f (x) = 10 2x e f (x) = -2. H(x) = [-2] é sempre negativo então a função é côncava.

Tamanho: px
Começar a partir da página:

Download "f (x) = 10 2x e f (x) = -2. H(x) = [-2] é sempre negativo então a função é côncava."

Transcrição

1 1. Para cada ua das seguintes funções, verifique se ele é côncava, convexa ou nenhua das duas, justificando e cada caso. (a) f(x) = 1x x (b) y = x 3 + x x + 1 (a) y = 1x x f (x) = 1 x e f (x) = -. H(x) = [-] é sepre negativo então a função é côncava , -1, -1, -,, -, 1, 1,,, 3, 3, 4, (b) y = x 3 + x x + 1 f (x) = 3x + x - e f (x) = 6x +. H(x) = [6x + ]. Assi para H(x), isto é, 6x + 6x - x - /6 x -1/3 a função será convexa e para x -1/3 a função será côncava , -1, -1, -,,, 1, 1,,, 3, 3, 4, - -1 Prof. Lorí Viali, Dr. - viali@pucrs.br - lori-viali.co

2 . Deterine os pontos extreos, o ponto de inflexão e esboce o gráfico da função f(x) = x 3 3x 9x. f (x) = 3x - 6x 9. Os pontos extreos são os que anula a derivada prieira, isto é, f (x) =, ou seja: 3x 6x 9 = x x 3 =. As raízes são: x = -1 e x = 3. O ponto de inflexão é o ponto que anula a segunda derivada, isto é, o ponto onde a função uda a sua curvatura. A derivada segunda é: f (x) = x. Ela se anula e x = 1. Para x 1 a segunda derivada é positiva e, portanto, a função é convexa e para x 1 a derivada segunda é negativa e, portanto, a função é côncava. Ainda f (-1) = (-1) = -4 e portanto o ponto -1 é u áxio. E x = 3, f (3) =.3 = 4 e portanto o valor 3 é u ínio. Assi a função assue u áxio e x = -1, u ponto de inflexão e x = 1 e u ínio e x = , -1, -1, -,,, 1, 1,,, 3, 3, 4, Encontre os valores extreos da função f(x) = xe -x no intervalo [-, ]. (i) Pontos que anula a derivada f (x) = e -x xe -x = e -x (1 x). Coo e -x > teos que f (x) = se e soente se 1 x =, ou seja, se x = 1 é o único ponto crítico do tipo I. A segunda derivada é: f (x) = (x - )e -x. No ponto x = 1, te-se: f (1) = (1 - ).e -1 = -1/e <, portanto o ponto 1 (u) é u áxio. (ii) O segundo caso não se aplica, pois, a função é derivável e todo o intervalo considerado. (iii) Os deais pontos críticos são os extreos do intervalo e, neste caso, eles são avaliados pela prieira derivada. E a = -, te-se que f (-) = e - [1 (-)] = 3/e >, portanto o ponto - é u ínio. E b =, te-se: f () = e - (1 ) = -e - = -1/e <, portanto o ponto - é u ínio. Coo f(-) = -14,78 e f() =,7, teos que - é global e é local. Prof. Lorí Viali, Dr

3 , -1, -1, -,, -1, 1, 1,, Considere a função f(x) = ax 3 3bx, onde a > e b >. Deterine e que condições a função será convexa (côncava). f (x) = 3ax 6bx e f"(x) = 6ax 6b. H(x) = [6ax 6b]. Para que ela seja convexa H(x), Assi ela será convexa para os valores x tais que: 6ax 6b ou x b/a. A função será côncava para todos os valores x tais que para x b/a. O ponto b/a é o ponto de inflexão, isto é, o ponto onde a curva passa de côncava para convexa ou viceversa. Coo a função está definida e todo o conjunto dos reais, ela não será ne côncava e ne convexa e R.. Encontre a e b tais que a função f(x) = x 3 + ax + b tenha u extreo relativo e (, 4). f (x) = 3x + ax e f (x) = 3x + ax = x(3x + a) = x = ou x = -(a)/3. Coo quero x =, então -(a)/3 = a = -3. Para deterinar b teos que: f() = 4, assi 4 = b b = O núero relativo de oléculas de gás e u recipiente que se ove a ua velocidade de v c/s pode ser calculada por eio da distribuição de velocidade de Maxwell-Boltzann, ou seja: F(v) = cv e v onde T é a teperatura e Kelvins, é a olécula e c e k são constantes positivas. Mostre que o valor / áxio de F ocorre quando v =. Prof. Lorí Viali, Dr

4 F (v) = cv e v cv 3 ). Igualando a derivada a zero, te- se: e v / F (v) = e / (cv No ponto v = F ( ) = v / ( - (v/)cv e v / cv 3 ) = cv 4 cv c v ) + e K T = e v / (cv cv 3 = cv = v / ( c cv 3 v = v = / v =. 3 v ) = ( 4 cv c v 3v + c)e KT K T KT, a derivada segunda será, após as devidas siplificações: (c + 1) <. Logo o ponto v = e é u ponto de áxio. v /. 7. Encontre e classifique os pontos críticos das seguintes funções: (a) f(x, y) = x + y + x y + 4 (b) f(x, y) = x 3 + xy + y - (a) f x = x + xy x + xy = x(1 + y) = x = ou y = -1. f y = 4y + x 4y + x = x = -4y. Assi se x = então y = e (x, y) = (, ). Se y = -1, então x = - ou e portanto (x, y) = (, -1) ou (x, y) = (-, -1). Logo os pontos são: (, ), (, -1) e (-, -1). f xx = + y e f xy = x + f yx = x e f yy = 4. Assi a atriz Hessiana é:. Então H1(x, y ) = + y e H(x, y) = y 4x. No ponto (, ) teos: H 1(, ) = e H (, ) = 8. Logo (, ) é u ponto de ínio. No ponto (, -1) teos: H 1(, -1) = e H (, -1) = -1. Logo (, -1) é u ponto de sela. No ponto (-, -1) teos H 1(-, -1) = e H (-, -1) = -1. Logo o ponto (-, -1) é de sela. (b) f x = 3x + y 3x + y = 3x x = x(3x ) x = ou x = /3. f y = x + y y = -x. Assi os pontos são (x, y) = (, ) e (x, y) = (/3, -/3). f xx = 6x e f xy = f yx = e f yy =. A atriz Hessiana é: 6. Então H1(x, y) = 6x e H(x, y) = 1x - 4. No ponto (, ) teos: H 1(, ) = e H (, ) = -4. Logo (, ) é u ponto de sela. No ponto (/3, -/3) teos: H 1(/3, -/3) = 4 e H (/3, -/3) = 4. Logo o ponto (/3, -/3) é u ponto de ínio. Prof. Lorí Viali, Dr

