Máximos e mínimos (continuação)

Tamanho: px
Começar a partir da página:

Download "Máximos e mínimos (continuação)"

Transcrição

1 UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 3 Assunto: Máximos e mínimos Palavras-chaves: máximos e mínimos, valores máximos e valores mínimos Máximos e mínimos (continuação) Sejam f uma função de classe C em um aberto A e (x 0, y 0 ) um ponto crítico de f. Nosso objetivo agora é estabelecer condições sucientes sobre as derivadas parciais de ordem de f para que (x 0, y 0 ) seja ou um ponto de mínimo local de f, ou um ponto de máximo local de f ou um ponto de sela de f. Já sabemos que (x 0, y 0 ) é um ponto crítico de f, assim o plano tangente ao gráco de f em (x 0, y 0, f(x 0, y 0 )) é paralelo ao plano xy. Para todo vetor v = (h, k) (0, 0) consideremos a função g v (t) = (x 0 + ht, y 0 kt) Observemos que g v (0) = (x 0, y 0 ) e observemostambém que o gráco de g v intersecção do gráco de f com o plano perpendicular ao plano xy e que contem a reta pode ser visto como sendo a = (x 0, y 0 ) + t(h, k) Como (x 0, y 0 ) A e A é aberto, a função g v está denida em um intervalo aberto I com 0 I. Além disso, g v possui derivadas de até ordem contínuas em I, pois, pela regra da cadeia, temos: g v (t) = f x (x 0 + ht, y 0 + kt)h + f y (x 0 + ht, y 0 + kt)k e

2 [ g ] [ f v (t) = x (x 0 + ht, y 0 + kt)h + f ] (x f 0 + ht, y 0 + kt)k h+ x y (x 0 + ht, y 0 + kt)h + f y (x 0 + ht, y 0 + kt)k k Agora, usando o teorema de Schwarz, obtemos: (t) = f x (x 0 + ht, y 0 + kt)h + f (x 0 + ht, y 0 + kt)hk + f y (x 0 + ht, y 0 + kt)k Como as funções f x, f e f y são contínuas e a curva α(t) = (x 0 + ht, y 0 + kt) é contínua, temos que g v (t) é contínua em I. Uma condição suciente para que (x 0, y 0 ) seja um ponto de mínimo local de f é que t = 0 seja um ponto de mínimo local de, para todo vetor v 0. E uma condição suciente para que isso aconteça é que g v (0) = 0 e (0) > 0 ( v 0 ) Como (x 0, y 0 ) é ponto crítico de f e temos que g v (0) = 0.Portanto, apenas a condição g v (0) = f x (x 0, y 0 )h + f y (x 0, y 0 )k (0) > 0 ( v 0 ) é suciente para que o ponto crítico (x 0, y 0 ) seja um ponto de mínimo local de f. Gracamente isso também pode ser interpretado como segue. Como g v é contínua, pelo teorema da conservação do sinal, existe um intervalo aberto J para o qual g v (t) > 0, para todo t J, logo a concavidade de é para cima, para todo vetor não nulo v e, assim, o gráco de f está acima do plano tangente a esse gráco no ponto (x 0, y 0, f(x 0, y 0 )). Portanto, (x 0, y 0 ) é ponto de mínimo de f. De modo análogo, uma condição suciente para (x 0, y 0 ) ser um ponto de máximo local de f é que (0) < 0 ( v 0 ) Uma condição suciente para (x 0, y 0 ) ser um ponto de sela de f é que existam vetores não nulos v 1 e v tais que g v 1 < 0 e g v > 0,

3 pois assim g v 1 terá concavidade para baixo e g v terá concavidade para cima, de modo que o gráco de f, em toda vizinhança do ponto (x 0, y 0, f(x 0, y 0 )) terá pontos acima e pontos abaixo do plano tangente a esse gráco e, portanto, (x 0, y 0 ) não será nem ponto de máximo local e nem de mínimo local de f. Temos que Para facilitar a escrita, escrevamos (0) = f x (x 0, y 0 )h + f (x 0, y 0 )hk + f y (x 0, y 0 )k a = f x (x 0, y 0 ), b = f (x 0, y 0 ) e c = f y (x 0, y 0 ) Assim, (0) = ah + bhk + ck Supondo que a 0, temos: g v (0) = a [h + h ba k + ca ] k [ ( ) ( ) ( ) b b b = a h + h a k + a k a k + c [ ( = a h + b ) ] a k + c a k b a k [ ( = a h + b ) ( ) ] c a k + a b a k [ ( = a h + b ) ] a k ac b + a k a k ] Observemos que o número ac b pode ser escrito na forma de um determinante de uma matriz ac b = a b b c Vamos usar a notação H = a b b c. Portanto, (0) = a [ ( h + b ) ] a k + H ( a k g v (0) = a h + b ) a k + H a k 3

4 Portanto, se H > 0 e a > 0, então (0) > 0. E se H > 0 e a < 0, então (0) < 0. Temos então que H > 0 e a > 0 (x 0, y 0 ) é ponto de mínimo local de f H > 0 e a < 0 (x 0, y 0 ) é ponto de máximo local de f. Suponhamos agora que H < 0. Consideremos os vetores v 1 = (1, 0) e v = ( b, a). Temos 1 (0) = a e (0) = Ha Logo 1 (0) e (0) tem sinais contrários e, portanto, (x 0, y 0 ) é ponto de sela de f. Assim, H < 0 (x 0, y 0 ) é ponto de sela de f Lembremos que a = f x (x 0, y 0 ) e H = f x f f f y A função H denida em A por H = f x f f f y é chamada de hessiano de f. Temos então o seguinte teorema que fornece condições sucientes para que (x 0, y 0 ) seja extremante local ou ponto de sela de f. Teorema 1 Sejam f uma função de classe C em um aberto A e (x 0, y 0 ) A um ponto crítico de f. (a) Se H(x 0, y 0 ) > 0 e f (b) Se H(x 0, y 0 ) > 0 e f x (x 0, y 0 ) > 0, então (x 0, y 0 ) é um ponto de mínimo local de f x (x 0, y 0 ) < 0, então (x 0, y 0 ) é um ponto de máximo local de f (c) Se H(x 0, y 0 ) < 0 então (x 0, y 0 ) é um ponto de sela de f. Exemplo 1 Encontre os pontos críticos da função f = ( x 3 + 3x)(y 1) e classique-os como máximo local, mínimo local ou ponto de sela.

