3 w w w w4 3 xx 3 xx Re-escrever a restrição tal que: + = y = 4 w w w3 w4 w + 0 w + Mw + Mw = 0 x: x: x3: 3 4 w + w + Mw = 0 4 w + w + Mw = 0 w + w = Mw + Mw = M Resolvendo: w =/3, w =/3, M=/3, w 3 =/, w 4 =/ y * =60. Logo, - 6 -

7 40 u = = w y = 60 = 40 x x x = 3 xxx3 3 u = 40xx3 = wy = 60 = 0 xx3 = 3 x = ; x = ; x3 = xx 3 u3 = = w3 = xx3 = xx u4 = = w4 = xx = 4 Cálculo Variacional consiste e achar ua função y( x ) para a qual F x dx ax ou in usado na deterinação de trajetórias, cálculo de processos ótios b Dada ( ) I = F x,y,y dx co y a dy dx =, a função deve satisfazer a seguinte equação diferencial: y x para a qual tal integral atinge u extreo F d F = 0 y dx y equação de Euler-Lagrange onde F( x,y,y) conhecida Note que a equação E-L pode ser reescrita da seguinte fora: F F dx F dy F dy F F F F = 0 y y = 0 y x y dx y y dx y y dx y xy yy y Note que, F F = F y y = 0 y (i) Se ( ) F 0 y = 0 y x = ax + b y. Para (ii) Se F não conté y explicitaente, então F d F F = 0 = 0 = cte y dx y y (iii) Se F não conté x explicitaente, então df F dy F dy F F F = F y,y = + = y + y dx y dx y dx y y Mas, F d F df d F F d F F y y y = = + = F = y + cte y dx y dx dx y y dx y y - 7 -

8 Exeplo: Ua câara frigorífica deve ser resfriada de 5 a 0C e 000 segundos de tal odo que o trabalho consuido pelo sistea de refrigeração seja ínio, ou seja, 000 co = ( + ) = I = Wdt in 0 W 0,0 50 0,0t COP Q teperatura do ar na entrada do evaporador T teperatura do ar na câara Do balanço de energia na câara, dt C Q dt = co Q = UA( T ) onde C= kj/k e UA=0kW/K. 0 T = T = T T Substituindo, ( )( ) ( ) W = 0, ,0t T 0000T T = T + 0,0tT TT 0000T T Da eq. E-L, F = T T F d F F = 0 = ,0t T 40000T T dt T T d F = 0.0 T 40000T dt T dt 7 Substituindo, T ( 0.0 T 40000T ) = 0 T = = 3 0 dt dt Integrando, t c 7 T ( t ),5 0 = + = t + c t + c dt,6 5 Das CC s: T( 0) = 5 c = 5 e T( 000) = 0 c = = 0, T t = 5 0, t +,50 t curva ótia de pull-down 7 Note que, se houver restrições, b = ( ) co I F x,y,y dx a b a G x,y,y dx = J Tal que a eq. E-L passa a ser dada por: ( F G) d ( F G) = 0 y dx y - 8 -

9 Prograação Dinâica Meso princípio do CoV Processos discretos (GPS) Exeplo: 4 trocadores e série, cada qual alientado por ua corrente de vapor - 9 -

10 HX Tin Tout C ,8* 50 58,0 HX Tin Tout C ,8+6,=56,9* 00 0,8+93,6=4, ,0+6,8=0,8 HX3 Tin Tout C ,9+5,=08, 50 56,9+03,0=59,9* ,4+57,6=7,0 HX4 Tin Tout C ,+73,3=8, ,9+94,4=54,3* Custo = $54300 Teps: C Métodos de Busca categorias: eliinação / escalada ponto ótio aproxiado intervalo de incerteza I (sub-ótio) funções uniodais u pico ou vale e I 0 observações Busca Exaustiva enos iaginativo, ais epregado avalia y para valores de x igualente espaçados e I 0 I I = 0 n = No. observações n + Busca Dicotôica observações próxias do centro I intervalo reanescente I 0 + = I0 I= + k k k = n No. testes (, 4 pares) Busca de Fibonacci série de Fibonacci:,,, 3, 5, 8, 3,, 34, 55, I0 F0 = F = 0; Fi = Fi + F i i I = + Fn. Escolher n. º observação e 0,68 I0 (golden ratio: Fi F i =0,68 i 8 ) 3. próxia observação siétrica à anterior, co eliinação 4. processo continua até n- neste ponto, deve haver observação no centro do intervalo 5. últio ponto próxio do centro do intervalo - 0 -

11 taxa de redução: I I 0 n R = = dicot oica n n + exaustiva Fn Finonacci ln x sin x 5 Exeplo: y = ax x c/,5<x<0 e I=0,3 R=(0-,5)/0,3=8,3 Fibonacci F 7 =<R<F8=34 8 observações o ponto:,5 + (0-,5) * 0,68 = 6,75 x y eliinar anter x ax 6,75 0,740 4,75 0,575 < 4,75 4,75 0 6,75 8,0 0,48 > 8,0 4,75 8,0 6,75 6,0 0,96075 > 6,75 4,75 6,75 6,0 5,5 0,9 < 5,5 5,5 6,75 6,0 6,5 0,93 > 6,5 5,5 6,5 6,0 5,75 0,96073 < 5,75 5,75 6,6 6,0 6,00 0,96073 > 6,0 5,75 6,0 6,0 I = 0,5<0,3! Busca Univariável variável por vez Co x fixo, dy/dx =0 x * Co x fixo, dy/dx=0 x * Continua até o ótio global Método do Gradiente y Move o ponton a direção e que a F.O. experienta a aior variação: ˆ y y = i ˆ + i x x. Escolher ponto inicial. Avaliar derivadas y xi e y 3. Decidir e qual sentido se over na direção do gradiente y y ax: 0 xi 0; 0 xi 0 xi xi y y in: 0 xi 0; 0 xi 0 x x i 4. Decidir taanho do passo i - -