5 (a) (b) 8. Ua copanhia possui 3 fábricas que fabrica u eso produto. As fábricas A, B e C fabrica x, y e z unidades respectivaente e seus custos de produção são 3x +, y + 4 e z + 3. Se u pedido ínio de 11 unidades deve ser entregue, deterinar coo a produção deve ser distribuída entre as fábricas de odo a iniizar os custos co a produção. Resolver o problea (via Solver) considerando: (i) que os custos são da totalidade produzida e cada fábrica e (ii) que os custos são unitários. (via Solver) (i) Min f(x, y, z) = 3x + + y z + 3. Produção de A =, B = 6 e C = 3. (ii) Min f(x, y, z) = x(3x + ) + y(y + 4) + z(z + 3). Produção de A = 78, B = 481 e C = Ua copanhia está planejando gastar $1., e propaganda. Na televisão, o anúncio custa $3, o inuto e, no rádio, custa $1, o inuto. Se a fira coprar x inutos na televisão e y inutos no rádio, obterá u retorno (e ilhares de $) dado por: f(x, y) = 8x +3y + xy - x y. (i) Elabore u PPNL para resolver o problea. (ii) Encontre a solução via Solver. (via Solver) (i) Max f(x, y) = 8x +3y + xy - x y s. a 3x + y = 1 (ii) x =,46 in e y,61 in. O retorno é de $1,. Prof. Lorí Viali, Dr

6 1. Ua epresa de pneus quer investir e dois novos equipaentos: ua prensa plana (x) e ua linha de raspage (y). Cada unidade da prensa plana e cada unidade da linha de raspage requere a copra de dois novos adaptadores. A epresa já decidiu que vai coprar 1 adaptadores. O lucro obtido a partir dos novos equipaentos pode ser representado pela função f(x, y) = xy + 6x + 6y -x y. (a) Elaborar u PPNL para resolver o problea. (b) Deterinar a solução e verificar se ela é ótia. (c) Deterine a solução via Lagrangiano e via cálculo. Max f(x, y) = xy + 6x + 6y -x y Via Lagrangiano s. a x + y = 1 L(x, y, λ) = xy + 6x + y -x y + λ(x + y 1) Derivando e igualando as derivadas a zero, te-se: = y x + λ + 6 y x + λ + 6 = (i) = x y + λ + 6 x y + λ + 6 = (ii) = x + y 1 x + y 1 = (iii) Isolando λ na equação (ii) segue que λ = y x 6. Substituindo este resultado na equação (i), te-se: y x + y x =. Assi 3y 3x = ou 3y = 3x ou ainda y = x. Substituindo este resultado na equação (iii), segue que: x + x = 1. Assi 4x = 1 e, portanto, x = 3. Logo y = 3. A função objetivo, ou seja, o lucro será z = f(x, y) = 7. Para verificar se este resultado é a solução do PPNL, deve-se verificar se a função é côncava. Para tal deve-se deterinar a atriz Hessiana, isto é, H(x, y) = 1. Te-se, então, H1(x, y) = - e H(x, 1 y) = 4 1 = 3. Logo a função é côncava e o resultado encontrado é global e solução do PPNL. Obs. A restrição é ua função linear e, portanto, é tanto côncava quanto convexa. Via Cálculo Da restrição, segue que: y = 6 x. Substituindo na FO, segue que: z = x(6 x) + 6x + 6(6 x) x (6 x) = 6x x + 6x x x x x = 18x 3x. Derivando e igualando a zero, te-se: 18 6x = x = 18/6 = 3. Logo y = 6 3 = 3 e z = 7. Prof. Lorí Viali, Dr

. Os menores -2,0-1,5-1,0-0,5-5 0,0 0,5 1,0 1,5 2, = x 2y.. Os menores

. Os menores -2,0-1,5-1,0-0,5-5 0,0 0,5 1,0 1,5 2, = x 2y.. Os menores 1. Para cada uma das seguintes funções, verifique se ele é côncava, convexa ou nenhuma das duas, justificando em cada caso. (a) f(x, ) = 1x + (b) f(x) = 1x x (c) f(x, ) = x x 1 (a) = 1 = x = e = = = 1

Leia mais

INTRODUÇÃO AOS MÉTODOS NUMÉRICOS

INTRODUÇÃO AOS MÉTODOS NUMÉRICOS INTRODUÇÃO AOS MÉTODOS NUMÉRICOS Eenta Noções Básicas sobre Erros Zeros Reais de Funções Reais Resolução de Sisteas Lineares Introdução à Resolução de Sisteas Não-Lineares Interpolação Ajuste de funções

Leia mais

Gabarito Lista 5. f(x)dx ponto-a-ponto denindo: x c. 1 se x c. x c. O monopolista irá cobrar a transferência que deixa o tipo x = c + 1 λ

Gabarito Lista 5. f(x)dx ponto-a-ponto denindo: x c. 1 se x c. x c. O monopolista irá cobrar a transferência que deixa o tipo x = c + 1 λ Professor: Lucas Maestri Microeconoia III Monitor: Pedro Solti EPGE / EBEF - 1 Gabarito Lista 1 O problea do onopolista é: ax Ix Ix x c 1 F x fxdx fx O onopolista axiiza escolhendo o valor da função Ix.

Leia mais

2.1. Um consumidor possui a função de utilidade do tipo Cobb-Douglas Considere um consumidor que possui a seguinte função de utilidade:

2.1. Um consumidor possui a função de utilidade do tipo Cobb-Douglas Considere um consumidor que possui a seguinte função de utilidade: Microeconoia I Ficha : Capítulos 5, 6 e 8 Exercícios propostos Capítulo 5.1. U consuidor possui a função de utilidade do tipo Cobb-Douglas U(x 1, x ) = x 1 1/3 x /3. a) Utilize o ultiplicador de Lagrange

Leia mais

Uma EDO Linear de ordem n se apresenta sob a forma: a n (x) y (n) + a n 1 (x) y (n 1) + + a 2 (x) y 00 + a 1 (x) y 0 + a 0 (x) y = b (x) ; (6.

Uma EDO Linear de ordem n se apresenta sob a forma: a n (x) y (n) + a n 1 (x) y (n 1) + + a 2 (x) y 00 + a 1 (x) y 0 + a 0 (x) y = b (x) ; (6. 6. EDO DE ORDEM SUPERIOR SÉRIES & EDO - 2017.2 Ua EDO Linear de orde n se apresenta sob a fora: a n (x) y (n) + a n 1 (x) y (n 1) + + a 2 (x) y 00 + a 1 (x) y 0 + a 0 (x) y = b (x) ; (6.1) onde os coe

Leia mais

Matemática 2. Teste Final. Atenção: Esta prova deve ser entregue ao fim de 1 Hora. Deve justificar detalhadamente todas as suas respostas.