5 Resolução: Temos que: f x = ( 3x + 3)(y 1) = 3(x 1)(y 1) f y = ( x3 + 3x)y = xy(x 3) De { { 3(x 1)(y 1) = 0 xy(x 3) = 0 (x 1)(y 1) = 0 xy(x 3) = 0, teremos que (x 1)(y 1) = 0 x = 1, y, y = 1, y Assim, quando: x = 1 y( ) = 0 y = 0 y = 0 (1) x y( ) = 0 y = 0 y = 0 () y = 1 x(x 3) = 0 x = 0, x = 3, x = 3 (3) y x(x 3) = 0 x = 0, x = 3, x = 3 () De (1) concluímos que ( 1, 0) é ponto crítico de f. De (), (1, 0) é ponto crítico de f. De (3), (0, 1), ( 3, 1) e ( 3, 1) são pontos críticos de f e de (), (0, 1), ( 3, 1) e ( 3, 1) são pontos críticos de f. Portanto, os pontos críticos de f são: ( 1, 0), (1, 0), (0, 1), ( 3, 1), ( 3, 1), (0, 1), ( 3, 1) e ( 3, 1) O hessiano será da forma: f x = 3.x(y 1) = x(y 1) f = 3(x 1)y = y(x 1) f y = x(x 3) 5

6 H = f x f f f y = x(y 1) y(x 1) y(x 1) x(x 3) x (x 3)(y 1) 3y (x 1) Para o ponto ( 1, 0) teremos: Portanto, ( 1, 0) é ponto de máximo local de f. H( 1, 0).1.( )( 1) = > 0 f ( 1, 0) =.( 1)( 1) = < 0 x Para o ponto (1, 0) teremos: Portanto, (1, 0) é ponto de mínimo local de f. H(1, 0).1.( )( 1) = > 0 f (1, 0) =.1.( 1) = > 0 x Para o ponto (0, 1) teremos: Portanto, (0, 1) é ponto de sela de f. H(0, 1) = = 3 < 0 De modo análogo, temos que ( 3, 1), ( 3, 1), (0, 1), ( 3, 1) e ( 3, 1) são pontos de sela de f. Observando o gráco da função f = ( x 3 + 3x)(y 1) constatamos que realmente f possui um ponto de máximo local, um ponto de mínimo local e seis pontos de sela. Exemplo Determine os extremantes locais e os pontos de sela da função Resolução: f = x 3 + xy + y 5x Temos que:

7 f x = 3x + y 5 f = x + y y Para encontrar os pontos críticos de f devemos resolver o sistema { 3x + y 5 = 0 x + y = 0 Segue da segunda equação que y = x Substituindo essa igualdade na primeira equação, obtemos: 3x x 5 = 0 Portanto, Quando x = ±.3.( 5).3 = ± = ± 8 = ± + 0 = = 5 3 = = 1 Logo, x = 5 3 y = 5 3 x = 1 y ( ) 5 3, 5 e ( 1, 1) são pontos críticos de f. 3 Determinemos o hessiano de f 7

8 H = f = x x f = f = y f x f f f y = x x Analisaremos o ponto Concluímos que ( ) 5 3, 5 3 f x Quanto ao ponto ( 1, 1), temos ( 5 H ) 3, 5 3 ( ) 5 3, = 0 > 0 3 = > 0 ( ) 5 3, 5 é um ponto de mínim o local de f. 3 Portanto, ( 1, 1) é um ponto de sela de f. H( 1, 1).( 1) = 1 = 1 < 0 Observando o gráco da função f = x 3 + xy + y 5x nas duas posições mostradas abaixo, ca claro que f tem um ponto de mínimo local e um ponto de sela. Método dos Multiplicadores de Lagrange Estamos interessados agora em determinar os extremantes locais de uma função diferenciável f em um conjunto A da forma A = { D f ; g = 0}, em que g é uma função de classe C 1 com g 0 em A. Pelo teorema da funções implícitas os pontos de A constituem uma curva. Em termos geométricos temos a situação a seguir na qual estão desenhadas a curva g = 0 e curvas de nível de f correspondentes aos níveis c 1, c, c 3, c com c 1 < c < c 3 < c. Se (x 0, y 0 ) é extremante local de f em A, então a reta tangente à curva de nível de f nesse ponto coincide com a reta tangente à curva g = 0 nesse ponto. Logo os vetores gradientes f(x 0, y 0 ) e g(x 0, y 0 ) são paralelos. Assim, (x 0, y 0 ) satisfazem o sistema 8

9 { De fato, a esse respeito, temos o seguinte teorema g = λ f g = 0 Teorema Seja f diferenciável em um aberto B e seja A = { B; g = 0} em que g é de classe C 1 e g (0, 0) em A. Se (x 0, y 0 ) é um extremante local de f em A, então existe λ R tal que g(x 0, y 0 ) = λ f(x 0, y 0 ) Exemplo 3 Determine os extremante locais de f = x + y sujeita a restrição x + y. Resolução: Neste caso, queremos determinar os pontos de máximo e os de mínimos locais de f no conjunto A = { R ; x + }. y Escrevamos g = x + y. Temos que g = (x, y ) Portanto g (0, 0), para todo em A. Devemos resolver o sistema Portanto g = λ f x + y (x, y ) = λ x + y x = λx y = λy x + y λx x = 0 λy y = 0 x + y x(λ 1) = 0 y(λ 1) = 0 x + y Segue da primeira equação que x = 0 ou λ. Fazendo x = 0 na terceira equação obtemos y ±. Assim, (0, ) e (0, ) são candidatos a extremantes. Fazendo λ na segunda equação, obtemos y = 0 e, segue daí que x ± 1. Portanto, (1, 0) e ( 1, 0) são também candidatos a extremantes de f. Como f(0, ) = f(0, ) = e f(1, 0) = f( 1, 0), temos que (0, ) e (0, ) são pontos de máximo local de f e (1, 0) e ( 1, 0) são pontos de mínimo local de f. As guras a seguir descrevem a situação estudada neste exemplo em termos do gráco da f e de suas curvas de nível. 9

Máximos e mínimos UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 22. Assunto: Máximos e mínimos

Máximos e mínimos UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 22. Assunto: Máximos e mínimos Assunto: Máximos e mínimos UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA Palavras-chaves: máximos e mínimos, valores máximos e valores mínimos Máximos e mínimos Sejam f uma função a valores

Leia mais

MAT-2454 Cálculo Diferencial e Integral II EP-USP

MAT-2454 Cálculo Diferencial e Integral II EP-USP MAT-454 Cálculo Diferencial e Integral II EP-USP Solução da Questão da Terceira Prova 8//06 Questão (Tipo A Valor: 3, 0 pontos). a. Determine todos os pontos da superfície de nível da função g(x, y, z)

Leia mais

Multiplicadores de Lagrange

Multiplicadores de Lagrange Multiplicadores de Lagrange Para motivar o método, suponha que queremos maximizar uma função f (x, y) sujeito a uma restrição g(x, y) = 0. Geometricamente: queremos um ponto sobre o gráfico da curva de

Leia mais

MAT Cálculo 2 para Economia 3 a Prova - 28 de novembro de 2016

MAT Cálculo 2 para Economia 3 a Prova - 28 de novembro de 2016 MAT 0147 - Cálculo para Economia 3 a Prova - 8 de novembro de 016 Questão 1) Determine o máximo e o mínimo de f(x, y) = x 4 + y em D = {(x, y); x + y 1}. Soluç~ao: As derivadas parciais f x (x, y) = 4x

Leia mais

15 AULA. Máximos e Mínimos LIVRO. META Encontrar os pontos de máximo e mínimo de uma função de duas variáveis a valores reais.