12 x x étodo : para x arbitrado, usar x calculado por: = y x y x étodo : calcular x e x que produza u y desejado y y y y y x ( y x ) y y = x + x y = x + x x = x x x x y x y x + y x étodo 3: cainhar na direção do gradiente até u ótio local; corrigir a direção e prosseguir até u novo ótio local Para ua distância x + x, y sofrerá a aior (ax) variação possível Escalas deve ser escolhidas para que o contorno seja o ais esférico possível Métodos apresenta probleas quando: - -

13 Siplex seleciona vertices de u sixplex onde y é avaliada D: siplex = triângulo; 3D siplex=tetraedro direção escolhida co base no vértice co enor ( ax) ou aior ( in) valor Algorito (y ax). inicia co siplex --3: y<y,y3: 4. novo siplex -3-4: y3<y, y4: novo siplex -4-5: y<y4, y5: 6 4. continua até o ótio Superfície de Resposta Ligada ao projeto factorial Busca sequencial do ótio Varredura (longe do ótio) y = 0 + x + x étodo do gradiente c/ x = x Perto do ótio (alta orde) y = + x + x + x + x x + x 0 Busca co Restrição Função Penalidade y( x,,xn) in ax x,,x = 0 i =,, i n = + = Y y P P ax Y y P P in busca na direção do gradiente P,,P funções penalidade: valores elevados penaliza Y quando há violação das restrições uso dos quadrados evita cancelaento de teros inicia-se co P pequenos, que cresce gradualente à edida que os s diinue valores de P escolhidos tal que y P i i Exeplo: y = 3x + x x + x in co ˆ y = 6x + x i + x + x ˆi e,5 xx 6 Y = 3x + x x + x + P x x 6,5 = ( 3,5 ) ( 3,5 ) ˆ ( 0,5 ) = x x 3x x + 56 = x x 3x i + 3x x 48x x iˆ Ponto inicial: ( x,x ) = ( 4,4) y( 4,4) = 3i ˆ + 6i ˆ e P y P P 0,0775 4,4 = 56i ˆ + 384i ˆ - 3 -

14 Otiização Multi-objetivo ais de ua função objetiva se solução única conjunto de soluções que fornece o elhor trade-off entre objetivos Exeplo: Qual o eio de transporte ais adequado tal que energia in e distäncia ax? Forulação ( ) y = F f f ax in f x x j = F.O.'s j n x x = 0 k = l restricoes k n Frente de Pareto Método da Soa Ponderada F = w jf co j j j= w 0 e j= w = j (convexo) (não convexo)

INTRODUÇÃO AOS MÉTODOS NUMÉRICOS

INTRODUÇÃO AOS MÉTODOS NUMÉRICOS INTRODUÇÃO AOS MÉTODOS NUMÉRICOS Eenta Noções Básicas sobre Erros Zeros Reais de Funções Reais Resolução de Sisteas Lineares Introdução à Resolução de Sisteas Não-Lineares Interpolação Ajuste de funções

Leia mais

Álgebra Linear I - Aula 1. Roteiro

Álgebra Linear I - Aula 1. Roteiro Álgebra Linear I - Aula 1 1. Resolução de Sisteas Lineares. 2. Métodos de substituição e escalonaento. 3. Coordenadas e R 2 e R 3. Roteiro 1 Resolução de Sisteas Lineares Ua equação linear é ua equação

Leia mais

comprimento do fio: L; carga do fio: Q.

comprimento do fio: L; carga do fio: Q. www.fisicaexe.co.br Ua carga Q está distribuída uniforeente ao longo de u fio reto de copriento. Deterinar o vetor capo elétrico nos pontos situados sobre a reta perpendicular ao fio e que passa pelo eio

Leia mais

f (x) = 10 2x e f (x) = -2. H(x) = [-2] é sempre negativo então a função é côncava.

f (x) = 10 2x e f (x) = -2. H(x) = [-2] é sempre negativo então a função é côncava. 1. Para cada ua das seguintes funções, verifique se ele é côncava, convexa ou nenhua das duas, justificando e cada caso. (a) f(x) = 1x x (b) y = x 3 + x x + 1 (a) y = 1x x f (x) = 1 x e f (x) = -. H(x)

Leia mais

Teorema Chinês dos Restos

Teorema Chinês dos Restos Teorea Chinês dos Restos Sauel Barbosa 22 de arço de 2006 Teorea 1. (Bézout) Seja a e b inteiros não nulos e d seu dc. Então existe inteiros x e y tais que d = ax + by. Se a e b são positivos podeos escolher

Leia mais

Representação De Modelos de Sistemas Dinâmicos:

Representação De Modelos de Sistemas Dinâmicos: Representação de Modelos de Sisteas Dinâicos: Equação I/O; Função de Transferência 03 Representação De Modelos de Sisteas Dinâicos: - Equação Input-Output (I/O) - Função de Transferência INTRODUÇÃO Vereos,

Leia mais

II Matrizes de rede e formulação do problema de fluxo de carga

II Matrizes de rede e formulação do problema de fluxo de carga Análise de Sisteas de Energia Elétrica Matrizes de rede e forulação do problea de fluxo de carga O problea do fluxo de carga (load flow e inglês ou fluxo de potência (power flow e inglês consiste na obtenção

Leia mais

MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 2016/2017

MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 2016/2017 MESTRDO INTEGRDO EM ENG. INFORMÁTIC E COMPUTÇÃO 2016/2017 EIC0010 FÍSIC I 1o NO, 2 o SEMESTRE 30 de junho de 2017 Noe: Duração 2 horas. Prova co consulta de forulário e uso de coputador. O forulário pode

Leia mais

Uma EDO Linear de ordem n se apresenta sob a forma: a n (x) y (n) + a n 1 (x) y (n 1) + + a 2 (x) y 00 + a 1 (x) y 0 + a 0 (x) y = b (x) ; (6.

Uma EDO Linear de ordem n se apresenta sob a forma: a n (x) y (n) + a n 1 (x) y (n 1) + + a 2 (x) y 00 + a 1 (x) y 0 + a 0 (x) y = b (x) ; (6. 6. EDO DE ORDEM SUPERIOR SÉRIES & EDO - 2017.2 Ua EDO Linear de orde n se apresenta sob a fora: a n (x) y (n) + a n 1 (x) y (n 1) + + a 2 (x) y 00 + a 1 (x) y 0 + a 0 (x) y = b (x) ; (6.1) onde os coe

Leia mais

7 Exemplos do Método Proposto

7 Exemplos do Método Proposto 7 Exeplos do Método Proposto Para deonstrar a capacidade do étodo baseado nua análise ultirresolução através de funções wavelet, fora forulados exeplos de aplicação contendo descontinuidades e não-linearidades.

