Máximos e mínimos UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 22. Assunto: Máximos e mínimos

Tamanho: px
Começar a partir da página:

Download "Máximos e mínimos UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 22. Assunto: Máximos e mínimos"

Transcrição

1 Assunto: Máximos e mínimos UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA Palavras-chaves: máximos e mínimos, valores máximos e valores mínimos Máximos e mínimos Sejam f uma função a valores reais, A um subconjunto do domínio de f, e (x 0, y 0 ) A. Dizemos que (x 0, y 0 ) é um ponto de máximo de f em A se f f(x 0, y 0 ) ( A) Neste caso f(x 0, y 0 ) é chamado de valor máximo de f em A. Diremos que (x 0, y 0 ) D f é um ponto de máximo global(ou absoluto) de f se f f(x 0, y 0 ) ( D f ) Neste caso f(x 0, y 0 ), é dito o valor máximo de f. O ponto (x 0, y 0 ) D f é chamado de ponto máximo local de f, se existir uma bola aberta B tal que f f(x 0, y 0 ) ( B D f ) A se Se A é um subconjunto de D f e (x 0, y 0 ) A, diremos que (x 0, y 0 ) é um ponto de mínimo de f, em f f ( (x 0, y 0 ) A) Neste caso dizemos que f(x 0, y 0 ) é o valor mínimo de f em A. Um ponto (x 0, y 0 ) D f é dito ponto de mínimo global (ou absoluto) de f se

2 f f(x 0, y 0 ) ( D f ) Neste caso, diremos que f(x 0, y 0 ) é o valor de mínimo de f. Um ponto (x 0, y 0 ) é chamado de ponto mínimo local de f, se existir uma bola aberta B tal que f(x 0, y 0 ) f ( B D f ) Os pontos de máximo e os de mínimo de f são chamados de extremantes de f. Exemplo 1 O ponto (0, 0) é ponto de máximo global de função não tem ponto de mínimo global 1 x + y. O valor máximo de f é 1. Essa + 1 Exemplo O ponto (0, 0) é ponto de mínimo global de f = x + y e o valor mínimo de f é 0. Essa função não tem ponto de máximo global Exemplo 3 O ponto (1, 1) é ponto de máximo de f = x + y em A = { R ; 0 x 1 e 0 y 1}. O valor máximo de f em A é. O ponto (0, 0) é o ponto de mínimo de f em A e o valor mínimo de f em A é 0 Exemplo 4 Todos os pontos da circunferência de centro na origem e raio 1 são ponto de máximo de f = x + y em A = { R ; x + y 1}. O valor máximo de f em A é 1. O ponto (0, 0) é o ponto de mínimo de f em A e o valor de mínimo de f em A é 0 Exemplo 5 Os pontos de máximo da função f = x + y sobre a elipse A = { R ; x + y 4 = 1} são os pontos (0, ) e (0, ). Tais pontos correspondem aos pontos que estão mais acima da curva contida no gráco de f(ver gura abaixo). O valor máximo de f em A é, portanto, 4. Os pontos de mínimo de f em A são (1, 0) e ( 1, 0). Esses pontos correspondem aos pontos que estão mais abaixo e sobre a curva contida no gráco de f. O valor mínimo de f em A é igual a 1. Observando as curvas de nível de f, ca evidente que os pontos (0, ) e (0, ) da elipse x + y 4 = 1 são os pontos de máximo de f em A e que os pontos (1, 0) e ( 1, 0) dessa elipse são os pontos de mínimo de f em A. Observemos também que a reta tangente à elipse no ponto (0, ) coincide com a reta tangente a curva de nível de f em (0, ). O mesmo acontece com os outros extremantes de f em A. Exemplo 6 A função f = ( x 3 + 3x)(y 1), cujo gráco está representado abaixo, possui um ponto de máximo local em ( 1, 0). Esse ponto não é um ponto de máximo global de f. O ponto (1, 0) é um ponto de mínimo local de f e também esse ponto não é um ponto de mínimo global de f. Sejam agora z = f uma função e (x 0, y 0 ) um ponto interior de D f tal que f tenha derivadas parciais em (x 0, y 0 ). Suponhamos que (x 0, y 0 ) seja um extremante local de f. Por exemplo, suponhamos que (x 0, y 0 ) seja um ponto de máximo local de f.