15 AULA. Máximos e Mínimos LIVRO. META Encontrar os pontos de máximo e mínimo de uma função de duas variáveis a valores reais. 1 LIVRO Máximos e Mínimos 1 AULA META Encontrar os pontos de máximo e mínimo de uma função de duas variáveis a valores reais. OBJETIVOS Maximizar e/ou minimizar função de duas variáveis a valores reais.

Leia mais

Derivadas Parciais Capítulo 14

Derivadas Parciais Capítulo 14 Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS No Exemplo 6 da Seção 14.7 maximizamos a função volume V = xyz sujeita à restrição 2xz + 2yz + xy = que expressa a condição de a área da superfície ser

Leia mais

Plano tangente e reta normal

Plano tangente e reta normal UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 15 Assunto: Plano tangente, reta normal, vetor gradiente e regra da cadeia Palavras-chaves: plano tangente, reta normal, gradiente, função

Leia mais

CÁLCULO II - MAT 2127 Bacharelado em Química - 2 o Semestre de 2009 Professor Oswaldo Rio Branco

CÁLCULO II - MAT 2127 Bacharelado em Química - 2 o Semestre de 2009 Professor Oswaldo Rio Branco CÁLCULO II - MAT 7 Bacharelado em Química - o Semestre de 009 Professor Oswaldo Rio Branco MÁXIMOS E MÍNIMOS CONDICIONADOS E MULTIPLICADORES DE LAGRANGE Definições: Seja f : Dom(f) R, Dom(f) R n, n =,

Leia mais

Aula 17. Máximo e Mínimo Absolutos

Aula 17. Máximo e Mínimo Absolutos Aula 17 Máximo e Mínimo Absolutos O maior e o menor valor de f(x, y), num certo domínio, nem sempre existem, como ilustrado na Figura 1 (domínio = R ). Neste caso, não existe máximo absoluto. Uma das causas,

Leia mais

f(x) f(a), x D. O ponto a é então chamado ponto de máximo absoluto ou maximizante absoluto.

f(x) f(a), x D. O ponto a é então chamado ponto de máximo absoluto ou maximizante absoluto. Capítulo 4 Problemas de Extremo 41 Extremos Seja f : D R m R uma função real de n variáveis reais, de domínio D e a D Definição 1 Diz-se que: A função f tem um máximo absoluto em a se f(x) f(a), x D O

Leia mais

DERIVADAS PARCIAIS. y = lim

DERIVADAS PARCIAIS. y = lim DERIVADAS PARCIAIS Definição: Seja f uma função de duas variáveis, x e y (f: D R onde D R 2 ) e (x 0, y 0 ) é um ponto no domínio de f ((x 0, y 0 ) D). A derivada parcial de f em relação a x no ponto (x

Leia mais

Cálculo II Lista 5. com respostas

Cálculo II Lista 5. com respostas Cálculo II Lista 5. com respostas Exercício 1. Determine os pontos críticos das funções dadas e classifique-os, decidindo se são pontos de máximo local, de mínimo local ou de sela: (a) f(x, y) = x 2 +

Leia mais

UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 16. F (t 0 ) = f (g(t 0 )).g (t 0 ) F (t) = f (g(t)).g (t)

UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 16. F (t 0 ) = f (g(t 0 )).g (t 0 ) F (t) = f (g(t)).g (t) Assunto: Regra da cadeia UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 16 Palavras-chaves: derivada,derivadas parciais, função composta, regra da cadeia Regra da Cadeia Os teoremas que

Leia mais

xy 2 (b) A função é contínua na origem? Justique sua resposta! (a) Calculando o limite pela reta y = mx:

xy 2 (b) A função é contínua na origem? Justique sua resposta! (a) Calculando o limite pela reta y = mx: NOME: UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Instituto de Matemática PRIMEIRA PROVA UNIFICADA CÁLCULO II Politécnica, Engenharia Química e Ciência da Computação 21/05/2013. 1 a QUESTÃO : Dada a função

Leia mais

Aula 18. Método Multiplicadores Lagrange (continuação)

Aula 18. Método Multiplicadores Lagrange (continuação) Aula 18 Método Multiplicadores Lagrange (continuação) Na aula anterior introduzimos o Método dos Multiplicadores de Lagrange, que serve para maximizar/minimizar uma função restrita a um domínio do tipo

Leia mais

Justifique todas as passagens. Boa Sorte! e L 2 : = z 1 3

Justifique todas as passagens. Boa Sorte! e L 2 : = z 1 3 3 ā Prova de Cálculo II para Oceanográfico - MAT145 01/12/2010 Nome : GABARITO N ō USP : Professor : Oswaldo Rio Branco de Oliveira Justifique todas as passagens Boa Sorte! Q 1 2 3 4 5 Extra 6 Extra 7

Leia mais

Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente.

Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente. Aula 15 Derivadas Direcionais e Vetor Gradiente Seja f(x, y) uma função de variáveis. Iremos usar a notação D u f(x 0, y 0 ) para: Derivada direcional de f no ponto (x 0, y 0 ), na direção do vetor unitário

Leia mais

Derivadas direcionais Definição (Derivadas segundo um vector): f : Dom(f) R n R e P 0 int(dom(f)) então

Derivadas direcionais Definição (Derivadas segundo um vector): f : Dom(f) R n R e P 0 int(dom(f)) então Derivadas direcionais Definição (Derivadas segundo um vector): f : Dom(f) R n R e P 0 int(dom(f)) então Seja D v f(p 0 ) = lim λ 0 f(p 0 + λ v) f(p 0 ) λ v representa a derivada direcional de f segundo

Leia mais

Aula 18 Multiplicadores de Lagrange. (2 a parte) Objetivo. Usar os multiplicadores de Lagrange para calcular máximos e mínimos.