Leia mais

Dinâmica Estocástica. Instituto de Física, novembro de Tânia - Din Estoc

Dinâmica Estocástica. Instituto de Física, novembro de Tânia - Din Estoc Dinâica Estocástica Instituto de Física, novebro de 06 Tânia - Din Estoc - 06 Modelo de Glauber-Ising a capo nulo Siulações de Monte Carlo Teorea central do liite & Modelo de Glauber-Ising Tânia - Din

Leia mais

Uma Variável Booleana é uma variável com domínio {0,1} (ou, equivalentemente, {falso, verdadeiro}).

Uma Variável Booleana é uma variável com domínio {0,1} (ou, equivalentemente, {falso, verdadeiro}). Ua Variável Booleana é ua variável co doínio {0,1} (ou, equivalenteente, {falso, verdadeiro}). Ua Fórula é ua ligação de variáveis através de conectivos lógicos, ou operadores. ex: F= x3 /\ (( x1/\ x2)

Leia mais

Algoritimos e Estruturas de Dados III CIC210. Conteúdo. Seção Notas. Notas. Programação Dinâmica. Haroldo Gambini Santos. 3 de setembro de 2009.

Algoritimos e Estruturas de Dados III CIC210. Conteúdo. Seção Notas. Notas. Programação Dinâmica. Haroldo Gambini Santos. 3 de setembro de 2009. Algoritios e Estruturas de Dados III CIC210 Prograação Dinâica Haroldo Gabini Santos Universidade Federal de Ouro Preto - UFOP 3 de setebro de 2009 Haroldo Gabini Santos Prograação Dinâica 1/16 Conteúdo

Leia mais

Para um sistema elétrico, com NB barras, as equações básicas do fluxo de carga para

Para um sistema elétrico, com NB barras, as equações básicas do fluxo de carga para Modelage e Análise de Sisteas Elétricos e Regie Peranente II Fluxo de carga não linear: algoritos básicos II. Forulação do problea básico Para u sistea elétrico, co NB barras, as equações básicas do fluxo

Leia mais

Exemplo: Controlo digital de um motor de corrente contínua

Exemplo: Controlo digital de um motor de corrente contínua Modelação, Identificação e Controlo Digital 5-Controlo co técnicas polinoiais 5 Exeplo: Controlo digital de u otor de corrente contínua Pretende-se projectar u controlador digital para a posição de u pequeno

Leia mais

A, B, C polinómios conhecidos X, Y polinómios desconhecidos

A, B, C polinómios conhecidos X, Y polinómios desconhecidos Equações Diofantinas 23 Considere-se a equação AX + BY = C A, B, C polinóios conhecidos X, Y polinóios desconhecidos Há soluções? Quantas soluções há para ua dada equação? E geral, a equação pode ser definida

Leia mais

Matemática para Economia Les 201

Matemática para Economia Les 201 Mateática para Ecooia Les Aulas 4 e 5 Márcia Azaha Ferraz Dias de Moraes 5 e 3//6 (co restrição) Otiização Não Codicioada: Métodos de otiização dos extreos relativos da fução objetivo: Todas as variáveis

Leia mais

Exemplo de carregamento (teleférico): Exemplo de carregamento (ponte pênsil): Ponte Hercílio Luz (Florianópolis) 821 m

Exemplo de carregamento (teleférico): Exemplo de carregamento (ponte pênsil): Ponte Hercílio Luz (Florianópolis) 821 m Exeplo de carregaento (teleférico: Exeplo de carregaento (ponte pênsil: Ponte Hercílio Luz (Florianópolis 81 Exeplo de carregaento (ponte pênsil: Golden Gate (EU 737 (vão central 18 kashi-kaikyo (Japão

Leia mais

Laboratório de Física 2

Laboratório de Física 2 Prof. Sidney Alves Lourenço Curso: Engenharia de Materiais Laboratório de Física Grupo: --------------------------------------------------------------------------------------------------------- Sistea

Leia mais

SEGUNDA CHAMADA CALCULO 2 2/2017

SEGUNDA CHAMADA CALCULO 2 2/2017 9/11/017 SEGUNDA CHAMADA CALCULO /017 PROF: RENATO FERREIRA DE VELLOSO VIANNA Questão 1,5 pontos). Resolva os problemas de valor inicial: y + 4y + 4y = e x {, y = xyy + 4), a) = y0) = 0, b) = y0) = 5.

Leia mais

m V r r ar, u ar, V, p, p (3)

m V r r ar, u ar, V, p, p (3) 4 Redução de Dados No presente capítulo apresenta-se a etodologia adotada na redução de dados e a análise das incertezas experientais. No Apêndice I, trata-se das propriedades tero-físicas dos cobustíveis

Leia mais

5 Resultados Experimentais

5 Resultados Experimentais 5 Resultados Experientais Os resultados obtidos neste trabalho são apresentados neste capítulo. Para o desenvolviento deste, foi utilizado u robô óvel ("irobot Create") e u único sensor LRF(URG 4L UG ),

Leia mais

Teoria do Consumidor: Equilíbrio e demanda. Roberto Guena de Oliveira 18 de Março de 2017

Teoria do Consumidor: Equilíbrio e demanda. Roberto Guena de Oliveira 18 de Março de 2017 Teoria do Consuidor: Equilíbrio e deanda Roberto Guena de Oliveira 18 de Março de 2017 1 Estrutura geral da aula Parte 1: Restrição orçaentária Parte 2: Equilíbrio Parte 3: Deanda 2 Parte I Restrição orçaentária