3 Como (x 0, y 0 ) o D f, existe um intervalo aberto I, com x 0 I, e uma função g : I R denida por g(x) = f(x, y 0 ). Observemos que g (0) = x (x 0, y 0 ). Logo g é derivável em x 0. Como (x 0, y 0 ) é ponto de máximo local de f, temos que x 0 é ponto de máximo local de g. Logo g (x 0 ) = 0. Assim, x (x 0, y 0 ) = 0 Analogamente, mostra-se que y (x 0, y 0 ) = 0. Temos assim o seguinte teorema Teorema 1 Seja f uma função que possui derivadas parciais em (x 0, y 0 ) e esse ponto é interior ao domínio de f. Se (x 0, y 0 ) é ponto de máximo local ou de mínimo local de f, então x (x 0, y 0 ) = 0 e y (x 0, y 0 ) = 0 Como o plano tangente ao gráco de f em (x 0, y 0, f(x 0, y 0 )) é dado por z = x (x 0, y 0 )(x x 0 ) + y (x 0, y 0 )(y y 0 ) + f(x 0, y 0 ) Seque que se (x 0, y 0 ) o D f é extremante local de f, então uma equação desse plano tangente é z = f(x 0, y 0 ). Logo tal plano tangente é paralelo ao plano xy. Se (x 0, y 0 ) é ponto de máximo local de f, então o mencionado plano tangente, em uma vizinhança do ponto (x 0, y 0, f(x 0, y 0 )), está acima do gráco de f. Mas se (x 0, y 0 ) é um ponto de mínimo local de f, então, em uma vizinhança do ponto (x 0, y 0, f(x 0, y 0 )), o plano tangente está abaixo do gráco de f O teorema anterior nos diz que para encontrarmos os pontos interiores de D f que são extremantes locais de f, devemos procurar dentre aqueles pontos (x 0, y 0 ) que satisfazem x (x 0, y 0 ) e y (x 0, y 0 ). Os pontos interiores de D f f. que satisfazem x (x 0, y 0 ) e y (x 0, y 0 ) são chamados de pontos críticos de Entretanto, é importante lembrar que a condição x (x 0, y 0 ) e y (x 0, y 0 ) para (x 0, y 0 ) D o f é necessária, mas não é suciente para que (x 0, y 0 ) seja extremante local de f, pois existem funções que tais derivadas parciais nulas em um ponto (x 0, y 0 ) D o f sem que tal ponto seja de máximo ou de mínimo local em (x 0, y 0 ). é o caso da função f = y x no ponto (0, 0) O gráco de f = y x na vizinhança de (0, 0, 0) tem o aspecto de uma sela de cavalo. Isso serve de inspiração para a seguinte denição. Denição 1 Um ponto crítico de f que não é ponto de máximo ou de mínimo local de f é chamado de ponto de sela de f. Se (x 0, y 0 ) é um ponto de sela de f, então o plano tangente ao gráco de f em (x 0, y 0, f(x 0, y 0 )) é paralelo ao plano xy, mas, em toda vizinhança de (x 0, y 0, f(x 0, y 0 )), há pontos do gráco de f que estão 3

4 acima do plano tangente e há pontos do gráco de f que estão abaixo desse plano tangente. Seja agora f uma função tal que D f é aberto e seja (x 0, y 0 ) um ponto de máximo local de f. Suponhamos que f seja de classe C. Consideremos a função g : I R, I intervalo aberto com x 0 I, denida por g(x) = f(x, y 0 ). Temos que g (x) = x (x, y 0) g (x) = x (x, y 0) Sendo (x 0, y 0 ) um ponto de máximo local de f, temos que x 0 é um ponto de máximo local de g. Logo Portanto, g (x 0 ) e g (x 0 ) < 0 x (x 0, y 0 ) = 0 e x (x 0, y 0 ) 0 Se tivéssemos tomado a função h(y) = f(x 0, y), teríamos concluído que y (x 0, y 0 ) = 0 e y (x 0, y 0 ) 0 Se (x 0, y 0 ) fosse um ponto de mínimo local de f, então teríamos obtido x (x 0, y 0 ) = 0, x (x 0, y 0 ) 0 e y (x 0, y 0 ) = 0 y (x 0, y 0 ) 0 Temos assim o seguinte teorema. Teorema Sejam f uma função de classe C em um aberto A e (x 0, y 0 ) A. (a) Se (x 0, y 0 ) é um ponto de máximo local de f, então (x 0, y 0 ) é um ponto crítico de f e x (x 0, y 0 ) 0 e y (x 0, y 0 ) 0 (b) Se (x 0, y 0 ) é um ponto de mínimo local de f então (x 0, y 0 ) é um ponto crítico de f e x (x 0, y 0 ) 0 e y (x 0, y 0 ) 0 Queremos agora obter uma condição suciente para que um ponto crítico seja extremante local de f. Para isso, introduziremos o conceito de hessiano de f. 4

5 Denição O hessiano de uma função f de classe C é a função H denida por H = x y x y x y Portanto, H = x y [ y x ] Teorema 3 Seja f uma função de classe C em um aberto A e (x 0, y 0 ) A um ponto crítico de f. (a) Se H(x 0, y 0 ) > 0 e x (x 0, y 0 ) > 0, então (x 0, y 0 ) é um ponto de mínimo local de f (b) Se H(x 0, y 0 ) > 0 e x (x 0, y 0 ) < 0, então (x 0, y 0 ) é um ponto de máximo local de f (c) Se H(x 0, y 0 ) < 0 então (x 0, y 0 ) é um ponto de sela de f. Quando temos H(x 0, y 0 ) = 0, nada podemos armar. Vamos demonstrar a parte (a) desse teorema. Seja v = (h, k) (0, 0) e consideremos a função em que t pertence a um intervalo aberto I. g v (t) = f(x 0 + ht, y 0 + kt) O gráco de g v coincide com a curva que é obtida pela intersecção do gráco de f com o plano perpendicular ao plano xy e que contém a reta Pela regra da cadeia temos: = (x 0, y 0 ) + t(h, k) g v (t) = x (x 0 + ht, y 0 + kt)h + y (x 0 + ht, y 0 + kt)k Aplicando novamente a regra da cadeia obtemos: g v (t) = [ ] [ f x (x 0 + ht, y 0 + kt)h + f ] y x (x f 0 + ht, y 0 + kt)k h+ x y (x 0 + ht, y 0 + kt)h + f y (x 0 + ht, y 0 + kt)k k 5

6 Segue do teorema de Schwarz que g v (t) = f x (x 0 + ht, y 0 + kt)h + f y x (x 0 + ht, y 0 + kt)hk + f y (x 0 + ht, y 0 + kt)k Observemos que a função g v é contínua, pois f é de classe C. Temos que Para facilitar a escrita, escrevamos g v (0) = f x (x 0, y 0 )h + f y x (x 0, y 0 )hk + f y (x 0, y 0 )k a = f x (x 0, y 0 ), b = f y x (x 0, y 0 ) e c = f y (x 0, y 0 ) Logo g v (0) = ah + bhk + ck Portanto, g v (0) = a [h + h ba k + ca ] k [ ( ) ( ) ( ) b b b = a h + h a k + a k a k + c [ ( = a h + b ) ] a k + c a k b a k [ ( = a h + b ) ( ) ] c a k + a b a k [ ( = a h + b ) ] a k ac b + a k a b ( = a h + b ) a k b c + a k a k ] ( = a h + b ) a k + a b b c a k Logo, ( g v (0) = f x (x 0, y 0 ) h + b ) a k + H(x 0, y 0 ) f x (x 0, y 0 ) k 6