Aula 18 Multiplicadores de Lagrange. (2 a parte) Objetivo. Usar os multiplicadores de Lagrange para calcular máximos e mínimos. Aula 18 Multiplicadores de Lagrange (2 a parte) Objetivo Usar os multiplicadores de Lagrange para calcular máximos e mínimos. Começamos com um exemplo no qual queremos determinar o máximo eomínimo de uma

Leia mais

Os únicos candidatos a extremantes locais são os pontos críticos de f pois o D f 2 é aberto. f

Os únicos candidatos a extremantes locais são os pontos críticos de f pois o D f 2 é aberto. f CAPÍTULO 16 Exercícios 16 1 Seja (x y) x y xy x y Os únicos candidatos a extremantes locais são os pontos críticos de pois o D é aberto De ( x x y ) x y ( y x y ) y x 1 resulta que os candidatos a extremantes

Leia mais

Cálculo II. Resumo e Exercícios P3

Cálculo II. Resumo e Exercícios P3 Cálculo II Resumo e Exercícios P3 Resuminho Teórico e Fórmulas Parte 1 Funções de Três Variáveis w = f(x, y, z) Definida em R +, apenas um valor de w para cada (x, y, z). Domínio de Função de Três Variáveis:

Leia mais

P4 de Cálculo a Várias Variáveis I MAT Data: 02 de julho

P4 de Cálculo a Várias Variáveis I MAT Data: 02 de julho P de Cálculo a Várias Variáveis I MAT 6 03. Data: 0 de julho Nome: Assinatura: Matrícula: Turma: Questão Valor Nota Revisão 5.0 5.0 Total 0.0 Instruções Mantenha seu celular desligado durante toda a prova.

Leia mais

Total Escolha 5 (cinco) questões. Justifique todas as passagens. Não é permitido o uso de calculadoras. Boa Sorte!

Total Escolha 5 (cinco) questões. Justifique todas as passagens. Não é permitido o uso de calculadoras. Boa Sorte! ā Prova de MAT 147 - Cálculo II - FEA-USP 8/11/01 Nome : GABARITO N ō USP : Professor : Oswaldo Rio Branco de Oliveira Q 1 4 5 6 7 Total N Escolha 5 (cinco) questões. Justifique todas as passagens. Não

Leia mais

21 e 22. Superfícies Quádricas. Sumário

21 e 22. Superfícies Quádricas. Sumário 21 e 22 Superfícies uádricas Sumário 21.1 Introdução....................... 2 21.2 Elipsoide........................ 3 21.3 Hiperboloide de uma Folha.............. 4 21.4 Hiperboloide de duas folhas..............

Leia mais

Derivadas Parciais Capítulo 14

Derivadas Parciais Capítulo 14 Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS Como vimos no Capítulo 4, no Volume I, um dos principais usos da derivada ordinária é na determinação dos valores máximo e mínimo. DERIVADAS PARCIAIS 14.7

Leia mais

Noções de matemática. Maurício Yoshida Izumi

Noções de matemática. Maurício Yoshida Izumi Noções de matemática Maurício Yosida Izumi 29 de agosto de 2015 Sumário 1 Notação e funções 2 1.1 Números reais........................................ 2 1.2 Intervalos...........................................

Leia mais

Respostas sem justificativas não serão aceitas Não é permitido o uso de aparelhos eletrônicos

Respostas sem justificativas não serão aceitas Não é permitido o uso de aparelhos eletrônicos UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL - 018. - TURMA MA 1A VERIFICAÇÃO DE APRENDIZAGEM - PARTE Nome Legível RG CPF Respostas

Leia mais

MARTA CRISTINA DE MORAES PARIZI

MARTA CRISTINA DE MORAES PARIZI SERVIÇO PÚBLICO FEDERAL UNIVERSIDADE FEDERAL DO SUL E SUDESTE DO PARÁ INSTITUTO DE CIÊNCIAS EXATAS - ICE FACULDADE DE MATEMÁTICA - FAMAT MARTA CRISTINA DE MORAES PARIZI APLICAÇÕES DO MÉTODO DOS MULTIPLICADORES

Leia mais

MAT 3210 Cálculo Diferencial e Integral II. Prova 2 C

MAT 3210 Cálculo Diferencial e Integral II. Prova 2 C MAT 310 Cálculo Diferencial e Integral II Prof. Paolo Piccione 3 de Novembro de 011 Prova C Nome: Número USP: Assinatura: Instruções A duração da prova é de uma hora e quarenta minutos. Assinale as alternativas

Leia mais

MAT 3210 Cálculo Diferencial e Integral II. Prova 2 A

MAT 3210 Cálculo Diferencial e Integral II. Prova 2 A MAT 310 Cálculo Diferencial e Integral II Prof. Paolo Piccione 3 de Novembro de 011 Prova A Nome: Número USP: Assinatura: Instruções A duração da prova é de uma hora e quarenta minutos. Assinale as alternativas

Leia mais

MAT 3210 Cálculo Diferencial e Integral II. Prova 2 B

MAT 3210 Cálculo Diferencial e Integral II. Prova 2 B MAT 3210 Cálculo Diferencial e Integral II Prof. Paolo Piccione 23 de Novembro de 2011 Prova 2 B Nome: Número USP: Assinatura: Instruções A duração da prova é de uma hora e quarenta minutos. Assinale as

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia II 2 o semestre de Prova Substitutiva - 03/12/2012. Gabarito - TURMA A

MAT Cálculo Diferencial e Integral para Engenharia II 2 o semestre de Prova Substitutiva - 03/12/2012. Gabarito - TURMA A MAT 25 - Cálculo Diferencial e Integral para Engenharia II 2 o semestre de 2012 - Prova Substitutiva - 0/12/2012 Gabarito - TURMA A Questão 1.( pontos) Seja a função f(x,y) = ( ) x5 sen x +y x 2 +y 2,

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia II 2 o semestre de Prova Substitutiva - 03/12/2012. Gabarito - TURMA A

MAT Cálculo Diferencial e Integral para Engenharia II 2 o semestre de Prova Substitutiva - 03/12/2012. Gabarito - TURMA A MAT 25 - Cálculo Diferencial e Integral para Engenaria II 2 o semestre de 2012 - Prova Substitutiva - 0/12/2012 Gabarito - TURMA A Questão 1. pontos) Seja a função fx,y) = ) x5 sen x +y x 2 +y 2, se x,y)

Leia mais

CÁLCULO I. 1 Concavidade. Objetivos da Aula. Aula n o 19: Concavidade. Teste da Segunda Derivada. Denir concavidade de uma função;

CÁLCULO I. 1 Concavidade. Objetivos da Aula. Aula n o 19: Concavidade. Teste da Segunda Derivada. Denir concavidade de uma função; CÁLCULO I Prof. Marcos Diniz Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 19: Concavidade. Teste da Segunda Derivada. Objetivos da Aula Denir concavidade de uma função; Denir ponto de inexão;

Leia mais

CDI-II. Resumo das Aulas Teóricas (Semana 4) ; k = 1, 2,..., n.