Leia mais

Comecemos por recordar que neste jogo há um tabuleiro

Comecemos por recordar que neste jogo há um tabuleiro ATRACTOR O triângulo de Sierpinski e as Torres de Hanói No âbito de ua colaboração entre a Gazeta e o Atractor, este é u espaço da responsabilidade do Atractor, relacionado co conteúdos interativos do

Leia mais

1. as equações paramétricas da reta que contém o ponto A e é perpendicular ao plano de equação x 2y + 3z = 17;

1. as equações paramétricas da reta que contém o ponto A e é perpendicular ao plano de equação x 2y + 3z = 17; PROVA 1 09 de setembro de 2015 08h30 1 2 3 4 5 081 x = 1 + 3t 0811 Considere a reta L de equações paramétricas y = t z = 5 A = (5, 0, 2). Obtenha e o ponto 1. as equações paramétricas da reta que contém

Leia mais

Fenômenos de Transporte. Aula 1 do segundo semestre de 2012

Fenômenos de Transporte. Aula 1 do segundo semestre de 2012 Fenôenos de Transporte Aula 1 do segundo seestre de 01 Para calcularos a aceleração da gravidade pode-se recorrer a fórula: g 980,616,598cos 0,0069 latitude e graus H altitude e quilôetros g aceleração

Leia mais

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari MATEMÁTICA II Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari amanda.perticarrari@unesp.br DERIVADAS PARCIAIS DERIVADAS PARCIAIS Sejam z = f x, y uma função real de duas variáveis reais; x 0, y 0

Leia mais

TÓPICOS. Matriz pseudo-inversa. 28. Quadrados mínimos e projecção num subespaço. 1 W. , temos, neste caso,

TÓPICOS. Matriz pseudo-inversa. 28. Quadrados mínimos e projecção num subespaço. 1 W. , temos, neste caso, Note be: a leitura destes apontaentos não dispensa de odo algu a leitura atenta da bibliografia principal da cadeira Chaa-se a atenção para a iportância do trabalho pessoal a realizar pelo aluno resolvendo

Leia mais

Introdução aos Sistemas de Energia Elétrica

Introdução aos Sistemas de Energia Elétrica Introdução aos Sisteas de Energia Elétrica rof. Dr. Roberto Cayetano Lotero E-ail: roberto.lotero@gail.co Telefone: 576747 Centro de Engenharias e Ciências Eatas Foz do Iguaçu Uniersidade Estadual do Oeste

Leia mais

Controlo digital de um motor de corrente contínua

Controlo digital de um motor de corrente contínua 43 Controlo digital de u otor de corrente contínua Pretende-se projectar u controlador digital para a posição de u pequeno otor de corrente contínua de ían peranente. u(k) D/A AP Motor y D/A y(k) Adite-se

Leia mais

(A) 331 J (B) 764 J. Resposta: 7. As equações de evolução de dois sistemas dinâmicos são:

(A) 331 J (B) 764 J. Resposta: 7. As equações de evolução de dois sistemas dinâmicos são: MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 018/019 EIC0010 FÍSICA I 1º ANO, º SEMESTRE 18 de junho de 019 Noe: Duração horas. Prova co consulta de forulário e uso de coputador. O forulário pode

Leia mais

Diferenciabilidade de funções reais de várias variáveis reais

Diferenciabilidade de funções reais de várias variáveis reais Diferenciabilidade de funções reais de várias variáveis reais Cálculo II Departamento de Matemática Universidade de Aveiro 2018-2019 Cálculo II 2018-2019 Diferenciabilidade de f.r.v.v.r. 1 / 1 Derivadas

Leia mais

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 9. Oscilações Forçadas e Ressonância (continuação)

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 9. Oscilações Forçadas e Ressonância (continuação) 597 ísica II Ondas, luidos e Terodinâica USP Prof. Antônio Roque Oscilações orçadas e Ressonância (continuação) Nesta aula, vaos estudar o caso que coeçaos a tratar no início da aula passada, ou seja,

Leia mais

Escala na Biologia. Na natureza, há uma grande variação dos tamanhos dos seres vivos.

Escala na Biologia. Na natureza, há uma grande variação dos tamanhos dos seres vivos. Escala na Biologia Na natureza há ua grande variação dos taanhos dos seres vivos O copriento característico de u ser vivo é definido coo qualquer copriento conveniente para cálculos aproxiados Exeplos:

Leia mais

SOLUÇÃO ANALÍTICA E NUMÉRICA DA EQUAÇÃO DE LAPLACE

SOLUÇÃO ANALÍTICA E NUMÉRICA DA EQUAÇÃO DE LAPLACE 15 16 SOLUÇÃO ANALÍTICA E NUMÉRICA DA EQUAÇÃO DE LAPLACE 3. Todos os dispositivos elétricos funcionam baseados na ação de campos elétricos, produzidos por cargas elétricas, e campos magnéticos, produzidos

Leia mais

Movimento oscilatório forçado

Movimento oscilatório forçado Moviento oscilatório forçado U otor vibra co ua frequência de ω ext 1 rad s 1 e está ontado nua platafora co u aortecedor. O otor te ua assa 5 kg e a ola do aortecedor te ua constante elástica k 1 4 N

Leia mais

Capítulo 4 CONDUÇÃO BI-DIMENSIONAL, REGIME PERMANENTE. ρc p. Equação de calor (k cte e sem geração, coordenadas cartesianas): $ # % y k T.