7 Supondo que f x (x 0, y 0 ) > 0 e H(x 0, y 0 ) > 0, temos que g v (0) > 0. Como g v é contínua, segue do teorema da conservação do sinal, que g v (t) > 0, para t em um intervalo aberto que contém zero. Logo a concavidade de g v é para cima. Fazendo g v variar em todas as direções, concluiremos que o gráco de f está acima do plano tangente ao gráco de f em (x 0, y 0, f(x 0, y 0 )). Logo (x 0, y 0 ) é um ponto de mínimo de f. Exemplo 7 Encontre os pontos críticos da função f = ( x 3 + 3x)(y 1) e classique-os como máximo local, mínimo local ou ponto de sela. Resolução: Temos que: De x = ( 3x + 3)(y 1) = 3(x 1)(y 1) y = ( x3 + 3x)y = xy(x 3) { { 3(x 1)(y 1) = 0 xy(x 3) = 0 (x 1)(y 1) = 0 xy(x 3) = 0, teremos que (x 1)(y 1) = 0 x = 1, y = 1, y = 1, y = 1 Assim, quando: x = 1 y( ) = 0 y = 0 y = 0 (1) x = 1 y( ) = 0 y = 0 y = 0 () y = 1 x(x 3) = 0 x = 0, x = 3, x = 3 (3) y = 1 x(x 3) = 0 x = 0, x = 3, x = 3 (4) De (1) concluímos que ( 1, 0) é ponto crítico de f. De (), (1, 0) é ponto crítico de f. De (3), (0, 1), ( 3, 1) e ( 3, 1) são pontos críticos de f e de (4), (0, 1), ( 3, 1) e ( 3, 1) são pontos críticos de f. Portanto, os pontos críticos de f são: ( 1, 0), (1, 0), (0, 1), ( 3, 1), ( 3, 1), (0, 1), ( 3, 1) e ( 3, 1) 7

8 O hessiano será da forma: f x = 3.x(y 1) = 6x(y 1) f y x = 3(x 1)y = 6y(x 1) f y = x(x 3) H = x y x y x y = 6x(y 1) 6y(x 1) 6y(x 1) x(x 3) = 1x (x 3)(y 1) 36y (x 1) Para o ponto ( 1, 0) teremos: Portanto, ( 1, 0) é ponto de máximo local de f. H( 1, 0) = 1.1.( )( 1) = 4 > 0 ( 1, 0) = 6.( 1)( 1) = 6 < 0 x Para o ponto (1, 0) teremos: Portanto, (1, 0) é ponto de mínimo local de f. H(1, 0) = 1.1.( )( 1) = 4 > 0 (1, 0) = 6.1.( 1) = 6 > 0 x Para o ponto (0, 1) teremos: Portanto, (0, 1) é ponto de sela de f. H(0, 1) = = 36 < 0 De modo análogo, temos que ( 3, 1), ( 3, 1), (0, 1), ( 3, 1) e ( 3, 1) são pontos de sela de f. 8

Máximos e mínimos (continuação)

Máximos e mínimos (continuação) UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 3 Assunto: Máximos e mínimos Palavras-chaves: máximos e mínimos, valores máximos e valores mínimos Máximos e mínimos (continuação) Sejam f

Leia mais

CÁLCULO I Aula 15: Concavidade. Teste da Segunda Derivada.

CÁLCULO I Aula 15: Concavidade. Teste da Segunda Derivada. CÁLCULO I Aula 15: Concavidade.. Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará 1 Concavidade 2 Considere um intervalo I e uma função f : I R derivável cujo gráco é dado abaixo.

Leia mais

CÁLCULO I. 1 Concavidade. Objetivos da Aula. Aula n o 19: Concavidade. Teste da Segunda Derivada. Denir concavidade de uma função;

CÁLCULO I. 1 Concavidade. Objetivos da Aula. Aula n o 19: Concavidade. Teste da Segunda Derivada. Denir concavidade de uma função; CÁLCULO I Prof. Marcos Diniz Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 19: Concavidade. Teste da Segunda Derivada. Objetivos da Aula Denir concavidade de uma função; Denir ponto de inexão;

Leia mais

Derivadas Parciais Capítulo 14

Derivadas Parciais Capítulo 14 Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS Como vimos no Capítulo 4, no Volume I, um dos principais usos da derivada ordinária é na determinação dos valores máximo e mínimo. DERIVADAS PARCIAIS 14.7

Leia mais

Derivadas parciais de ordem superior

Derivadas parciais de ordem superior UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 21 Assunto: Derivadas parciais de ordem superior e máximos e mínimos Palavras-chaves: derivadaderivada parcial ordem de derivação ordem superior

Leia mais

Bola Aberta UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 10. Assuntos: Continuidade de funções e limite

Bola Aberta UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 10. Assuntos: Continuidade de funções e limite Assuntos: Continuidade de funções e limite UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 10 Palavras-chaves: continuidade, funções contínuas, limite Bola Aberta Sejam p R n e r R com r

Leia mais

CÁLCULO I. 1 Concavidade. Objetivos da Aula. Aula n o 18: Concavidade. Teste da Segunda Derivada. Denir concavidade do gráco de uma função;

CÁLCULO I. 1 Concavidade. Objetivos da Aula. Aula n o 18: Concavidade. Teste da Segunda Derivada. Denir concavidade do gráco de uma função; CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 18: Concavidade. Teste da Segunda Derivada. Objetivos da Aula Denir concavidade do gráco de uma função; Denir ponto de