CDI-II. Resumo das Aulas Teóricas (Semana 4) ; k = 1, 2,..., n. Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Prof. Gabriel Pires CDI-II esumo das Aulas Teóricas (Semana 4 1 Derivadas de Ordem Superior Seja f : D n, definida num

Leia mais

Universidade Estadual de Montes Claros Departamento de Ciências Exatas Curso de Licenciatura em Matemática. Notas de Aulas de

Universidade Estadual de Montes Claros Departamento de Ciências Exatas Curso de Licenciatura em Matemática. Notas de Aulas de Universidade Estadual de Montes Claros Departamento de Ciências Exatas Curso de Licenciatura em Matemática Notas de Aulas de Cálculo Rosivaldo Antonio Gonçalves Notas de aulas que foram elaboradas para

Leia mais

Cálculo Infinitesimal II / Cálculo II - Apontamentos de Apoio Capítulo 3 - Funções de n Variáveis

Cálculo Infinitesimal II / Cálculo II - Apontamentos de Apoio Capítulo 3 - Funções de n Variáveis Cálculo Infinitesimal II / Cálculo II - Apontamentos de Apoio Capítulo 3 - Funções de n Variáveis Neste capítulo vamos estender as noções do cálculo diferencial a funções que dependem de mais de uma variável

Leia mais

Gabarito da Primeira Prova MAT Tipo A

Gabarito da Primeira Prova MAT Tipo A Gabarito da Primeira Prova MAT-2454 - Tipo A 10 de Outubro de 2011 -A- Questão 1. Apenas uma das funções f ou g abaixo admite plano tangente a seu gráfico no ponto P = 0,0,0): x 2 y fx,y) = x 2 +y2, se

Leia mais

= P = 9 6 = 3 2 = 1 1 2,

= P = 9 6 = 3 2 = 1 1 2, Exame 1 Resolução A distribuição da cotação total (0 valores pelos oito grupos de questões é a seguinte: Grupo 1 4 5 6 7 8 Cotação Exame 15 5 5 5 Cotação P-fólio 5 5 Q d = Q s 1 Dado o modelo de mercado

Leia mais

Aula Exemplos e aplicações - continuação. Exemplo 8. Nesta aula continuamos com mais exemplos e aplicações dos conceitos vistos.

Aula Exemplos e aplicações - continuação. Exemplo 8. Nesta aula continuamos com mais exemplos e aplicações dos conceitos vistos. Aula 1 Nesta aula continuamos com mais exemplos e aplicações dos conceitos vistos. 1. Exemplos e aplicações - continuação Exemplo 8 Considere o plano π : x + y + z = 3 e a reta r paralela ao vetor v =

Leia mais

CÁLCULO I. 1 Concavidade. Objetivos da Aula. Aula n o 18: Concavidade. Teste da Segunda Derivada. Denir concavidade do gráco de uma função;

CÁLCULO I. 1 Concavidade. Objetivos da Aula. Aula n o 18: Concavidade. Teste da Segunda Derivada. Denir concavidade do gráco de uma função; CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 18: Concavidade. Teste da Segunda Derivada. Objetivos da Aula Denir concavidade do gráco de uma função; Denir ponto de

Leia mais

12 AULA. ciáveis LIVRO. META Estudar derivadas de funções de duas variáveis a valores reais.

12 AULA. ciáveis LIVRO. META Estudar derivadas de funções de duas variáveis a valores reais. 1 LIVRO Diferen- Funções ciáveis META Estudar derivadas de funções de duas variáveis a valores reais. OBJETIVOS Estender os conceitos de diferenciabilidade de funções de uma variável a valores reais. PRÉ-REQUISITOS

Leia mais

Cálculo Diferencial e Integral II

Cálculo Diferencial e Integral II Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral II Ficha de trabalho 1 (versão de 6/0/009 (Esboço de Conjuntos. Topologia. Limites. Continuidade

Leia mais

4 o Roteiro de Atividades: reforço da segunda parte do curso de Cálculo II Instituto de Astronomia e Geofísica

4 o Roteiro de Atividades: reforço da segunda parte do curso de Cálculo II Instituto de Astronomia e Geofísica 4 o Roteiro de Atividades: reforço da segunda parte do curso de Cálculo II Instituto de Astronomia e Geofísica Objetivo do Roteiro Pesquisa e Atividades: Teoremas de diferenciabilidade de funções, Vetor

Leia mais

Prova de Conhecimentos Específicos 1 a QUESTÃO: (2,0 pontos)

Prova de Conhecimentos Específicos 1 a QUESTÃO: (2,0 pontos) Prova de Conhecimentos Específicos 1 a QUESTÃO: (,0 pontos) 5x Considere a função f(x)=. Determine, se existirem: x +7 (i) os pontos de descontinuidade de f; (ii) as assíntotas horizontais e verticais

Leia mais

CÁLCULO I Aula 15: Concavidade. Teste da Segunda Derivada.

CÁLCULO I Aula 15: Concavidade. Teste da Segunda Derivada. CÁLCULO I Aula 15: Concavidade.. Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará 1 Concavidade 2 Considere um intervalo I e uma função f : I R derivável cujo gráco é dado abaixo.

Leia mais

Aula 16. Máximos e Mínimos Locais

Aula 16. Máximos e Mínimos Locais Aula 16 Máximos e Mínimos Locais Seja f, y) uma função de 2 variáveis diferenciável em R 2 (ou num domínio aberto). Para estudar a função f, y), começamos por identificar os pontos de Máximo local e Mínimo

Leia mais

Matemática 2. Teste Final. Atenção: Esta prova deve ser entregue ao fim de 1 Hora. Deve justificar detalhadamente todas as suas respostas.

Matemática 2. Teste Final. Atenção: Esta prova deve ser entregue ao fim de 1 Hora. Deve justificar detalhadamente todas as suas respostas. Matemática 2 Lic. em Economia, Gestão e Finanças Data: 4 de Julho de 2017 Duração: 1H Teste Final Atenção: Esta prova deve ser entregue ao fim de 1 Hora. Deve justificar detalhadamente todas as suas respostas.

Leia mais

CAPÍTULO 16 REAIS DE VÁRIAS VARIÁVEIS EM COMPACTOS

CAPÍTULO 16 REAIS DE VÁRIAS VARIÁVEIS EM COMPACTOS CAPÍTULO 16 MÁXIMOS E MÍNIMOS DE FUNÇÕES REAIS DE VÁRIAS VARIÁVEIS EM COMPACTOS 161 Introdução Esta aula está baseada no Capítulo 16 do segundo volume do livro de Cálculo do Guidorii Nesta aula, estamos

Leia mais

Aula 22 O teste da derivada segunda para extremos relativos.

Aula 22 O teste da derivada segunda para extremos relativos. O teste da derivada segunda para extremos relativos. MÓDULO 2 - AULA 22 Aula 22 O teste da derivada segunda para extremos relativos. Objetivo: Utilizar a derivada segunda para determinar pontos de máximo

Leia mais

Instituto de Matemática - IM/UFRJ Cálculo I - MAC118 1 a Prova - Gabarito - 13/10/2016

Instituto de Matemática - IM/UFRJ Cálculo I - MAC118 1 a Prova - Gabarito - 13/10/2016 Instituto de Matemática - IM/UFRJ Cálculo I - MAC118 1 a Prova - Gabarito - 13/10/2016 Questão 1: (2 pontos) x (a) (0.4 ponto) Calcule o ite: 2 + 3 2. x 1 x 1 ( πx + 5 ) (b) (0.4 ponto) Calcule o ite:

Leia mais

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Instituto de Matemática PRIMEIRA PROVA UNIFICADA CÁLCULO I POLITÉCNICA E ENGENHARIA QUÍMICA 13/12/2012.