Matemática 2. Teste Final. Atenção: Esta prova deve ser entregue ao fim de 1 Hora. Deve justificar detalhadamente todas as suas respostas. Matemática 2 Lic. em Economia, Gestão e Finanças Data: 4 de Julho de 2017 Duração: 1H Teste Final Atenção: Esta prova deve ser entregue ao fim de 1 Hora. Deve justificar detalhadamente todas as suas respostas.

Leia mais

Álgebra Linear I - Aula 1. Roteiro

Álgebra Linear I - Aula 1. Roteiro Álgebra Linear I - Aula 1 1. Resolução de Sisteas Lineares. 2. Métodos de substituição e escalonaento. 3. Coordenadas e R 2 e R 3. Roteiro 1 Resolução de Sisteas Lineares Ua equação linear é ua equação

Leia mais

comprimento do fio: L; carga do fio: Q.

comprimento do fio: L; carga do fio: Q. www.fisicaexe.co.br Ua carga Q está distribuída uniforeente ao longo de u fio reto de copriento. Deterinar o vetor capo elétrico nos pontos situados sobre a reta perpendicular ao fio e que passa pelo eio

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear NOTAS DE AULA Geoetria Analítica e Álgebra Linear Reta e Plano Professor: Lui Fernando Nunes, Dr. Índice Geoetria Analítica e Álgebra Linear ii Estudo da Reta e do Plano... -. A Reta no Espaço... -.. Equação

Leia mais

Física Geral I. 1º semestre /05. Indique na folha de teste o tipo de prova que está a realizar: A, B ou C

Física Geral I. 1º semestre /05. Indique na folha de teste o tipo de prova que está a realizar: A, B ou C Física Geral I 1º seestre - 2004/05 1 TESTE DE AVALIAÇÃO 2668 - ENSINO DE FÍSICA E QUÍMICA 1487 - OPTOMETRIA E OPTOTÉCNIA - FÍSICA APLICADA 8 de Novebro, 2004 Duração: 2 horas + 30 in tolerância Indique

Leia mais

Máximos e mínimos (continuação)

Máximos e mínimos (continuação) UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 3 Assunto: Máximos e mínimos Palavras-chaves: máximos e mínimos, valores máximos e valores mínimos Máximos e mínimos (continuação) Sejam f

Leia mais

Quarta aula de FT 03/09/2013. Se a pressão for constante (uniforme ou média), temos: p

Quarta aula de FT 03/09/2013. Se a pressão for constante (uniforme ou média), temos: p Quta aula de FT 0/09/0. Conceito de pressão FN Se a pressão for constante (unifore ou édia), teos: p A dfn Se pensos e u ponto, teos: p da Iportante not que a pressão é diferente de força, pa deix clo

Leia mais

A, B, C polinómios conhecidos X, Y polinómios desconhecidos

A, B, C polinómios conhecidos X, Y polinómios desconhecidos Equações Diofantinas 23 Considere-se a equação AX + BY = C A, B, C polinóios conhecidos X, Y polinóios desconhecidos Há soluções? Quantas soluções há para ua dada equação? E geral, a equação pode ser definida

Leia mais

Respostas sem justificativas não serão aceitas Não é permitido o uso de aparelhos eletrônicos

Respostas sem justificativas não serão aceitas Não é permitido o uso de aparelhos eletrônicos UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL - 018. - TURMA MA 1A VERIFICAÇÃO DE APRENDIZAGEM - PARTE Nome Legível RG CPF Respostas

Leia mais

Teoria do Consumidor: Equilíbrio e demanda. Roberto Guena de Oliveira 18 de Março de 2017

Teoria do Consumidor: Equilíbrio e demanda. Roberto Guena de Oliveira 18 de Março de 2017 Teoria do Consuidor: Equilíbrio e deanda Roberto Guena de Oliveira 18 de Março de 2017 1 Estrutura geral da aula Parte 1: Restrição orçaentária Parte 2: Equilíbrio Parte 3: Deanda 2 Parte I Restrição orçaentária

Leia mais

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 06. Prof. Dr. Marco Antonio Leonel Caetano

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 06. Prof. Dr. Marco Antonio Leonel Caetano MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação Aula 06 Prof. Dr. Marco Antonio Leonel Caetano 1 Guia de Estudo para Aula 06 Aplicação de AutoValores - Usando autovalor para encontrar pontos

Leia mais

MAT Cálculo 2 para Economia 3 a Prova - 28 de novembro de 2016

MAT Cálculo 2 para Economia 3 a Prova - 28 de novembro de 2016 MAT 0147 - Cálculo para Economia 3 a Prova - 8 de novembro de 016 Questão 1) Determine o máximo e o mínimo de f(x, y) = x 4 + y em D = {(x, y); x + y 1}. Soluç~ao: As derivadas parciais f x (x, y) = 4x

Leia mais

Instituto de Matemática - IM/UFRJ Cálculo I - MAC118 1 a Prova - Gabarito - 13/10/2016

Instituto de Matemática - IM/UFRJ Cálculo I - MAC118 1 a Prova - Gabarito - 13/10/2016 Instituto de Matemática - IM/UFRJ Cálculo I - MAC118 1 a Prova - Gabarito - 13/10/2016 Questão 1: (2 pontos) x (a) (0.4 ponto) Calcule o ite: 2 + 3 2. x 1 x 1 ( πx + 5 ) (b) (0.4 ponto) Calcule o ite:

Leia mais

Universidade Federal do Rio de Janeiro

Universidade Federal do Rio de Janeiro Å INSTITUTO DE MATEMÁTICA Universidade Federal do Rio de Janeiro Gabarito da a Prova Unificada de Cálculo I a Questão: Calcule ou justifique caso não exista, cada um dos ite abaixo: ( (a) x + (+x )e x,

Leia mais

A 3,0. Em conclusão uma solução cinematicamente admissível é:

A 3,0. Em conclusão uma solução cinematicamente admissível é: Considere a laje (de espessura,, E= 1 MPa e ν=,) siplesente apoiada ao longo de todo o seu contorno representada na Figura, subetida a ua carga uniforeente distribuída de 1 kpa..1 Deterine ua solução cineaticaente

Leia mais

Noções de matemática. Maurício Yoshida Izumi

Noções de matemática. Maurício Yoshida Izumi Noções de matemática Maurício Yosida Izumi 29 de agosto de 2015 Sumário 1 Notação e funções 2 1.1 Números reais........................................ 2 1.2 Intervalos...........................................