Leia mais

Justifique todas as passagens. Boa Sorte! e L 2 : = z 1 3

Justifique todas as passagens. Boa Sorte! e L 2 : = z 1 3 3 ā Prova de Cálculo II para Oceanográfico - MAT145 01/12/2010 Nome : GABARITO N ō USP : Professor : Oswaldo Rio Branco de Oliveira Justifique todas as passagens Boa Sorte! Q 1 2 3 4 5 Extra 6 Extra 7

Leia mais

Lista 2 - Cálculo. 17 de maio de Se f e g são funções cujos grácos estão representados abaixo, sejam u(x) = f(x)g(x),

Lista 2 - Cálculo. 17 de maio de Se f e g são funções cujos grácos estão representados abaixo, sejam u(x) = f(x)g(x), Lista 2 - Cálculo 17 de maio de 2019 1. Se f e g são funções cujos grácos estão representados abaixo, sejam u(x) = f(x)g(x), h(x) = f(g(x)) e k(x) = g(f(x)). Encontre as seguintes derivadas: (a) u (1)

Leia mais

MAT-2454 Cálculo Diferencial e Integral II EP-USP

MAT-2454 Cálculo Diferencial e Integral II EP-USP MAT-454 Cálculo Diferencial e Integral II EP-USP Solução da Questão da Terceira Prova 8//06 Questão (Tipo A Valor: 3, 0 pontos). a. Determine todos os pontos da superfície de nível da função g(x, y, z)

Leia mais

MAT2453 Cálculo Diferencial e Integral I EPUSP

MAT2453 Cálculo Diferencial e Integral I EPUSP Primeira Prova 17/04/2017 Tipo de prova: 1. (1,2 pt) Dada f : R R, suponhamos que lim f(x) =. Então: x + a. f é decrescente. b. lim x + f(x2 ) = +. c. m 0, temos f(x) 0 se x m. d. lim f(x) = +. x e. Nenhuma

Leia mais

Plano tangente e reta normal

Plano tangente e reta normal UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 15 Assunto: Plano tangente, reta normal, vetor gradiente e regra da cadeia Palavras-chaves: plano tangente, reta normal, gradiente, função

Leia mais

15 AULA. Máximos e Mínimos LIVRO. META Encontrar os pontos de máximo e mínimo de uma função de duas variáveis a valores reais.

15 AULA. Máximos e Mínimos LIVRO. META Encontrar os pontos de máximo e mínimo de uma função de duas variáveis a valores reais. 1 LIVRO Máximos e Mínimos 1 AULA META Encontrar os pontos de máximo e mínimo de uma função de duas variáveis a valores reais. OBJETIVOS Maximizar e/ou minimizar função de duas variáveis a valores reais.

Leia mais

CÁLCULO I. 1 Concavidade. Objetivos da Aula. Aula n o 16: Máximos e Mínimos - 2 a Parte

CÁLCULO I. 1 Concavidade. Objetivos da Aula. Aula n o 16: Máximos e Mínimos - 2 a Parte CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 16: Máximos e Mínimos - 2 a Parte Objetivos da Aula Denir e discutir a concavidade de uma função em um intervalo do domínio; Denir e calcular

Leia mais

Funções de várias variáveis reais a valores reais (Funções de R n em R)

Funções de várias variáveis reais a valores reais (Funções de R n em R) UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 08 Assunto:Funções de várias variáveis reais a valores reais, domínio e imagem, curvas de nível, gráco da função de duas variáveis reais a

Leia mais

MAT 1351 : Cálculo para Funções de Uma Variável Real I. Sylvain Bonnot (IME-USP)

MAT 1351 : Cálculo para Funções de Uma Variável Real I. Sylvain Bonnot (IME-USP) MAT 1351 : Cálculo para Funções de Uma Variável Real I Sylvain Bonnot (IME-USP) 2016 1 Aplicação das derivadas: Equações diferenciais Teorema As soluções da equação y = 0 num intervalo (a, b) são exatamente

Leia mais

Derivada. Capítulo Retas tangentes e normais Número derivado

Derivada. Capítulo Retas tangentes e normais Número derivado Capítulo 3 Derivada 3.1 Retas tangentes e normais Vamos considerar o problema que consiste em traçar a reta tangente e a reta normal a uma curvay= f(x) num determinado ponto (a,f(a)) da curva. Por isso

Leia mais

Aula 22 O teste da derivada segunda para extremos relativos.

Aula 22 O teste da derivada segunda para extremos relativos. O teste da derivada segunda para extremos relativos. MÓDULO 2 - AULA 22 Aula 22 O teste da derivada segunda para extremos relativos. Objetivo: Utilizar a derivada segunda para determinar pontos de máximo

Leia mais

CÁLCULO I. Extremos Relativos e Absolutos. Objetivos da Aula. Aula n o 17: Extremos Relativos e Absolutos. Método do Intervalo Fechado.

CÁLCULO I. Extremos Relativos e Absolutos. Objetivos da Aula. Aula n o 17: Extremos Relativos e Absolutos. Método do Intervalo Fechado. CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Prof. Emerson Veiga Prof. Tiago Coelho Aula n o 17: Extremos Relativos e Absolutos. Método do Intervalo Fechado. Objetivos da

Leia mais

DERIVADAS PARCIAIS. y = lim

DERIVADAS PARCIAIS. y = lim DERIVADAS PARCIAIS Definição: Seja f uma função de duas variáveis, x e y (f: D R onde D R 2 ) e (x 0, y 0 ) é um ponto no domínio de f ((x 0, y 0 ) D). A derivada parcial de f em relação a x no ponto (x

Leia mais

Gráco de funções de duas variáveis

Gráco de funções de duas variáveis UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 09 Assunto:Gráco de funções de duas variáveis, funções de três variáveis reais a valores reais, superfícies de nível,funções limitadas Palavras-chaves:

Leia mais

A derivada da função inversa

A derivada da função inversa A derivada da função inversa Sumário. Derivada da função inversa............... Funções trigonométricas inversas........... 0.3 Exercícios........................ 7.4 Textos Complementares................