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Instituto de Matemática PRIMEIRA PROVA UNIFICADA CÁLCULO I POLITÉCNICA E ENGENHARIA QUÍMICA 13/12/2012. UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Instituto de Matemática PRIMEIRA PROVA UNIFICADA CÁLCULO I POLITÉCNICA E ENGENHARIA QUÍMICA 13/12/2012. GABARITO 1 a Questão. (3.0 pontos). (a) Calcule: lim x 0 +

Leia mais

Cálculo Diferencial e Integral II Resolução do Exame/Teste de Recuperação 02 de Julho de 2018, 15:00h - versão 2 Duração: Exame (3h), Teste (1h30)

Cálculo Diferencial e Integral II Resolução do Exame/Teste de Recuperação 02 de Julho de 2018, 15:00h - versão 2 Duração: Exame (3h), Teste (1h30) Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral II do Exame/Teste de Recuperação 2 de Julho de 218, 15:h - versão 2 Duração: Exame (3h),

Leia mais

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1 UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1 PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR - 16/10/2016 CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES: 1.

Leia mais

Revisão : máximo, minimo em dimensão 1

Revisão : máximo, minimo em dimensão 1 Revisão : máximo, minimo em dimensão 1 ( de Rolle) Seja f uma função que satisfaça as seguintes hipóteses: 1 f é contínua no intervalo fechado [a, b], 2 f é diferenciável no intervalo aberto (a, b), 3

Leia mais

CAPÍTULO 8 REGRA DA CADEIA (UM CASO PARTICULAR)

CAPÍTULO 8 REGRA DA CADEIA (UM CASO PARTICULAR) CAPÍTULO 8 REGRA DA CADEIA UM CASO PARTICULAR 81 Introdução Em Cálculo 1A, aprendemos que, para derivar a função hx x 2 3x + 2 37, o mais sensato é fazer uso da regra da cadeia A regra da cadeia que é

Leia mais

Aula Distância entre duas retas paralelas no espaço. Definição 1. Exemplo 1

Aula Distância entre duas retas paralelas no espaço. Definição 1. Exemplo 1 Aula 1 Sejam r 1 = P 1 + t v 1 t R} e r 2 = P 2 + t v 2 t R} duas retas no espaço. Se r 1 r 2, sabemos que r 1 e r 2 são concorrentes (isto é r 1 r 2 ) ou não se intersectam. Quando a segunda possibilidade

Leia mais

CAPÍTULO 9 VETOR GRADIENTE:

CAPÍTULO 9 VETOR GRADIENTE: CAPÍTULO 9 VETOR GRADIENTE: INTERPRETAÇÃO GEOMÉTRICA 9.1 Introdução Dada a função real de n variáveis reais, f : Domf) R n R X = 1,,..., n ) f 1,,..., n ), se f possui todas as derivadas parciais de primeira

Leia mais

1o sem profa. daniela m. vieira. (a) f(x, y) = 3x y no conjunto A de todos (x, y) tais que x 0, y 0, y x 3, x + y 4 e

1o sem profa. daniela m. vieira. (a) f(x, y) = 3x y no conjunto A de todos (x, y) tais que x 0, y 0, y x 3, x + y 4 e mat51 - cálculo várias variáveis i - licenciatura 1o sem 011 - profa daniela m vieira SÉTIMA LISTA DE EXERCÍCIOS (1) Estude a função dada com relação a máximo e mínimo no conjunto dado (a) f(x, y) = x

Leia mais

Teoremas e Propriedades Operatórias

Teoremas e Propriedades Operatórias Capítulo 10 Teoremas e Propriedades Operatórias Como vimos no capítulo anterior, mesmo que nossa habilidade no cálculo de ites seja bastante boa, utilizar diretamente a definição para calcular derivadas

Leia mais

y (n) (x) = dn y dx n(x) y (0) (x) = y(x).

y (n) (x) = dn y dx n(x) y (0) (x) = y(x). Capítulo 1 Introdução 1.1 Definições Denotaremos por I R um intervalo aberto ou uma reunião de intervalos abertos e y : I R uma função que possua todas as suas derivadas, a menos que seja indicado o contrário.

Leia mais

P2 de Cálculo a Várias Variáveis I MAT Data: 14 de maio de 2013

P2 de Cálculo a Várias Variáveis I MAT Data: 14 de maio de 2013 P2 de Cálculo a Várias Variáveis I MAT 62 20. Data: 4 de maio de 20 Nome: Assinatura: Matrícula: Turma: Questão Valor Nota Revisão.0 2 5.0 Teste 2.0 Total 0.0 Instruções Mantenha seu celular desligado

Leia mais

MAT 2454 Cálculo II Resolução da Lista 3

MAT 2454 Cálculo II Resolução da Lista 3 MAT 2454 Cálculo II Resolução da Lista 3 por César Morad I. Superfícies de Nível, Planos Tangentes e Derivadas Direcionais 1.1. Em cada caso, esboce a superfície de nível c da função F: R 2 R: a. F(x,

Leia mais

Aula 4 Colinearidade, coplanaridade e dependência linear

Aula 4 Colinearidade, coplanaridade e dependência linear Aula 4 Colinearidade, coplanaridade e dependência linear MÓDULO 1 - AULA 4 Objetivos Compreender os conceitos de independência e dependência linear. Estabelecer condições para determinar quando uma coleção

Leia mais

Introdução à Otimização de Processos. Prof. Marcos L Corazza Departamento de Engenharia Química Universidade Federal do Paraná

Introdução à Otimização de Processos. Prof. Marcos L Corazza Departamento de Engenharia Química Universidade Federal do Paraná Introdução à Otimização de Processos Prof. Marcos L Corazza Departamento de Engenharia Química Universidade Federal do Paraná Otimização Não-Linear Algumas definições e conceitos preliminares: 1. Derivadas

Leia mais

derivadas parciais até a ordem k existem e são contínuas em todo A. derivadas parciais de todas as ordens existem e são contínuas em todo A.

derivadas parciais até a ordem k existem e são contínuas em todo A. derivadas parciais de todas as ordens existem e são contínuas em todo A. 1 Funções de várias variáveis - 3 1.1 Classes de derivabilidade e derivadas mistas Definição. Seja f : D R e A D: dizemos que f é de classe C k em A (f C k (A)) se f e todas suas derivadas parciais até

Leia mais

Equação da reta. No R 2 UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 05

Equação da reta. No R 2 UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 05 UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 05 Assunto:Equações da reta no R 2 e no R 3, equações do plano, funções de uma variável real a valores em R n Palavras-chaves: Equação da reta,