Leia mais

(A) 331 J (B) 764 J. Resposta: 7. As equações de evolução de dois sistemas dinâmicos são:

(A) 331 J (B) 764 J. Resposta: 7. As equações de evolução de dois sistemas dinâmicos são: MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 018/019 EIC0010 FÍSICA I 1º ANO, º SEMESTRE 18 de junho de 019 Noe: Duração horas. Prova co consulta de forulário e uso de coputador. O forulário pode

Leia mais

8.1-Equação Linear e Homogênea de Coeficientes Constantes

8.1-Equação Linear e Homogênea de Coeficientes Constantes 8- Equações Diferenciais Lineares de 2 a Ordem e Ordem Superior As equações diferenciais lineares de ordem n são aquelas da forma: y (n) + a 1 (x) y (n 1) + a 2 (x) y (n 2) + + a n 1 (x) y + a n (x) y

Leia mais

Matemática para Economia Les 201

Matemática para Economia Les 201 Mateática para Ecooia Les Aulas 4 e 5 Márcia Azaha Ferraz Dias de Moraes 5 e 3//6 (co restrição) Otiização Não Codicioada: Métodos de otiização dos extreos relativos da fução objetivo: Todas as variáveis

Leia mais

DERIVADAS PARCIAIS. y = lim

DERIVADAS PARCIAIS. y = lim DERIVADAS PARCIAIS Definição: Seja f uma função de duas variáveis, x e y (f: D R onde D R 2 ) e (x 0, y 0 ) é um ponto no domínio de f ((x 0, y 0 ) D). A derivada parcial de f em relação a x no ponto (x

Leia mais

Introdução à Otimização de Processos. Prof. Marcos L Corazza Departamento de Engenharia Química Universidade Federal do Paraná

Introdução à Otimização de Processos. Prof. Marcos L Corazza Departamento de Engenharia Química Universidade Federal do Paraná Introdução à Otimização de Processos Prof. Marcos L Corazza Departamento de Engenharia Química Universidade Federal do Paraná Otimização Não-Linear Algumas definições e conceitos preliminares: 1. Derivadas

Leia mais

Cálculo II Lista 5. com respostas

Cálculo II Lista 5. com respostas Cálculo II Lista 5. com respostas Exercício 1. Determine os pontos críticos das funções dadas e classifique-os, decidindo se são pontos de máximo local, de mínimo local ou de sela: (a) f(x, y) = x 2 +

Leia mais

Movimento oscilatório forçado

Movimento oscilatório forçado Moviento oscilatório forçado U otor vibra co ua frequência de ω ext 1 rad s 1 e está ontado nua platafora co u aortecedor. O otor te ua assa 5 kg e a ola do aortecedor te ua constante elástica k 1 4 N

Leia mais

P4 de Cálculo a Várias Variáveis I MAT Data: 02 de julho

P4 de Cálculo a Várias Variáveis I MAT Data: 02 de julho P de Cálculo a Várias Variáveis I MAT 6 03. Data: 0 de julho Nome: Assinatura: Matrícula: Turma: Questão Valor Nota Revisão 5.0 5.0 Total 0.0 Instruções Mantenha seu celular desligado durante toda a prova.

Leia mais

SEGUNDA CHAMADA CALCULO 2 2/2017

SEGUNDA CHAMADA CALCULO 2 2/2017 9/11/017 SEGUNDA CHAMADA CALCULO /017 PROF: RENATO FERREIRA DE VELLOSO VIANNA Questão 1,5 pontos). Resolva os problemas de valor inicial: y + 4y + 4y = e x {, y = xyy + 4), a) = y0) = 0, b) = y0) = 5.

Leia mais

MAT-2454 Cálculo Diferencial e Integral II EP-USP

MAT-2454 Cálculo Diferencial e Integral II EP-USP MAT-454 Cálculo Diferencial e Integral II EP-USP Solução da Questão da Terceira Prova 8//06 Questão (Tipo A Valor: 3, 0 pontos). a. Determine todos os pontos da superfície de nível da função g(x, y, z)

Leia mais

Gabarito e resolução da prova de seleção PPGE FURG Estatística

Gabarito e resolução da prova de seleção PPGE FURG Estatística Gabarito e resolução da prova de seleção PPGE FURG 2019. Questão 1) Resposta: letra c) i. (FALSO) Estatística Variáveis de interação sempre podem ser incluídas mos modelos de regressão, se isso não gerar

Leia mais

P3 de Cálculo a Várias Variáveis I MAT Data: 23 de novembro

P3 de Cálculo a Várias Variáveis I MAT Data: 23 de novembro P3 de Cálculo a Várias Variáveis I MAT 62 23.2 Data: 23 de novembro Nome: Assinatura: Matrícula: Turma: Questão Valor Nota Revisão 3. 2 2. 3 3. Teste 2. Total. Instruções Mantenha seu celular desligado

Leia mais

BCC465 - TÉCNICAS DE MULTI-OBJETIVO. Gladston Juliano Prates Moreira 22 de novembro de 2017

BCC465 - TÉCNICAS DE MULTI-OBJETIVO. Gladston Juliano Prates Moreira   22 de novembro de 2017 BCC465 - TÉCNICAS DE OTIMIZAÇÃO MULTI-OBJETIVO Aula 04 - Otimização Não-linear Gladston Juliano Prates Moreira email: gladston@iceb.ufop.br CSILab, Departamento de Computação Universidade Federal de Ouro

Leia mais

Justifique todas as passagens. Boa Sorte! e L 2 : = z 1 3

Justifique todas as passagens. Boa Sorte! e L 2 : = z 1 3 3 ā Prova de Cálculo II para Oceanográfico - MAT145 01/12/2010 Nome : GABARITO N ō USP : Professor : Oswaldo Rio Branco de Oliveira Justifique todas as passagens Boa Sorte! Q 1 2 3 4 5 Extra 6 Extra 7

Leia mais

Concavidade e pontos de inflexão Aula 20

Concavidade e pontos de inflexão Aula 20 Concavidade e pontos de inflexão Aula 20 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 22 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica

Leia mais

Gabarito - FÍSICA - Grupos H e I

Gabarito - FÍSICA - Grupos H e I a QUESTÃO: (,0 pontos) Avaliador Revisor As figuras aaixo ostra duas ondas eletroagnéticas que se propaga do ar para dois ateriais transparentes distintos, da esa espessura d, e continua a se propagar

Leia mais

Prof. A.F.Guimarães Questões Eletricidade 5 Corrente Elétrica

Prof. A.F.Guimarães Questões Eletricidade 5 Corrente Elétrica Questão Prof. A.F.Guiarães Questões etricidade 5 Corrente étrica (C MG) a carga +q ove se nua circunferência de raio co ua velocidade escalar v. A intensidade de corrente édia e u ponto da circunferência