Capítulo 4 CONDUÇÃO BI-DIMENSIONAL, REGIME PERMANENTE. ρc p. Equação de calor (k cte e sem geração, coordenadas cartesianas): $ # % y k T. Capítulo 4 CONDUÇÃO BI-DIMENSIONAL REGIME PERMANENE ρc p t =! # x k " x $ &! # % y k " y $ &! % z k $ # &!q " z % < q Equação de calor (k cte e se geração coordeadas cartesiaas): x y = 4.- Método de separação

Leia mais

Cálculo II Lista 5. com respostas

Cálculo II Lista 5. com respostas Cálculo II Lista 5. com respostas Exercício 1. Determine os pontos críticos das funções dadas e classifique-os, decidindo se são pontos de máximo local, de mínimo local ou de sela: (a) f(x, y) = x 2 +

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 15 Ajuste de Curvas - Matlab Ajuste Linear As equações (4) e (5) siplifica-se nas : α +α x = 0 1 i y i (6) α x +α x 0 i 1

Leia mais

MAT-2454 Cálculo Diferencial e Integral II EP-USP

MAT-2454 Cálculo Diferencial e Integral II EP-USP MAT-454 Cálculo Diferencial e Integral II EP-USP Solução da Questão da Terceira Prova 8//06 Questão (Tipo A Valor: 3, 0 pontos). a. Determine todos os pontos da superfície de nível da função g(x, y, z)

Leia mais

O Problema da Intersecção de Segmentos. António Leslie Bajuelos Departamento de Matemática Universidade de Aveiro

O Problema da Intersecção de Segmentos. António Leslie Bajuelos Departamento de Matemática Universidade de Aveiro O Prolea da Intersecção de Segentos António Leslie Bajuelos Departaento de Mateática Universidade de Aveiro 1 Cálculo do ponto de intersecção entre dois segentos Vaos a tratar o seguinte prolea: Dados

Leia mais

Segunda lista de exercícios

Segunda lista de exercícios Segunda lista de exercícios 3 de abril de 2017 Docente Responsável : Prof. Dr. Antônio C. Roque Monitor: Renan Oliveira Shioura Os exercícios desta lista deve ser resolvidos e Matlab. Para a criação dos

Leia mais

DERIVADAS PARCIAIS. y = lim

DERIVADAS PARCIAIS. y = lim DERIVADAS PARCIAIS Definição: Seja f uma função de duas variáveis, x e y (f: D R onde D R 2 ) e (x 0, y 0 ) é um ponto no domínio de f ((x 0, y 0 ) D). A derivada parcial de f em relação a x no ponto (x

Leia mais

Interpolação polinomial

Interpolação polinomial Quarto roteiro de exercícios no Scilab Cálculo Numérico Rodrigo Fresneda 8 de abril de 0 Guia para respostas: Entregue suas respostas às tarefas contidas no roteiro de cada uma das quatro atividades, incluindo

Leia mais

Afinação e Temperamento

Afinação e Temperamento Hidetoshi Arakawa Afinação e Teperaento Teoria e rática Hidetoshi Arakawa 00 Edição do Autor Capinas, Brasil upleento Hidetoshi Arakawa Caixa ostal 0 Capinas, 08-90 arakawah@correionet.co.br 00 refácio

Leia mais

Instrumentação e Medidas

Instrumentação e Medidas nstruentação e Medidas Licenciatura e Engenharia Electrotécnica Exae (ª Chaada) de Julho de 20 Antes de coeçar o exae leia atentaente as seguintes instruções: Para alé da calculadora, só é peritido ter

Leia mais

Cálculo II. Resumo Teórico Completo

Cálculo II. Resumo Teórico Completo Cálculo II Resumo Teórico Completo Cálculo 2 A disciplina visa estudar funções e gráficos, de forma semelhante a Cálculo 1, mas expande o estudo para funções de mais de uma variável, bem como gráficos

Leia mais

Eletromagnetismo I. Aula 9

Eletromagnetismo I. Aula 9 Eletroagnetiso I Prof. Dr. R.M.O Galvão - 2 Seestre 214 Preparo: Diego Oliveira Aula 9 Solução da Equação de Laplace e Coordenadas Cilínicas e Esféricas Vaos ver coo a Equação de Laplace pode ser resolvida

Leia mais

Derivadas Parciais Capítulo 14

Derivadas Parciais Capítulo 14 Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS Como vimos no Capítulo 4, no Volume I, um dos principais usos da derivada ordinária é na determinação dos valores máximo e mínimo. DERIVADAS PARCIAIS 14.7

Leia mais

Capítulo 3. Métodos Numéricos Iterativos

Capítulo 3. Métodos Numéricos Iterativos Métodos Nuéricos Iterativos Métodos Nuéricos Iterativos Capítulo 3. Métodos Nuéricos Iterativos 1. Métodos nuéricos Sepre que se pretende resolver u problea cuja solução é u valor nuérico, é habitual ter

Leia mais

TRABALHO Nº 5 ANÉIS DE NEWTON

TRABALHO Nº 5 ANÉIS DE NEWTON TRABALHO Nº 5 ANÉIS DE NEWTON Neste trabalho vai procurar ilustrar-se u arranjo geoétrico usado para a obtenção de franjas de interferência que ficou conhecido por anéis de Newton. Pretende-se co esses

Leia mais

PLANEJAMENTO DA OPERAÇÃO DE SISTEMAS TERMOELÉTRICOS DE GERAÇÃO. Prof.:Ivo Chaves da Silva Junior.

PLANEJAMENTO DA OPERAÇÃO DE SISTEMAS TERMOELÉTRICOS DE GERAÇÃO. Prof.:Ivo Chaves da Silva Junior. LANEJAMENTO DA OERAÇÃO DE SISTEMAS TERMOELÉTRICOS DE GERAÇÃO Despacho Econôico e Unit Coitent rof.:ivo Chaves da Silva Junior ivo.junior@ufjf.edu.br www.ufjf.br/ivo_junior de Agosto de DESACHO ECONÔMICO:

Leia mais

4 Técnicas de Filtragens Aplicadas às Visões do Ambiente de Autoria do Sistema HyperProp

4 Técnicas de Filtragens Aplicadas às Visões do Ambiente de Autoria do Sistema HyperProp 4 Técnicas de Filtragens Aplicadas às Visões do Aiente de Autoria do Sistea HyperProp U prolea enfrentado pelos usuários que traalha co estruturas de dados grandes é a desorientação na usca por deterinada

Leia mais

ANÁLISE DO LUGAR DAS RAÍZES

ANÁLISE DO LUGAR DAS RAÍZES VII- &$3Ì78/ 9,, ANÁLISE DO LUGAR DAS RAÍZES 7.- INTRODUÇÃO O étodo de localização e análise do lugar das raízes é ua fora de se representar graficaente os pólos da função de transferência de u sistea