Leia mais

Método de Newton. Podemos escrever este problema na forma vetorial denindo o vetor x = [x 1, x 2,..., x n ] T e a função vetorial

Método de Newton. Podemos escrever este problema na forma vetorial denindo o vetor x = [x 1, x 2,..., x n ] T e a função vetorial Método de Newton 1 Introdução O método de Newton aplicado a encontrar a raiz x da função y = fx) estudado na primeira área de nossa disciplina consiste em um processso iterativo Em cada passo deste processo,

Leia mais

14 AULA. Vetor Gradiente e as Derivadas Direcionais LIVRO

14 AULA. Vetor Gradiente e as Derivadas Direcionais LIVRO 1 LIVRO Vetor Gradiente e as Derivadas Direcionais 14 AULA META Definir o vetor gradiente de uma função de duas variáveis reais e interpretá-lo geometricamente. Além disso, estudaremos a derivada direcional

Leia mais

Gabarito P1 - Cálculo para FAU Prof. Jaime Angulo

Gabarito P1 - Cálculo para FAU Prof. Jaime Angulo Gabarito P1 - Cálculo para FAU Prof. Jaime Angulo 1 a Questão [1.5] Note que x quando x ou x e x < quando < x

Leia mais

A Derivada. Derivadas Aula 16. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

A Derivada. Derivadas Aula 16. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil Derivadas Aula 16 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 04 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014104 - Engenharia Mecânica A Derivada Seja x = f(t)

Leia mais

Derivada. Capítulo Retas tangentes e normais Número derivado

Derivada. Capítulo Retas tangentes e normais Número derivado Capítulo 3 Derivada 3.1 Retas tangentes e normais Vamos considerar o problema que consiste em traçar a reta tangente e a reta normal a uma curvay= f(x) num determinado ponto (a,f(a)) da curva. Por isso

Leia mais

Cálculo II. Resumo Teórico Completo

Cálculo II. Resumo Teórico Completo Cálculo II Resumo Teórico Completo Cálculo 2 A disciplina visa estudar funções e gráficos, de forma semelhante a Cálculo 1, mas expande o estudo para funções de mais de uma variável, bem como gráficos

Leia mais

Universidade Federal do Rio de Janeiro

Universidade Federal do Rio de Janeiro Å INSTITUTO DE MATEMÁTICA Universidade Federal do Rio de Janeiro Gabarito da a Prova Unificada de Cálculo I a Questão: Calcule ou justifique caso não exista, cada um dos ite abaixo: ( (a) x + (+x )e x,

Leia mais

Justifique todas as passagens. f v (0,0) = f(0,0) v.

Justifique todas as passagens. f v (0,0) = f(0,0) v. 2 ā Prova de Cálculo II para Oceanográfico - MAT145 27/10/2010 Nome : GABARITO N ō USP : Professor : Oswaldo Rio Branco de Oliveira Justifique todas as passagens Q 1 2 3 4 5 6 7 Total N 1. Dê exemplos

Leia mais

SEGUNDA CHAMADA CALCULO 2 2/2017

SEGUNDA CHAMADA CALCULO 2 2/2017 9/11/017 SEGUNDA CHAMADA CALCULO /017 PROF: RENATO FERREIRA DE VELLOSO VIANNA Questão 1,5 pontos). Resolva os problemas de valor inicial: y + 4y + 4y = e x {, y = xyy + 4), a) = y0) = 0, b) = y0) = 5.

Leia mais

1. as equações paramétricas da reta que contém o ponto A e é perpendicular ao plano de equação x 2y + 3z = 17;

1. as equações paramétricas da reta que contém o ponto A e é perpendicular ao plano de equação x 2y + 3z = 17; PROVA 1 09 de setembro de 2015 08h30 1 2 3 4 5 081 x = 1 + 3t 0811 Considere a reta L de equações paramétricas y = t z = 5 A = (5, 0, 2). Obtenha e o ponto 1. as equações paramétricas da reta que contém

Leia mais

Produto interno e produto vetorial no espaço

Produto interno e produto vetorial no espaço 14 Produto interno e produto vetorial no espaço Sumário 14.1 Produto interno.................... 14. Produto vetorial.................... 5 14..1 Interpretação geométrica da norma do produto vetorial.......................

Leia mais

MAT2453 Cálculo Diferencial e Integral I EPUSP

MAT2453 Cálculo Diferencial e Integral I EPUSP Primeira Prova 17/04/2017 Tipo de prova: 1. (1,2 pt) Dada f : R R, suponhamos que lim f(x) =. Então: x + a. f é decrescente. b. lim x + f(x2 ) = +. c. m 0, temos f(x) 0 se x m. d. lim f(x) = +. x e. Nenhuma

Leia mais

*** Escolha e resolva 4 das 6 questões! *** *** Justifique TODAS as suas respostas! *** + µ(x, y)sen(89x + π) 0 φ 6 (x, y) + µ 6 (x, y) 1.

*** Escolha e resolva 4 das 6 questões! *** *** Justifique TODAS as suas respostas! *** + µ(x, y)sen(89x + π) 0 φ 6 (x, y) + µ 6 (x, y) 1. USP/ICMC/SMA - Gabarito da 1 a Prova de Cálculo II - SMA- 11/10/006 Professora: Márcia Federson *** Escolha e resolva das 6 questões! *** *** Justifique TODAS as suas respostas! *** Questão 1 Sejam φ :

Leia mais

ANÁLISE MATEMÁTICA III A TESTE 1 10 DE OUTUBRO DE :10-16H. Duração: 50 minutos

ANÁLISE MATEMÁTICA III A TESTE 1 10 DE OUTUBRO DE :10-16H. Duração: 50 minutos Departamento de Matemática Secção de Álgebra e Análise Última actualização: 10/Out/2005 ANÁLISE MATEMÁTICA III A TESTE 1 10 DE OUTUBRO DE 2005 15:10-16H RESOLUÇÃO (As soluções aqui propostas não são únicas!)