Leia mais

12 AULA. ciáveis LIVRO. META Estudar derivadas de funções de duas variáveis a valores reais.

12 AULA. ciáveis LIVRO. META Estudar derivadas de funções de duas variáveis a valores reais. 1 LIVRO Diferen- Funções ciáveis META Estudar derivadas de funções de duas variáveis a valores reais. OBJETIVOS Estender os conceitos de diferenciabilidade de funções de uma variável a valores reais. PRÉ-REQUISITOS

Leia mais

Revisão : máximo, minimo em dimensão 1

Revisão : máximo, minimo em dimensão 1 Revisão : máximo, minimo em dimensão 1 ( de Rolle) Seja f uma função que satisfaça as seguintes hipóteses: 1 f é contínua no intervalo fechado [a, b], 2 f é diferenciável no intervalo aberto (a, b), 3

Leia mais

MAT Cálculo 2 para Economia 3 a Prova - 28 de novembro de 2016

MAT Cálculo 2 para Economia 3 a Prova - 28 de novembro de 2016 MAT 0147 - Cálculo para Economia 3 a Prova - 8 de novembro de 016 Questão 1) Determine o máximo e o mínimo de f(x, y) = x 4 + y em D = {(x, y); x + y 1}. Soluç~ao: As derivadas parciais f x (x, y) = 4x

Leia mais

Os únicos candidatos a extremantes locais são os pontos críticos de f pois o D f 2 é aberto. f

Os únicos candidatos a extremantes locais são os pontos críticos de f pois o D f 2 é aberto. f CAPÍTULO 16 Exercícios 16 1 Seja (x y) x y xy x y Os únicos candidatos a extremantes locais são os pontos críticos de pois o D é aberto De ( x x y ) x y ( y x y ) y x 1 resulta que os candidatos a extremantes

Leia mais

Notas de Aulas 3 - Cônicas Prof Carlos A S Soares

Notas de Aulas 3 - Cônicas Prof Carlos A S Soares Notas de Aulas 3 - Cônicas Prof Carlos A S Soares 1 Parábolas 11 Conceito e Elementos Definição 1 Sejam l uma reta e F um ponto não pertencente a l Chamamos parábola de diretriz l e foco F o conjunto dos

Leia mais

CÁLCULO I. 1 Funções Crescentes e Decrescentes

CÁLCULO I. 1 Funções Crescentes e Decrescentes CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 17: Crescimento e Decrescimento de funções. Teste da Primeira Derivada. Objetivos da Aula Denir funções crescentes e

Leia mais

21 e 22. Superfícies Quádricas. Sumário

21 e 22. Superfícies Quádricas. Sumário 21 e 22 Superfícies uádricas Sumário 21.1 Introdução....................... 2 21.2 Elipsoide........................ 3 21.3 Hiperboloide de uma Folha.............. 4 21.4 Hiperboloide de duas folhas..............

Leia mais

CÁLCULO I Aula 11: Limites Innitos e no Innito. Assíntotas. Regra de l'hôspital.

CÁLCULO I Aula 11: Limites Innitos e no Innito. Assíntotas. Regra de l'hôspital. Limites s CÁLCULO I Aula 11: Limites s e no... Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará Limites s 1 Limites no 2 Limites s 3 4 5 Limites s Denição Seja f uma função denida

Leia mais

f(x) f(a), x D. O ponto a é então chamado ponto de máximo absoluto ou maximizante absoluto.

f(x) f(a), x D. O ponto a é então chamado ponto de máximo absoluto ou maximizante absoluto. Capítulo 4 Problemas de Extremo 41 Extremos Seja f : D R m R uma função real de n variáveis reais, de domínio D e a D Definição 1 Diz-se que: A função f tem um máximo absoluto em a se f(x) f(a), x D O

Leia mais

Concavidade e pontos de inflexão Aula 20

Concavidade e pontos de inflexão Aula 20 Concavidade e pontos de inflexão Aula 20 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 22 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica

Leia mais

CÁLCULO I. Extremos Relativos e Absolutos. Objetivos da Aula. Aula n o 16: Extremos Relativos e Absolutos. Método do Intervalo Fechado.

CÁLCULO I. Extremos Relativos e Absolutos. Objetivos da Aula. Aula n o 16: Extremos Relativos e Absolutos. Método do Intervalo Fechado. CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Prof. Emerson Veiga Prof. Tiago Coelho Aula n o 16: Extremos Relativos e Absolutos. Método do Intervalo Fechado. Objetivos da

Leia mais

(d) f (x) = ln (x + 1) (e) f (x) = sinh (ax), a R. (f) f(x) = sin(3x)

(d) f (x) = ln (x + 1) (e) f (x) = sinh (ax), a R. (f) f(x) = sin(3x) Lista de Cálculo Diferencial e Integral I Derivadas 1. Use a denição para encontrar a primeira derivada de cada uma das funções abaixo. (a) f (x) x 1 2x + (b) f (x) x + 1 (d) f (x) ln (x + 1) (e) f (x)

Leia mais

Total Escolha 5 (cinco) questões. Justifique todas as passagens. Não é permitido o uso de calculadoras. Boa Sorte!

Total Escolha 5 (cinco) questões. Justifique todas as passagens. Não é permitido o uso de calculadoras. Boa Sorte! ā Prova de MAT 147 - Cálculo II - FEA-USP 8/11/01 Nome : GABARITO N ō USP : Professor : Oswaldo Rio Branco de Oliveira Q 1 4 5 6 7 Total N Escolha 5 (cinco) questões. Justifique todas as passagens. Não

Leia mais

*** Escolha e resolva 4 das 6 questões! *** *** Justifique TODAS as suas respostas! *** + µ(x, y)sen(89x + π) 0 φ 6 (x, y) + µ 6 (x, y) 1.