Leia mais

Valter B. Dantas. Geometria das massas

Valter B. Dantas. Geometria das massas Valter B. Dantas eoetria das assas 6.- Centro de assa s forças infinitesiais, resultantes da atracção da terra, dos eleentos infinitesiais,, 3, etc., são dirigidas para o centro da terra, as por siplificação

Leia mais

Funções ortogonais e problemas de Sturm-Liouville. Prof. Rodrigo M. S. de Oliveira UFPA / PPGEE

Funções ortogonais e problemas de Sturm-Liouville. Prof. Rodrigo M. S. de Oliveira UFPA / PPGEE Funções ortogonais e problemas de Sturm-Liouville Prof. Rodrigo M. S. de Oliveira UFPA / PPGEE Série de Fourier Soma de funções ortogonais entre si Perguntas: -existem outras bases ortogonais que podem

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear NOTAS DE AULA Geoetria Analítica e Álgebra Linear Reta e Plano Professor: Lui Fernando Nunes, Dr. Índice Geoetria Analítica e Álgebra Linear ii Estudo da Reta e do Plano... -. A Reta no Espaço... -.. Equação

Leia mais

MOVIMENTO 3D PROPS. INERCIAIS E MOMENTO ANGULAR

MOVIMENTO 3D PROPS. INERCIAIS E MOMENTO ANGULAR MOVIMENTO 3D PROPS. INERCIAIS E MOMENTO ANGULAR INTRODUÇÃO ESTUDO DE CASO Os projetistas de u subarino estão predizendo seu desepenho durante anobras de ergulho. Ao conceber a torre de observação, eles

Leia mais

II. Funções de uma única variável

II. Funções de uma única variável II. Funções de uma única variável 1 II.1. Conceitos básicos A otimização de de funções de de uma única variável consiste no no tipo mais elementar de de otimização. Importância: Tipo de problema encontrado

Leia mais

11.5 Derivada Direcional, Vetor Gradiente e Planos Tangentes

11.5 Derivada Direcional, Vetor Gradiente e Planos Tangentes 11.5 Derivada Direcional, Vetor Gradiente e Planos Tangentes Luiza Amalia Pinto Cantão Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocaba.unesp.br Estudos Anteriores Derivadas

Leia mais

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Departamento de Ciência da ComputaçãoUFRJ. Cálculo Numérico. S. C. Coutinho. Provas e gabaritos

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Departamento de Ciência da ComputaçãoUFRJ. Cálculo Numérico. S. C. Coutinho. Provas e gabaritos UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Departamento de Ciência da ComputaçãoUFRJ Cálculo Numérico S. C. Coutinho Provas e gabaritos Lembre-se: Nas provas não são aceitas respostas sem justicativa. Você

Leia mais

Escoamento Cruzado sobre Cilindros e Tubos Circulares

Escoamento Cruzado sobre Cilindros e Tubos Circulares Exeplo resolvido (Holan 5-7) Ar a 0 o C e 1 at escoa sobre ua placa plana a 35 /s. A placa te 75 c de copriento e é antida a 60ºC. Calcule o fluxo de calor transferido da placa. opriedades avaliadas à

Leia mais

Respostas sem justificativas não serão aceitas Não é permitido o uso de aparelhos eletrônicos

Respostas sem justificativas não serão aceitas Não é permitido o uso de aparelhos eletrônicos UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL - 018. - TURMA MA 1A VERIFICAÇÃO DE APRENDIZAGEM - PARTE Nome Legível RG CPF Respostas

Leia mais

Fundamentos da Eletrostática Aula 11 Sobre a solução de problemas eletrostáticos

Fundamentos da Eletrostática Aula 11 Sobre a solução de problemas eletrostáticos Fundamentos da Eletrostática Aula 11 Sobre a solução de problemas eletrostáticos Prof. Alex G. Dias Prof. Alysson F. Ferrari Solução de problemas eletrostáticos via Equação de Laplace Especicada a distribuição

Leia mais

COKRIGAGEM. Aplicação da cokrigagem

COKRIGAGEM. Aplicação da cokrigagem COKRIGAGEM Procediento geoestatístico segundo o qual diversas variáveis regionalizadas pode ser estiadas e conjunto, co base na correlação espacial entre si. É ua extensão ultivariada do étodo da krigage

Leia mais

Exercícios complementares às notas de aulas de estradas (parte 10)

Exercícios complementares às notas de aulas de estradas (parte 10) 1 Exercícios copleentares às notas de aulas de estradas (parte 10) Helio Marcos Fernandes Viana Tea: Curvas verticais 1. o ) Sendo os seguintes dados para o projeto de ua curva vertical: a) Distância de

Leia mais

Análise Complexa e Equações Diferenciais 2 o Semestre 2013/14 Cursos: LEAN, MeMec

Análise Complexa e Equações Diferenciais 2 o Semestre 2013/14 Cursos: LEAN, MeMec Análise Complexa e Equações Diferenciais 2 o Semestre 2013/14 Cursos: LEAN, MeMec M Paluch Aulas 28 33 7 23 de Abril de 2014 Exemplo de uma equação diferencial A Lei de Newton para a propagação de calor,

Leia mais

Instituto de Matemática Departamento de Métodos Matemáticos

Instituto de Matemática Departamento de Métodos Matemáticos ?????? @ @ @@ @@?????? @ @ @@ @@ Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Métodos Matemáticos Prova Final Unificada de Cálculo II Politécnica,Escola Química - 03/12/2013

Leia mais

MAT 1351 : Cálculo para Funções de Uma Variável Real I. Sylvain Bonnot (IME-USP)

MAT 1351 : Cálculo para Funções de Uma Variável Real I. Sylvain Bonnot (IME-USP) MAT 1351 : Cálculo para Funções de Uma Variável Real I Sylvain Bonnot (IME-USP) 2016 1 Aplicação das derivadas: Equações diferenciais Teorema As soluções da equação y = 0 num intervalo (a, b) são exatamente

Leia mais

Quarta aula de FT 03/09/2013. Se a pressão for constante (uniforme ou média), temos: p

Quarta aula de FT 03/09/2013. Se a pressão for constante (uniforme ou média), temos: p Quta aula de FT 0/09/0. Conceito de pressão FN Se a pressão for constante (unifore ou édia), teos: p A dfn Se pensos e u ponto, teos: p da Iportante not que a pressão é diferente de força, pa deix clo