Leia mais

Aula 13. Plano Tangente e Aproximação Linear

Aula 13. Plano Tangente e Aproximação Linear Aula 13 Plano Tangente e Aproximação Linear Se fx) é uma função de uma variável, diferenciável no ponto x 0, então a equação da reta tangente à curva y = fx) no ponto x 0, fx 0 )) é dada por: y fx 0 )

Leia mais

Questão (a) 4.(b) 5.(a) 5.(b) 6.(a) 6.(b) 6.(c) 7 Cotação

Questão (a) 4.(b) 5.(a) 5.(b) 6.(a) 6.(b) 6.(c) 7 Cotação Faculdade de Ciências Exatas e da Engenharia PROVA DE AVALIAÇÃO DE CONHECIMENTOS E COMPETÊNCIAS PARA ADMISSÃO AO ENSINO SUPERIOR PARA MAIORES DE ANOS - 018 Matemática - 1/0/018 Atenção: Justifique os raciocínios

Leia mais

Cálculo Diferencial e Integral II

Cálculo Diferencial e Integral II Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral II Exame/Teste de Recuperação v2-8h - 29 de Junho de 215 Duração: Teste - 1h3m; Exame -

Leia mais

Diferenciabilidade de funções reais de várias variáveis reais

Diferenciabilidade de funções reais de várias variáveis reais Diferenciabilidade de funções reais de várias variáveis reais Cálculo II Departamento de Matemática Universidade de Aveiro 2018-2019 Cálculo II 2018-2019 Diferenciabilidade de f.r.v.v.r. 1 / 1 Derivadas

Leia mais

Funções de Uma Variável - 1 a Avaliação - Turma B3 31 de outubro de Prof. Armando Caputi

Funções de Uma Variável - 1 a Avaliação - Turma B3 31 de outubro de Prof. Armando Caputi Funções de Uma Variável - 1 a Avaliação - Turma B 1 de outubro de 017 - Prof. Armando Caputi 1 Determine o domínio da função f(x) = arctan x x + 1 (justifique) e a equação da reta tangente ao seu gráfico

Leia mais

O Plano no Espaço. Sumário

O Plano no Espaço. Sumário 17 Sumário 17.1 Introdução....................... 2 17.2 Equações paramétricas do plano no espaço..... 2 17.3 Equação cartesiana do plano............. 15 17.4 Exercícios........................ 21 1 Unidade

Leia mais

ANÁLISE MATEMÁTICA III A OUTONO 2005 PARTE I VARIEDADES EM R N. Sobre Topologia em R n

ANÁLISE MATEMÁTICA III A OUTONO 2005 PARTE I VARIEDADES EM R N. Sobre Topologia em R n Departamento de Matemática Secção de Álgebra e Análise Última actualização: 17/Set/005 ANÁLISE MATEMÁTICA III A OUTONO 005 PARTE I VARIEDADES EM R N EXERCÍCIOS COM POSSÍVEIS SOLUÇÕES ABREVIADAS acessível

Leia mais

Derivadas Parciais. Copyright Cengage Learning. Todos os direitos reservados.

Derivadas Parciais. Copyright Cengage Learning. Todos os direitos reservados. 14 Derivadas Parciais Copyright Cengage Learning. Todos os direitos reservados. 14.6 Derivadas Direcionais e o Vetor Gradiente Copyright Cengage Learning. Todos os direitos reservados. Derivadas Direcionais

Leia mais

Instituto Universitário de Lisboa

Instituto Universitário de Lisboa Instituto Universitário de Lisboa Departamento de Matemática Exercícios de Extremos 1 Extremos Livres 1. Dada uma função f : R n R e a R n, (a) Qual a propriedade que f(a) deve vericar para ser um máximo

Leia mais

Álgebra Linear I - Lista 10. Matrizes e Transformações lineares. Respostas

Álgebra Linear I - Lista 10. Matrizes e Transformações lineares. Respostas Álgebra Linear I - Lista 1 Matrizes e Transformações lineares Respostas 1 Sejam A e B matrizes quadradas do mesmo tamanho Dê um exemplo onde (A + B 2 A 2 + 2A B + B 2 Complete: (A + B 2 = A 2 + B 2 +?

Leia mais

Equação Geral do Segundo Grau em R 2

Equação Geral do Segundo Grau em R 2 8 Equação Geral do Segundo Grau em R Sumário 8.1 Introdução....................... 8. Autovalores e autovetores de uma matriz real 8.3 Rotação dos Eixos Coordenados........... 5 8.4 Formas Quadráticas..................

Leia mais

Geometria Analítica II - Aula 4 82

Geometria Analítica II - Aula 4 82 Geometria Analítica II - Aula 4 8 IM-UFF K. Frensel - J. Delgado Aula 5 Esferas Iniciaremos o nosso estudo sobre superfícies com a esfera, que já nos é familiar. A esfera S de centro no ponto A e raio

Leia mais

Funções de Uma Variável - 1 a Avaliação - Turma B3 31 de outubro de Prof. Armando Caputi

Funções de Uma Variável - 1 a Avaliação - Turma B3 31 de outubro de Prof. Armando Caputi Funções de Uma Variável - 1 a Avaliação - Turma B 1 de outubro de 017 - Prof. Armando Caputi 1 Determine o domínio da função g(x) = arctan ( ln(x x + ) ) (justifique) e a equação da reta tangente ao seu

Leia mais

MAT Cálculo II - IQ Prof. Oswaldo Rio Branco de Oliveira 2 ō semestre de 2008 Prova Substitutiva

MAT Cálculo II - IQ Prof. Oswaldo Rio Branco de Oliveira 2 ō semestre de 2008 Prova Substitutiva MAT212 - Cálculo II - IQ Prof. Oswaldo Rio Branco de Oliveira 2 ō semestre de 2008 Prova Substitutiva Nome : N ō USP : GABARITO Q 1 2 3 4 5 6 Total N 1. Seja f(x, y) = 2xy2, se (x, y) (0, 0), f(0, 0) =

Leia mais

Matriz Hessiana e Aplicações

Matriz Hessiana e Aplicações Matriz Hessiana e Aplicações Sadao Massago Dezembro de 200 Sumário Introdução 2 Matriz Jacobiana 3 Matriz hessiana 2 4 Talor de primeira e segunda ordem 2 5 Classicação dos pontos críticos 3 A Procedimeno

Leia mais

Concavidade. Universidade de Brasília Departamento de Matemática

Concavidade. Universidade de Brasília Departamento de Matemática Universidade de Brasília Departamento de Matemática Cálculo 1 Concavidade Conforme vimos anteriormente, o sinal da derivada de uma função em um intervalo nos dá informação sobre crescimento ou decrescimento

Leia mais

(x n + tv n) dxn df. (x n ) dxn. = Df(x) v derivada de f em x na direção. v n. (x ): Apenas a derivada parcial em

(x n + tv n) dxn df. (x n ) dxn. = Df(x) v derivada de f em x na direção. v n. (x ): Apenas a derivada parcial em Apostila de Métodos Quantitativos - UERJ Professor: Pedro Hemsley Derivada Direcional e Gradiente A regra da cadeia pode ser utilizada para determinar a taxa de variação de uma função f(x 1,,x n ) em um

Leia mais

1. Limite. lim. Ou seja, o limite é igual ao valor da função em x 0. Exemplos: 1.1) Calcule lim x 1 x 2 + 2

1. Limite. lim. Ou seja, o limite é igual ao valor da função em x 0. Exemplos: 1.1) Calcule lim x 1 x 2 + 2 1. Limite Definição: o limite de uma função f(x) quando seu argumento x tende a x0 é o valor L para o qual a função se aproxima quando x se aproxima de x0 (note que a função não precisa estar definida

Leia mais