Leia mais

FIS01183 Turma C/CC Prova da área 1 07/04/2010. Nome: Matrícula:

FIS01183 Turma C/CC Prova da área 1 07/04/2010. Nome: Matrícula: FIS1183 ura C/CC Prova da área 1 7/4/21 Noe: Matrícula: E todas as questões: Explicite seu raciocínio e os cálculos realizados e cada passo! BOA PROVA! Questão 1 (2,5 pontos) U teropar é forado por ua

Leia mais

Microeconomia I. Licenciaturas em Administração e Gestão de Empresas e em Economia

Microeconomia I. Licenciaturas em Administração e Gestão de Empresas e em Economia Microeconoia I Licenciaturas e Adinistração e Gestão de Epresas e e Econoia 009-010 1º Seestre Fernando Branco 14 de Abril de 010 Francisco Silva Teste Interédio Maria Jardi Fernandes O teste te a duração

Leia mais

MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 2016/2017

MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 2016/2017 MESTRDO INTEGRDO EM ENG. INFORMÁTIC E COMPUTÇÃO 2016/2017 EIC0010 FÍSIC I 1o NO, 2 o SEMESTRE 30 de junho de 2017 Noe: Duração 2 horas. Prova co consulta de forulário e uso de coputador. O forulário pode

Leia mais

Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística. Curso: Engenharia de Produção

Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística. Curso: Engenharia de Produção Considere a função f(x). Para algum x a f (x) pode não existir. Suponha que se queira resolver o seguinte PPNL: Max f(x) s. a a x b Pode ser que f (x) não exista ou que seja difícil resolver a equação

Leia mais

Considere a função f(x). Para algum x a f (x) pode não existir. Suponha que. Max f(x) s. a a x b

Considere a função f(x). Para algum x a f (x) pode não existir. Suponha que. Max f(x) s. a a x b Considere a função f(x). Para algum x a f (x) pode não existir. Suponha que se queira resolver o seguinte PPNL: Max f(x) s. a a x b Pode ser que f (x) não exista ou que seja difícil resolver a equação

Leia mais

Revisão : máximo, minimo em dimensão 1

Revisão : máximo, minimo em dimensão 1 Revisão : máximo, minimo em dimensão 1 ( de Rolle) Seja f uma função que satisfaça as seguintes hipóteses: 1 f é contínua no intervalo fechado [a, b], 2 f é diferenciável no intervalo aberto (a, b), 3

Leia mais

Máximos e mínimos UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 22. Assunto: Máximos e mínimos

Máximos e mínimos UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 22. Assunto: Máximos e mínimos Assunto: Máximos e mínimos UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA Palavras-chaves: máximos e mínimos, valores máximos e valores mínimos Máximos e mínimos Sejam f uma função a valores

Leia mais

MAT 2454 Cálculo II Resolução da Lista 3

MAT 2454 Cálculo II Resolução da Lista 3 MAT 2454 Cálculo II Resolução da Lista 3 por César Morad I. Superfícies de Nível, Planos Tangentes e Derivadas Direcionais 1.1. Em cada caso, esboce a superfície de nível c da função F: R 2 R: a. F(x,

Leia mais

MAT 1351 : Cálculo para Funções de Uma Variável Real I. Sylvain Bonnot (IME-USP)

MAT 1351 : Cálculo para Funções de Uma Variável Real I. Sylvain Bonnot (IME-USP) MAT 1351 : Cálculo para Funções de Uma Variável Real I Sylvain Bonnot (IME-USP) 2016 1 Aplicação das derivadas: Equações diferenciais Teorema As soluções da equação y = 0 num intervalo (a, b) são exatamente

Leia mais

FOLHAS DE PROBLEMAS DE MATEMÁTICA II CURSO DE ERGONOMIA PEDRO FREITAS

FOLHAS DE PROBLEMAS DE MATEMÁTICA II CURSO DE ERGONOMIA PEDRO FREITAS FOLHAS DE PROBLEMAS DE MATEMÁTICA II CURSO DE ERGONOMIA PEDRO FREITAS Maio 12, 2008 2 Contents 1. Complementos de Álgebra Linear 3 1.1. Determinantes 3 1.2. Valores e vectores próprios 5 2. Análise em

Leia mais

(7) Suponha que sobre uma certa região do espaço o potencial elétrico V é dado por V(x, y, z) = 5x 2 3xy + xyz.

(7) Suponha que sobre uma certa região do espaço o potencial elétrico V é dado por V(x, y, z) = 5x 2 3xy + xyz. 1. MAT - 0147 CÁLCULO DIFERENCIAL E INTEGRAL II PARA ECÔNOMIA 3 a LISTA DE EXERCÍCIOS - 017 1) Em cada caso, esboce a superfície de nível c da função F : R 3 R: a) Fx, y, z) = x + y + 3z e c = 1 b) Fx,

Leia mais

PARTE 1 O gráfico da função f(x) = ax + b está representado nessa figura. O valor de a + b é a) 2 b) 2 c) 7/2 d) 9/2 e) 6

PARTE 1 O gráfico da função f(x) = ax + b está representado nessa figura. O valor de a + b é a) 2 b) 2 c) 7/2 d) 9/2 e) 6 1) (PUC-MG) Ua função do 1 grau é tal que f(-1) = 5 e f(3) = -3. Então, f(0) é igual a 0 c) 3 4 e) 1 PARTE 1 O gráfico da função f() = a + b está representado nessa figura. O valor de a + b é c) 7/ 9/

Leia mais

Capítulo 3 Amperímetros e Voltímetros DC Prof. Fábio Bertequini Leão / Sérgio Kurokawa. Capítulo 3 Amperímetros e Voltímetros DC

Capítulo 3 Amperímetros e Voltímetros DC Prof. Fábio Bertequini Leão / Sérgio Kurokawa. Capítulo 3 Amperímetros e Voltímetros DC Capítulo 3 Aperíetros e Voltíetros DC Prof. Fábio Bertequini Leão / Sérgio Kurokawa Capítulo 3 Aperíetros e Voltíetros DC 3.. Aperíetros DC U galvanôetro, cuja lei de Deflexão Estática (relação entre a

Leia mais

Equações Ordinarias 1ªOrdem - Lineares

Equações Ordinarias 1ªOrdem - Lineares Nome: Nº Curso: Licenciatura em Matemática Disciplina: Equações Diferenciais Ordinárias 7ºPeríodo Prof. Leonardo Data: / /2018 Equações Ordinarias 1ªOrdem - Lineares 1. EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