Leia mais

Solução Numérica de EDOs

Solução Numérica de EDOs Solução Numérica de EDOs Maria Luísa Bambozzi de Oliveira SME0300 Cálculo Numérico 10 de Novembro, 2010 Introdução Equação Diferencial de 1a. Ordem y = f (x, y) f : função real dada, de duas variáveis

Leia mais

CONCURSO PÚBLICO EDITAL Nº 03 / 2016

CONCURSO PÚBLICO EDITAL Nº 03 / 2016 MINISTÉRIO DA EDUCAÇÃO INSTITUTO FEDERAL DO ESPÍRITO SANTO REITORIA Avenida Rio Branco, 5 Santa Lúcia 956-55 Vitória ES 7 3357-75 CONCURSO PÚBLICO EDITAL Nº 3 / 16 Professor do Magistério do Ensino Básico,

Leia mais

Física Arquitectura Paisagística LEI DE HOOKE

Física Arquitectura Paisagística LEI DE HOOKE LEI DE HOOKE INTRODUÇÃO A Figura 1 ostra ua ola de copriento l 0, suspensa por ua das suas extreidades. Quando penduraos na outra extreidade da ola u corpo de assa, a ola passa a ter u copriento l. A ola

Leia mais

Introdução à Otimização de Processos. Prof. Marcos L Corazza Departamento de Engenharia Química Universidade Federal do Paraná

Introdução à Otimização de Processos. Prof. Marcos L Corazza Departamento de Engenharia Química Universidade Federal do Paraná Introdução à Otimização de Processos Prof. Marcos L Corazza Departamento de Engenharia Química Universidade Federal do Paraná Otimização Não-Linear Algumas definições e conceitos preliminares: 1. Derivadas

Leia mais

III Introdução ao estudo do fluxo de carga

III Introdução ao estudo do fluxo de carga Análise de Sisteas de Potência (ASP) ntrodução ao estudo do fluxo de carga A avaliação do desepenho das redes de energia elétrica e condições de regie peranente senoidal é de grande iportância tanto na

Leia mais

Matemática Computacional. Carlos Alberto Alonso Sanches Juliana de Melo Bezerra

Matemática Computacional. Carlos Alberto Alonso Sanches Juliana de Melo Bezerra CCI- Mateática Coputacional Carlos Alberto Alonso Sances Juliana de Melo Bezerra CCI- 7 Integração Nuérica Fórulas de Newton-Cotes, Quadratura Adaptativa CCI- Deinição Fórulas de Newton-Cotes Regra dos

Leia mais

Métodos de Pesquisa Operacional

Métodos de Pesquisa Operacional Métodos de Pesquisa Operacional Programação Linear é a parte da Pesquisa Operacional que trata da modelagem e resolução de problemas formulados com funções lineares. Programação Linear } Métodos de Resolução

Leia mais

Gabarito Lista 5. f(x)dx ponto-a-ponto denindo: x c. 1 se x c. x c. O monopolista irá cobrar a transferência que deixa o tipo x = c + 1 λ

Gabarito Lista 5. f(x)dx ponto-a-ponto denindo: x c. 1 se x c. x c. O monopolista irá cobrar a transferência que deixa o tipo x = c + 1 λ Professor: Lucas Maestri Microeconoia III Monitor: Pedro Solti EPGE / EBEF - 1 Gabarito Lista 1 O problea do onopolista é: ax Ix Ix x c 1 F x fxdx fx O onopolista axiiza escolhendo o valor da função Ix.

Leia mais

Considere a função f(x). Para algum x a f (x) pode não existir. Suponha que. Max f(x) s. a a x b

Considere a função f(x). Para algum x a f (x) pode não existir. Suponha que. Max f(x) s. a a x b Considere a função f(x). Para algum x a f (x) pode não existir. Suponha que se queira resolver o seguinte PPNL: Max f(x) s. a a x b Pode ser que f (x) não exista ou que seja difícil resolver a equação

Leia mais

MANUAL OPERAÇÃO SIMULADOR DE BALANÇA DINÂMICA SÉRIE 1420

MANUAL OPERAÇÃO SIMULADOR DE BALANÇA DINÂMICA SÉRIE 1420 MANUAL DE OPERAÇÃO SIMULADOR DE BALANÇA DINÂMICA SÉRIE 1420 ENGELETRO COMERCIAL LTDA. Rua Gabriela de Melo, 484 Olhos d Água Norte 30390-080 Belo Horizonte MG Tel (31)3288-1366 Fax (31)3288-1099/1340 http://www.engeletro.ind.br

Leia mais

A equação de Henri-Michaelis-Menten

A equação de Henri-Michaelis-Menten A equação de Henri-Michaelis-Menten Michaelis e Menten (93) refina a abordage de Henri e propõe u odelo uito seelhante: S cat E + A EA E + P passo lento considerando o prieiro passo suficienteente rápido

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia IV

MAT Cálculo Diferencial e Integral para Engenharia IV MAT456 - Cálculo Diferencial e Integral para Engenharia IV Parte A: Equações Diferenciais de 1 a Ordem o Semestre de 018-3 a Lista de exercícios 1) Os gráficos de duas soluções de y = x + y podem se cruzar

Leia mais

4 Modelo Proposto para Análise de Barras de Controle Local de Tensão

4 Modelo Proposto para Análise de Barras de Controle Local de Tensão odelo roposto para Análise de Barras de Controle ocal de Tensão. Introdução A siulação de fluxo de carga é ua das principais ferraentas na análise de sisteas elétricos de potência e regie peranente. É

Leia mais

UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE ENGENHARIA DE PRODUÇÃO E SISTEMAS. Programação Dinâmica. Prof. Sérgio Fernando Mayerle

UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE ENGENHARIA DE PRODUÇÃO E SISTEMAS. Programação Dinâmica. Prof. Sérgio Fernando Mayerle UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE ENGENHARIA DE PRODUÇÃO E SISTEMAS Prograação Dinâica . INTRODUÇÃO Na análise de uitos probleas operacionais, é conveniente considerar a idéia de u

Leia mais

Exemplo E.3.1. Exemplo E.3.2.