*** Escolha e resolva 4 das 6 questões! *** *** Justifique TODAS as suas respostas! *** + µ(x, y)sen(89x + π) 0 φ 6 (x, y) + µ 6 (x, y) 1. USP/ICMC/SMA - Gabarito da 1 a Prova de Cálculo II - SMA- 11/10/006 Professora: Márcia Federson *** Escolha e resolva das 6 questões! *** *** Justifique TODAS as suas respostas! *** Questão 1 Sejam φ :

Leia mais

Aula Exemplos e aplicações - continuação. Exemplo 8. Nesta aula continuamos com mais exemplos e aplicações dos conceitos vistos.

Aula Exemplos e aplicações - continuação. Exemplo 8. Nesta aula continuamos com mais exemplos e aplicações dos conceitos vistos. Aula 1 Nesta aula continuamos com mais exemplos e aplicações dos conceitos vistos. 1. Exemplos e aplicações - continuação Exemplo 8 Considere o plano π : x + y + z = 3 e a reta r paralela ao vetor v =

Leia mais

Cálculo II Lista 5. com respostas

Cálculo II Lista 5. com respostas Cálculo II Lista 5. com respostas Exercício 1. Determine os pontos críticos das funções dadas e classifique-os, decidindo se são pontos de máximo local, de mínimo local ou de sela: (a) f(x, y) = x 2 +

Leia mais

APOIO 2 - CÁLCULO I - Licenciatura Física - Diurno 1 o SEMESTRE de 2008 Professor Oswaldo Rio Branco

APOIO 2 - CÁLCULO I - Licenciatura Física - Diurno 1 o SEMESTRE de 2008 Professor Oswaldo Rio Branco APOIO - CÁLCULO I - Licenciatura Física - Diurno o SEMESTRE de 008 Professor Oswaldo Rio Branco - Regra da Cadeia (idéia da demonstração) Supondo z = f(y) e y = g(x) funções diferenciáveis de R em R, determinemos

Leia mais

A derivada da função inversa, o Teorema do Valor Médio e Máximos e Mínimos - Aula 18

A derivada da função inversa, o Teorema do Valor Médio e Máximos e Mínimos - Aula 18 A derivada da função inversa, o Teorema do Valor Médio e - Aula 18 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 10 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014106

Leia mais

Prova de Conhecimentos Específicos 1 a QUESTÃO: (2,0 pontos)

Prova de Conhecimentos Específicos 1 a QUESTÃO: (2,0 pontos) Prova de Conhecimentos Específicos 1 a QUESTÃO: (,0 pontos) 5x Considere a função f(x)=. Determine, se existirem: x +7 (i) os pontos de descontinuidade de f; (ii) as assíntotas horizontais e verticais

Leia mais

Derivadas direcionais Definição (Derivadas segundo um vector): f : Dom(f) R n R e P 0 int(dom(f)) então

Derivadas direcionais Definição (Derivadas segundo um vector): f : Dom(f) R n R e P 0 int(dom(f)) então Derivadas direcionais Definição (Derivadas segundo um vector): f : Dom(f) R n R e P 0 int(dom(f)) então Seja D v f(p 0 ) = lim λ 0 f(p 0 + λ v) f(p 0 ) λ v representa a derivada direcional de f segundo

Leia mais

CÁLCULO I. 1 Funções Crescentes e Decrescentes

CÁLCULO I. 1 Funções Crescentes e Decrescentes CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 14: Crescimento e Decrescimento. Teste da Primeira Derivada. Objetivos da Aula Denir funções crescentes e decrescentes; Determinar os intervalos

Leia mais

Universidade Estadual de Montes Claros Departamento de Ciências Exatas Curso de Licenciatura em Matemática. Notas de Aulas de

Universidade Estadual de Montes Claros Departamento de Ciências Exatas Curso de Licenciatura em Matemática. Notas de Aulas de Universidade Estadual de Montes Claros Departamento de Ciências Exatas Curso de Licenciatura em Matemática Notas de Aulas de Cálculo Rosivaldo Antonio Gonçalves Notas de aulas que foram elaboradas para

Leia mais

Concavidade. Universidade de Brasília Departamento de Matemática

Concavidade. Universidade de Brasília Departamento de Matemática Universidade de Brasília Departamento de Matemática Cálculo 1 Concavidade Conforme vimos anteriormente, o sinal da derivada de uma função em um intervalo nos dá informação sobre crescimento ou decrescimento

Leia mais

Cálculo Infinitesimal II / Cálculo II - Apontamentos de Apoio Capítulo 3 - Funções de n Variáveis

Cálculo Infinitesimal II / Cálculo II - Apontamentos de Apoio Capítulo 3 - Funções de n Variáveis Cálculo Infinitesimal II / Cálculo II - Apontamentos de Apoio Capítulo 3 - Funções de n Variáveis Neste capítulo vamos estender as noções do cálculo diferencial a funções que dependem de mais de uma variável

Leia mais

Multiplicadores de Lagrange

Multiplicadores de Lagrange Multiplicadores de Lagrange Para motivar o método, suponha que queremos maximizar uma função f (x, y) sujeito a uma restrição g(x, y) = 0. Geometricamente: queremos um ponto sobre o gráfico da curva de

Leia mais

Aula 13. Plano Tangente e Aproximação Linear

Aula 13. Plano Tangente e Aproximação Linear Aula 13 Plano Tangente e Aproximação Linear Se fx) é uma função de uma variável, diferenciável no ponto x 0, então a equação da reta tangente à curva y = fx) no ponto x 0, fx 0 )) é dada por: y fx 0 )

Leia mais

CÁLCULO II - MAT 2127 Bacharelado em Química - 2 o Semestre de 2009 Professor Oswaldo Rio Branco

CÁLCULO II - MAT 2127 Bacharelado em Química - 2 o Semestre de 2009 Professor Oswaldo Rio Branco CÁLCULO II - MAT 7 Bacharelado em Química - o Semestre de 009 Professor Oswaldo Rio Branco MÁXIMOS E MÍNIMOS CONDICIONADOS E MULTIPLICADORES DE LAGRANGE Definições: Seja f : Dom(f) R, Dom(f) R n, n =,

Leia mais

Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente.

Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente. Aula 15 Derivadas Direcionais e Vetor Gradiente Seja f(x, y) uma função de variáveis. Iremos usar a notação D u f(x 0, y 0 ) para: Derivada direcional de f no ponto (x 0, y 0 ), na direção do vetor unitário

Leia mais

Funções de uma variável real a valores em R n

Funções de uma variável real a valores em R n UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 06 Assunto:Funções de uma variável real a valores em R n, domínio e imagem, limite Palavras-chaves: Funções vetoriais, domínio e imagem, trajetória,limite.

Leia mais

Cálculo II. Derivadas Parciais

Cálculo II. Derivadas Parciais Cálculo II Derivadas Parciais (I) (II) Definição Se f é uma função de duas variáveis, suas derivadas parciais são as funções f x e f y definidas por f x ( x, y) lim h 0 f ( x h, y) f( x,

Leia mais

ANEXOS Anexo A: Esboço de Curvas Anexo B: Exemplos Extras Anexo C: Aplicação do Software SLD

ANEXOS Anexo A: Esboço de Curvas Anexo B: Exemplos Extras Anexo C: Aplicação do Software SLD ANEXOS Anexo A: Esboço de Curvas Anexo B: Exemplos Extras Anexo C: Aplicação do Software SLD ANEXO A Critérios para determinar o comportamento de uma função através do estudo da derivada. Vamos relembrar

Leia mais

Universidade Federal do Rio de Janeiro

Universidade Federal do Rio de Janeiro Å INSTITUTO DE MATEMÁTICA Universidade Federal do Rio de Janeiro Gabarito da a Prova Unificada de Cálculo I a Questão: Calcule ou justifique caso não exista, cada um dos ite abaixo: ( (a) x + (+x )e x,

Leia mais

UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 16. F (t 0 ) = f (g(t 0 )).g (t 0 ) F (t) = f (g(t)).g (t)

UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 16. F (t 0 ) = f (g(t 0 )).g (t 0 ) F (t) = f (g(t)).g (t) Assunto: Regra da cadeia UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 16 Palavras-chaves: derivada,derivadas parciais, função composta, regra da cadeia Regra da Cadeia Os teoremas que

Leia mais

Gabarito da Primeira Prova MAT Tipo A

Gabarito da Primeira Prova MAT Tipo A Gabarito da Primeira Prova MAT-2454 - Tipo A 10 de Outubro de 2011 -A- Questão 1. Apenas uma das funções f ou g abaixo admite plano tangente a seu gráfico no ponto P = 0,0,0): x 2 y fx,y) = x 2 +y2, se

Leia mais

Teoremas e Propriedades Operatórias

Teoremas e Propriedades Operatórias Capítulo 10 Teoremas e Propriedades Operatórias Como vimos no capítulo anterior, mesmo que nossa habilidade no cálculo de ites seja bastante boa, utilizar diretamente a definição para calcular derivadas

Leia mais

Cálculo Vetorial / Ilka Rebouças Freire / DMAT UFBA

Cálculo Vetorial / Ilka Rebouças Freire / DMAT UFBA Cálculo Vetorial / Ilka Rebouças Freire / DMAT UFBA 1. Funções Vetoriais Até agora nos cursos de Cálculo só tratamos de funções cujas imagens estavam em R. Essas funções são chamadas de funções com valores

Leia mais

4 o Roteiro de Atividades: reforço da segunda parte do curso de Cálculo II Instituto de Astronomia e Geofísica

4 o Roteiro de Atividades: reforço da segunda parte do curso de Cálculo II Instituto de Astronomia e Geofísica 4 o Roteiro de Atividades: reforço da segunda parte do curso de Cálculo II Instituto de Astronomia e Geofísica Objetivo do Roteiro Pesquisa e Atividades: Teoremas de diferenciabilidade de funções, Vetor

Leia mais

A Derivada. Derivadas Aula 16. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

A Derivada. Derivadas Aula 16. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil Derivadas Aula 16 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 04 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014104 - Engenharia Mecânica A Derivada Seja x = f(t)

Leia mais

Geometria Analítica II - Aula 4 82

Geometria Analítica II - Aula 4 82 Geometria Analítica II - Aula 4 8 IM-UFF K. Frensel - J. Delgado Aula 5 Esferas Iniciaremos o nosso estudo sobre superfícies com a esfera, que já nos é familiar. A esfera S de centro no ponto A e raio

Leia mais

CÁLCULO I Aula 05: Limites Laterais. Teorema do Valor Intermediário. Teorema do Confronto. Limite Fundamental Trigonométrico.

CÁLCULO I Aula 05: Limites Laterais. Teorema do Valor Intermediário. Teorema do Confronto. Limite Fundamental Trigonométrico. s Laterais CÁLCULO I Aula 05: s Laterais.... Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará s Laterais 1 s Laterais 2 3 4 s Laterais Considere a função de Heaviside, denida

Leia mais

Capítulo 2. f : A B. 3. A regra em (3) não define uma função de A em B porque 4 A está associado a mais de um. elemento de B.