Leia mais

Equações Diferenciais Noções Básicas

Equações Diferenciais Noções Básicas Equações Diferenciais Noções Básicas Definição: Chama-se equação diferencial a uma equação em que a incógnita é uma função (variável dependente) de uma ou mais variáveis (independentes), envolvendo derivadas

Leia mais

Fenômenos de Transporte. Aula 1 do segundo semestre de 2012

Fenômenos de Transporte. Aula 1 do segundo semestre de 2012 Fenôenos de Transporte Aula 1 do segundo seestre de 01 Para calcularos a aceleração da gravidade pode-se recorrer a fórula: g 980,616,598cos 0,0069 latitude e graus H altitude e quilôetros g aceleração

Leia mais

Introdução às Equações Diferenciais e Ordinárias

Introdução às Equações Diferenciais e Ordinárias Introdução às Equações Diferenciais e Ordinárias - 017. Lista - EDOs lineares de ordem superior e sistemas de EDOs de primeira ordem 1 São dadas trincas de funções que são, em cada caso, soluções de alguma

Leia mais

Cap 16 (8 a edição) Ondas Sonoras I

Cap 16 (8 a edição) Ondas Sonoras I Cap 6 (8 a edição) Ondas Sonoras I Quando você joga ua pedra no eio de u lago, ao se chocar co a água ela criará ua onda que se propagará e fora de u círculo de raio crescente, que se afasta do ponto de

Leia mais

Aula 22 O teste da derivada segunda para extremos relativos.

Aula 22 O teste da derivada segunda para extremos relativos. O teste da derivada segunda para extremos relativos. MÓDULO 2 - AULA 22 Aula 22 O teste da derivada segunda para extremos relativos. Objetivo: Utilizar a derivada segunda para determinar pontos de máximo

Leia mais

Capítulo 1 Introdução, propriedades e leis básicas dos fluidos.

Capítulo 1 Introdução, propriedades e leis básicas dos fluidos. Capítulo 1 Introdução, propriedades e leis básicas dos fluidos. 1.1. Introdução A expressão fenôenos de transporte refere-se ao estudo sisteático e unificado da transferência de quantidade de oviento,

Leia mais

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Instituto de Matemática PRIMEIRA PROVA UNIFICADA CÁLCULO I POLITÉCNICA E ENGENHARIA QUÍMICA 13/12/2012.

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Instituto de Matemática PRIMEIRA PROVA UNIFICADA CÁLCULO I POLITÉCNICA E ENGENHARIA QUÍMICA 13/12/2012. UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Instituto de Matemática PRIMEIRA PROVA UNIFICADA CÁLCULO I POLITÉCNICA E ENGENHARIA QUÍMICA 13/12/2012. GABARITO 1 a Questão. (3.0 pontos). (a) Calcule: lim x 0 +

Leia mais

Cálculo a Várias Variáveis I - MAT Cronograma para P2: aulas teóricas (segundas e quartas)

Cálculo a Várias Variáveis I - MAT Cronograma para P2: aulas teóricas (segundas e quartas) Cálculo a Várias Variáveis I - MAT 116 0141 Cronograma para P: aulas teóricas (segundas e quartas) Aula 10 4 de março (segunda) Aula 11 6 de março (quarta) Referências: Cálculo Vol James Stewart Seções

Leia mais

INVESTIGAÇÃO OPERACIONAL. Programação Linear. Exercícios

INVESTIGAÇÃO OPERACIONAL. Programação Linear. Exercícios INVESTIGÇÃO OPERIONL Prograação Linear Exercícios ap. VI nálise de Sensiilidade e Pós-Optiização ntónio arlos Morais da Silva Professor de I.O. INVESTIGÇÃO OPERIONL (MS edição de 6) i ap. VI nálise de

Leia mais

1 Derivadas Parciais de Ordem Superior Em duas variáveis Em três variáveis. 1.3 Derivadas de Ordem

1 Derivadas Parciais de Ordem Superior Em duas variáveis Em três variáveis. 1.3 Derivadas de Ordem Contents 1 Derivadas Parciais de Ordem Superior 1 1.1 Em duas variáveis..................................... 1 1. Em três variáveis...................................... 1 1.3 Derivadas de Ordem...................................

Leia mais

Um professor de Matemática escreve no quadro os n primeiros termos de uma progressão aritmética: 50, 46, 42,..., a n

Um professor de Matemática escreve no quadro os n primeiros termos de uma progressão aritmética: 50, 46, 42,..., a n Questão 0 U professor de Mateática escreve no quadro os n prieiros teros de ua progressão aritética: 50, 6,,, a n Se esse professor apagar o décio tero dessa seqüência, a édia aritética dos teros restantes

Leia mais

MAT Lista de exercícios

MAT Lista de exercícios 1 Curvas no R n 1. Esboce a imagem das seguintes curvas para t R a) γ(t) = (1, t) b) γ(t) = (t, cos(t)) c) γ(t) = (t, t ) d) γ(t) = (cos(t), sen(t), 2t) e) γ(t) = (t, 2t, 3t) f) γ(t) = ( 2 cos(t), 2sen(t))

Leia mais

Nome: Gabarito Data: 28/10/2015. Questão 01. Calcule a derivada da função f(x) = sen x pela definição e confirme o resultado

Nome: Gabarito Data: 28/10/2015. Questão 01. Calcule a derivada da função f(x) = sen x pela definição e confirme o resultado Fundação Universidade Federal de Pelotas Departamento de Matemática e Estatística Curso de Licenciatura em Matemática - Diurno Segunda Prova de Cálculo I Prof. Dr. Maurício Zan Nome: Gabarito Data: 8/0/05.

Leia mais

II. Funções de uma única variável

II. Funções de uma única variável II. Funções de uma única variável 1 II.1. Conceitos básicos A otimização de de funções de de uma única variável consiste no no tipo mais elementar de de otimização. Importância: Tipo de problema encontrado

Leia mais

f(x) f(a), x D. O ponto a é então chamado ponto de máximo absoluto ou maximizante absoluto.

f(x) f(a), x D. O ponto a é então chamado ponto de máximo absoluto ou maximizante absoluto. Capítulo 4 Problemas de Extremo 41 Extremos Seja f : D R m R uma função real de n variáveis reais, de domínio D e a D Definição 1 Diz-se que: A função f tem um máximo absoluto em a se f(x) f(a), x D O

Leia mais

Equações Diferenciais Noções Básicas

Equações Diferenciais Noções Básicas Equações Diferenciais Noções Básicas Definição: Chama-se equação diferencial a uma equação em que a incógnita é uma função (variável dependente) de uma ou mais variáveis (variáveis independentes), envolvendo

Leia mais

Teste Intermédio 1. Nº: Nome:

Teste Intermédio 1. Nº: Nome: Faculdade de Econoia da Universidade Nova de Lisboa 1304 Análise de Dados e Probabilidade B 1º Seestre 2008/2009 Fernando Brito Soares Cátia Fernandes Erica Maruo Daniel Monteiro Nº: Noe: Data: 25 de Outubro

Leia mais

Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística

Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística f : A B, significa que f é definida no conjunto A (domínio - domain) e assume valores em B (contradomínio range). R é o conjunto dos reais; R n é o conjunto dos vetores n-dimensionais reais; Os vetores

Leia mais

Exemplo: Controlo digital de um motor de corrente contínua

Exemplo: Controlo digital de um motor de corrente contínua Modelação, Identificação e Controlo Digital 5-Controlo co técnicas polinoiais 5 Exeplo: Controlo digital de u otor de corrente contínua Pretende-se projectar u controlador digital para a posição de u pequeno

Leia mais

Índice. AULA 5 Derivação implícita 3. AULA 6 Aplicações de derivadas 4. AULA 7 Aplicações de derivadas 6. AULA 8 Esboço de gráficos 9

Índice. AULA 5 Derivação implícita 3. AULA 6 Aplicações de derivadas 4. AULA 7 Aplicações de derivadas 6. AULA 8 Esboço de gráficos 9 www.matematicaemexercicios.com Derivadas Vol. 2 1 Índice AULA 5 Derivação implícita 3 AULA 6 Aplicações de derivadas 4 AULA 7 Aplicações de derivadas 6 AULA 8 Esboço de gráficos 9 www.matematicaemexercicios.com

Leia mais

Instituto Universitário de Lisboa

Instituto Universitário de Lisboa Instituto Universitário de Lisboa Departamento de Matemática Exercícios de Extremos 1 Extremos Livres 1. Dada uma função f : R n R e a R n, (a) Qual a propriedade que f(a) deve vericar para ser um máximo

Leia mais

Controlo digital de um motor de corrente contínua

Controlo digital de um motor de corrente contínua 43 Controlo digital de u otor de corrente contínua Pretende-se projectar u controlador digital para a posição de u pequeno otor de corrente contínua de ían peranente. u(k) D/A AP Motor y D/A y(k) Adite-se

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia II 3 a lista de exercícios

MAT Cálculo Diferencial e Integral para Engenharia II 3 a lista de exercícios MAT454 - Cálculo Diferencial e Integral para Engenharia II a lista de exercícios - 014 1. Em cada caso, esboce a superfície de nível c da função F : R R: a) Fx, y, z) = x + y + z e c = 1 b) Fx, y, z) =

Leia mais

Derivadas Parciais. Sumário. 1 Funções de Várias Variáveis. Raimundo A. R. Rodrigues Jr. 1 de agosto de Funções de Duas Variáveis.

Derivadas Parciais. Sumário. 1 Funções de Várias Variáveis. Raimundo A. R. Rodrigues Jr. 1 de agosto de Funções de Duas Variáveis. Derivadas Parciais Raimundo A. R. Rodrigues Jr 1 de agosto de 2016 Sumário 1 Funções de Várias Variáveis 1 1.1 Funções de Duas Variáveis.............................. 1 1.2 Grácos........................................

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia II 2 a lista de exercícios

MAT Cálculo Diferencial e Integral para Engenharia II 2 a lista de exercícios MAT454 - Cálculo Diferencial e Integral para Engenharia II a lista de exercícios - 009 1. Ache as derivadas parciais de primeira ordem das funções: ( y (a) f(x, y) = arctg (b) f(x, y) = ln(1 + cos x) (xy

Leia mais

11.7 Valores Extremos e Ponto de Sela

11.7 Valores Extremos e Ponto de Sela 11.7 Valores Extremos e Ponto de Sela Luiza Amalia Pinto Cantão Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocaba.unesp.br Valores Extremos Locais Definição: Seja f(x,

Leia mais

Cálculo 1 - Quinta Lista de Exercícios Derivadas

Cálculo 1 - Quinta Lista de Exercícios Derivadas Cálculo 1 - Quinta Lista de Exercícios Derivadas Prof. Fabio Silva Botelho November 2, 2017 1. Seja f : D = R\{ 7/5} R onde 1 5x+7. Seja x D. Utilizando a definição de derivada, calcule f (x). Calcule

Leia mais

Unidade II 3. Ondas mecânicas e

Unidade II 3. Ondas mecânicas e Governo do Estado do Rio Grande do Norte Secretaria de Estado da Educação e da Cultura - SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE - UERN Pró-Reitoria de Ensino de Graduação PROEG Hoe Page: http://www.uern.br

Leia mais

Instrumentação e Medidas

Instrumentação e Medidas nstruentação e Medidas Licenciatura e Engenharia Electrotécnica Exae (ª Chaada) de Julho de 20 Antes de coeçar o exae leia atentaente as seguintes instruções: Para alé da calculadora, só é peritido ter

Leia mais

EXERCÍCIOS DE ELEMENTOS DE MATEMÁTICA II (BQ, CTA, EFQ, Q) 2002/2003. Funções reais de várias variáveis

EXERCÍCIOS DE ELEMENTOS DE MATEMÁTICA II (BQ, CTA, EFQ, Q) 2002/2003. Funções reais de várias variáveis EXERCÍCIOS DE ELEMENTOS DE MATEMÁTICA II (BQ, CTA, EFQ, Q) 2002/2003 Funções reais de várias variáveis 1. Faça um esboço de alguns conjuntos de nível das seguintes funções: (a) f (x,y) = 1 + x + 3y, (x,y)

Leia mais

-- Notas de Aula -- EMC Simulação e Otimização de Sistemas Térmicos. Prof. Christian Hermes. Inverno de 2018

-- Notas de Aula -- EMC Simulação e Otimização de Sistemas Térmicos. Prof. Christian Hermes. Inverno de 2018 6. Otiização -- Notas de Aula -- EMC4086 Siulação e Otiização de Sisteas Téricos Prof. Christian Heres Inverno de 08 Definição: processo de procurta das condições geoétricas, operacionais que fornece o

Leia mais

SOLUÇÃO: sendo T 0 a temperatura inicial, 2P 0 a pressão inicial e AH/2 o volume inicial do ar no tubo. Manipulando estas equações obtemos

SOLUÇÃO: sendo T 0 a temperatura inicial, 2P 0 a pressão inicial e AH/2 o volume inicial do ar no tubo. Manipulando estas equações obtemos OSG: 719-1 01. Ua pequena coluna de ar de altura h = 76 c é tapada por ua coluna de ercúrio através de u tubo vertical de altura H =15 c. A pressão atosférica é de 10 5 Pa e a teperatura é de T 0 = 17