Exemplo E.3.1. Exemplo E.3.2. Exeplo E.1.1. O bloco de 600 kn desliza sobre rodas nu plano horizontal e está ligado ao bloco de 100 kn por u cabo que passa no sistea de roldanas indicado na figura. O sistea parte do repouso e, depois

Leia mais

CCI-22 CCI-22. 7) Integração Numérica. Matemática Computacional. Definição Fórmulas de Newton-Cotes. Definição Fórmulas de Newton-Cotes

CCI-22 CCI-22. 7) Integração Numérica. Matemática Computacional. Definição Fórmulas de Newton-Cotes. Definição Fórmulas de Newton-Cotes CCI- CCI- Mateática Coputacional 7 Integração Nuérica Carlos Alberto Alonso Sances Fórulas de Newton-Cotes, Quadratura Adaptativa CCI- Fórulas de Newton-Cotes Regra de Sipson Fórula geral stiativas de

Leia mais

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1 e 2 PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR - 30/11/2014 CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES:

Leia mais

BCC465 - TÉCNICAS DE MULTI-OBJETIVO. Gladston Juliano Prates Moreira 22 de novembro de 2017

BCC465 - TÉCNICAS DE MULTI-OBJETIVO. Gladston Juliano Prates Moreira   22 de novembro de 2017 BCC465 - TÉCNICAS DE OTIMIZAÇÃO MULTI-OBJETIVO Aula 04 - Otimização Não-linear Gladston Juliano Prates Moreira email: gladston@iceb.ufop.br CSILab, Departamento de Computação Universidade Federal de Ouro

Leia mais

SOLUÇÃO: sendo T 0 a temperatura inicial, 2P 0 a pressão inicial e AH/2 o volume inicial do ar no tubo. Manipulando estas equações obtemos

SOLUÇÃO: sendo T 0 a temperatura inicial, 2P 0 a pressão inicial e AH/2 o volume inicial do ar no tubo. Manipulando estas equações obtemos OSG: 719-1 01. Ua pequena coluna de ar de altura h = 76 c é tapada por ua coluna de ercúrio através de u tubo vertical de altura H =15 c. A pressão atosférica é de 10 5 Pa e a teperatura é de T 0 = 17

Leia mais

MAT 2454 Cálculo II Resolução da Lista 3

MAT 2454 Cálculo II Resolução da Lista 3 MAT 2454 Cálculo II Resolução da Lista 3 por César Morad I. Superfícies de Nível, Planos Tangentes e Derivadas Direcionais 1.1. Em cada caso, esboce a superfície de nível c da função F: R 2 R: a. F(x,

Leia mais

CAPÍTULO 7. Seja um corpo rígido C, de massa m e um elemento de massa dm num ponto qualquer deste corpo. v P

CAPÍTULO 7. Seja um corpo rígido C, de massa m e um elemento de massa dm num ponto qualquer deste corpo. v P 63 APÍTLO 7 DINÂMIA DO MOVIMENTO PLANO DE ORPOS RÍGIDOS - TRABALHO E ENERGIA Neste capítulo será analisada a lei de Newton apresentada na fora de ua integral sobre o deslocaento. Esta fora se baseia nos

Leia mais

Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente.

Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente. Aula 15 Derivadas Direcionais e Vetor Gradiente Seja f(x, y) uma função de variáveis. Iremos usar a notação D u f(x 0, y 0 ) para: Derivada direcional de f no ponto (x 0, y 0 ), na direção do vetor unitário

Leia mais

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1 e 2 PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR - 29/11/2015 CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES:

Leia mais

4 Mercado de Arrendamento

4 Mercado de Arrendamento 4 Mercado de Arrendaento O ercado de arrendaento de terras pode, e princípio, estabelecer ua alocação eficiente de recursos na agricultura. Entretanto, desde Ada Sith, iperfeições desse ercado vê intrigando

Leia mais

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 8

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 8 59117 Física II Ondas, Fluidos e Terodinâica USP Prof. Antônio Roque Oscilações Forçadas e Ressonância Nas aulas precedentes estudaos oscilações livres de diferentes tipos de sisteas físicos. E ua oscilação

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear Geoetria Analítica e Álgebra Linear Ale Nogueira Brasil Faculdade de Engenharia Mecânica Universidade de Itaúna http://www.alebrasil.eng.br brasil@uit.br 0 de fevereiro de 00 Geoetria Analítica e Álgebra

Leia mais

Como já definido no ítem 1.2, o método mais comum usado para determinar o desempenho térmico de uma planta térmica é a análise energética baseada na

Como já definido no ítem 1.2, o método mais comum usado para determinar o desempenho térmico de uma planta térmica é a análise energética baseada na $QiOLVH(QHUJpWLFDH([HUJpWLFDGD3ODQWD Coo já definido no íte 1.2, o étodo ais cou usado para deterinar o desepenho térico de ua planta térica é a análise energética baseada na prieira lei da terodinâica,

Leia mais

Universidade Estadual do Sudoeste da Bahia

Universidade Estadual do Sudoeste da Bahia Universidade Estadual do Sudoeste da Bahia Departaento de Estudos Básicos e Instruentais 5 Oscilações Física II Ferreira 1 ÍNDICE 1. Alguas Oscilações;. Moviento Harônico Siples (MHS); 3. Pendulo Siples;

Leia mais

Mecânica Newtoniana: Trabalho e Energia

Mecânica Newtoniana: Trabalho e Energia Mecânica Newtoniana: Trabalho e Energia 2018 Dr. Walter F. de Azevedo Jr. Prof. Dr. Walter F. de Azevedo Jr. E-ail: walter@azevedolab.net 1 Trabalho Realizado por Ua Força Constante Considereos o sistea

Leia mais

Experimento 6 Viscosidade

Experimento 6 Viscosidade Experiento 6 Viscosidade Deterinar a iscosidade de ua substância a partir de edidas da elocidade liite de esferas e queda atraés de u recipiente preenchido co essa substância. Introdução Fluidos são substâncias

Leia mais