Leia mais

Lista de Exercícios de Cálculo 3 Sexta Semana

Lista de Exercícios de Cálculo 3 Sexta Semana Lista de Exercícios de Cálculo 3 Sexta Semana Parte A 1. (i) Encontre o gradiente das funções abaixo; (ii) Determine o gradiente no ponto P dado; (iii) Determine a taxa de variação da função no ponto P

Leia mais

3 Compensador Estático de Reativo

3 Compensador Estático de Reativo Copensador Estático de Reativo. Considerações Iniciais [assos F o, ] Os avanços na tecnologia de eletrônica de potência, e conjunto co avançadas etodologias de controle, tornara possível o desenvolviento

Leia mais

EDO Linear de 2a. Ordem com Coecientes Constantes Homogênea

EDO Linear de 2a. Ordem com Coecientes Constantes Homogênea EDO Linear de 2a. Ordem com Coecientes Constantes Homogênea Laura Goulart UESB 27 de Março de 2018 Laura Goulart (UESB) EDO Linear de 2a. Ordem com Coecientes Constantes 27 de Março Homogênea de 2018 1

Leia mais

Universidade Estadual do Sudoeste da Bahia

Universidade Estadual do Sudoeste da Bahia Universidade Estadual do Sudoeste da Bahia Departaento de Estudos Básicos e Instruentais 5 Oscilações Física II Ferreira 1 ÍNDICE 1. Alguas Oscilações;. Moviento Harônico Siples (MHS); 3. Pendulo Siples;

Leia mais

Aula 25. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

Aula 25. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil Assíntotas, Esboço de Gráfico e Aplicações Aula 25 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 09 de Maio de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia

Leia mais

Resposta - Questão 01: Equação genérica do segundo grau: f(x) = ax² + bx + c. a) f(x) = x² 7x + 10 a = 1 b = 7 c = 10 I Cálculo das raízes:

Resposta - Questão 01: Equação genérica do segundo grau: f(x) = ax² + bx + c. a) f(x) = x² 7x + 10 a = 1 b = 7 c = 10 I Cálculo das raízes: 1) Estude as raízes, determine o vértice, interseção com o eixo y, eixo de simetria, esboce o gráfico e estude o sinal das funções a seguir. a. f(x) = x 2 7x + 10 b. g(x) = x 2 + 4x + 4 c. y = -3x 2 +

Leia mais

Soluções abreviadas de alguns exercícios

Soluções abreviadas de alguns exercícios Tópicos de cálculo para funções de várias variáveis Soluções abreviadas de alguns exercícios Instituto Superior de Agronomia - 2 - Capítulo Tópicos de cálculo diferencial. Domínio, curva de nível e gráfico.

Leia mais

MAT Cálculo II - IQ Prof. Oswaldo Rio Branco de Oliveira 2 ō semestre de 2008 Prova Substitutiva

MAT Cálculo II - IQ Prof. Oswaldo Rio Branco de Oliveira 2 ō semestre de 2008 Prova Substitutiva MAT212 - Cálculo II - IQ Prof. Oswaldo Rio Branco de Oliveira 2 ō semestre de 2008 Prova Substitutiva Nome : N ō USP : GABARITO Q 1 2 3 4 5 6 Total N 1. Seja f(x, y) = 2xy2, se (x, y) (0, 0), f(0, 0) =

Leia mais

Exemplo 1. Suponhamos que a concentração c(t) (em mg/100 ml) de um certo metabólito em um meio líquido de cultura seja expressa pela equação,

Exemplo 1. Suponhamos que a concentração c(t) (em mg/100 ml) de um certo metabólito em um meio líquido de cultura seja expressa pela equação, Exemplos sobre Variação de Funções Exemplo 1. Suponhamos que a concentração c(t) (em mg/1 ml) de um certo metabólito em um meio líquido de cultura seja expressa pela equação, ( t ) ( ) +, c ( t) = t onde

Leia mais

Otimização. por Mílton Procópio de Borba

Otimização. por Mílton Procópio de Borba Otimização por Mílton Procópio de Borba 1. Otimização sem restrições Seja f: D R, convexa, isto é, f[λ.p + (1-λ).q] λ.f(p) + (1-λ)f(q), p e q em D e λ [0, 1]. Maximizar f, significa encontrar o maior valor

Leia mais

Exame de Matemática II - Curso de Arquitectura

Exame de Matemática II - Curso de Arquitectura Exame de Matemática II - Curso de ruitectura o semestre de 8 7 de Junho de 8 esponsável Henriue Oliveira a Parte. Considere a seguinte função f! de nida por f(x ; x ; x ) (x cos (x ) ; x sin (x ) ; x ).

Leia mais

AVALIAÇÃO DO PLANO DE TRABALHO 2: Geometria analítica: retas paralelas e retas perpendiculares Robson de Oliveira Bastos

AVALIAÇÃO DO PLANO DE TRABALHO 2: Geometria analítica: retas paralelas e retas perpendiculares Robson de Oliveira Bastos 10/12/2012 COLÉGIO: Colégio Estadual Fagundes Varela PROFESSOR: Robson de Oliveira Bastos MATRÍCULA: 09117847 SÉRIE: 3 a - Ensino Médio TUTOR (A: Cláudio Rocha de Jesus GRUPO: 07 AVALIAÇÃO DO PLANO DE

Leia mais

Universidade Federal de Pelotas Disciplina de Microeconomia 1 Professor Rodrigo Nobre Fernandez Lista 1 - Soluções

Universidade Federal de Pelotas Disciplina de Microeconomia 1 Professor Rodrigo Nobre Fernandez Lista 1 - Soluções Universidade Federal de Pelotas Disciplina de Microeconomia Professor Rodrigo Nobre Fernandez Lista - Soluções ) Suponha que existam apenas dois bens e o governo resolve controlar os preços desses bens

Leia mais

Matemática Aplicada à Tecnologia

Matemática Aplicada à Tecnologia Provas e listas: Matemática Aplicada à Tecnologia Período 2015.2 Sérgio de Albuquerque Souza 4 de maio de 2016 UNIVERSIDADE FEDERAL DA PARAÍBA CCEN - Departamento de Matemática http://www.mat.ufpb.br/sergio

Leia mais

Exercício 1 Dê o valor, caso exista, que a função deveria assumir no ponto dado para. em p = 9

Exercício 1 Dê o valor, caso exista, que a função deveria assumir no ponto dado para. em p = 9 Exercícios - Limite e Continuidade-1 Exercício 1 Dê o valor, caso exista, que a função deveria assumir no ponto dado para ser contínua: (a) f(x) = x2 16 x 4 (b) f(x) = x3 x x em p = 4 em p = 0 (c) f(x)

Leia mais