Capítulo 2. f : A B. 3. A regra em (3) não define uma função de A em B porque 4 A está associado a mais de um. elemento de B. Departamento de Matemática Disciplina MAT154 - Cálculo 1 Capítulo 2 Funções 2.1 Definição Sejam A e B conjuntos não vazios. Uma função com domínio A e contradomínio B é uma regra f que a cada elemento

Leia mais

Capítulo 2. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas.

Capítulo 2. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas. Capítulo 2 Funções Sejam A e B conjuntos não vazios. Uma função com domínio A e contradomínio B é uma regra f que a cada elemento em A associa um único elemento em B. A notação usual para uma função f

Leia mais

CÁLCULO I. Conhecer a interpretação geométrica da derivada em um ponto. y = f(x 2 ) f(x 1 ). y x = f(x 2) f(x 1 )

CÁLCULO I. Conhecer a interpretação geométrica da derivada em um ponto. y = f(x 2 ) f(x 1 ). y x = f(x 2) f(x 1 ) CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 0: Taxa de Variação. Derivadas. Reta Tangente. Objetivos da Aula Denir taxa de variação média e a derivada como a taxa

Leia mais

DERIVAÇÃO de FUNÇÕES REAIS de VARIÁVEL REAL

DERIVAÇÃO de FUNÇÕES REAIS de VARIÁVEL REAL DERIVAÇÃO de FUNÇÕES REAIS de VARIÁVEL REAL Derivada de uma função num ponto. Sejam f uma função denida num intervalo A R e a um ponto de acumulação de A. Cama-se derivada de f no ponto a ao ite, caso

Leia mais

CDI-II. Resumo das Aulas Teóricas (Semana 5) 1 Extremos de Funções Escalares. Exemplos

CDI-II. Resumo das Aulas Teóricas (Semana 5) 1 Extremos de Funções Escalares. Exemplos Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Prof. Gabriel Pires CDI-II Resumo das Aulas Teóricas (Semana 5) 1 Etremos de Funções Escalares. Eemplos Nos eemplos seguintes

Leia mais

14 AULA. Vetor Gradiente e as Derivadas Direcionais LIVRO

14 AULA. Vetor Gradiente e as Derivadas Direcionais LIVRO 1 LIVRO Vetor Gradiente e as Derivadas Direcionais 14 AULA META Definir o vetor gradiente de uma função de duas variáveis reais e interpretá-lo geometricamente. Além disso, estudaremos a derivada direcional

Leia mais

Lista 8: Análise do comportamento de funções - Cálculo Diferencial e Integral I - Turma D. Professora: Elisandra Bär de Figueiredo

Lista 8: Análise do comportamento de funções - Cálculo Diferencial e Integral I - Turma D. Professora: Elisandra Bär de Figueiredo Lista 8: Análise do comportamento de funções - Cálculo Diferencial e Integral I - Turma D Professora: Elisandra Bär de Figueiredo 1. Seja f() = 5 + + 1. Justique a armação: f tem pelo menos uma raiz no

Leia mais

Aula Distância entre duas retas paralelas no espaço. Definição 1. Exemplo 1

Aula Distância entre duas retas paralelas no espaço. Definição 1. Exemplo 1 Aula 1 Sejam r 1 = P 1 + t v 1 t R} e r 2 = P 2 + t v 2 t R} duas retas no espaço. Se r 1 r 2, sabemos que r 1 e r 2 são concorrentes (isto é r 1 r 2 ) ou não se intersectam. Quando a segunda possibilidade

Leia mais

Instituto de Matemática - IM/UFRJ Cálculo I - MAC118 1 a Prova - Gabarito - 13/10/2016

Instituto de Matemática - IM/UFRJ Cálculo I - MAC118 1 a Prova - Gabarito - 13/10/2016 Instituto de Matemática - IM/UFRJ Cálculo I - MAC118 1 a Prova - Gabarito - 13/10/2016 Questão 1: (2 pontos) x (a) (0.4 ponto) Calcule o ite: 2 + 3 2. x 1 x 1 ( πx + 5 ) (b) (0.4 ponto) Calcule o ite:

Leia mais

Professor: Luiz Gonzaga Damasceno. Turma: Disciplina: Matemática II Avaliação: Lista Recuperação Data: 01/03.11.

Professor: Luiz Gonzaga Damasceno. Turma: Disciplina: Matemática II Avaliação: Lista Recuperação Data: 01/03.11. Data da Prova: 08..0 0) lim x+ x 8x+ 9 (B) (C) 9 (E) 0) lim x 5 x+5 x 5 0 (B) 0 (C) 0, 0, (E) 5 0) lim x x x (B) (C) / / (E) 0 0) lim x x x (B) 0,5 (C) - - 0,5 (E) 05) Calcule, se existir, o limite lim

Leia mais

Cálculo I (2015/1) IM UFRJ Lista 3: Derivadas Prof. Milton Lopes e Prof. Marco Cabral Versão Exercícios de Derivada

Cálculo I (2015/1) IM UFRJ Lista 3: Derivadas Prof. Milton Lopes e Prof. Marco Cabral Versão Exercícios de Derivada Eercícios de Derivada Eercícios de Fiação Cálculo I (0/) IM UFRJ Lista : Derivadas Prof Milton Lopes e Prof Marco Cabral Versão 7040 Fi : Determine a equação da reta tangente ao gráco de f() no ponto =

Leia mais

Funções de Uma Variável - 1 a Avaliação - Turma B3 31 de outubro de Prof. Armando Caputi

Funções de Uma Variável - 1 a Avaliação - Turma B3 31 de outubro de Prof. Armando Caputi Funções de Uma Variável - 1 a Avaliação - Turma B 1 de outubro de 017 - Prof. Armando Caputi 1 Determine o domínio da função f(x) = arctan x x + 1 (justifique) e a equação da reta tangente ao seu gráfico

Leia mais

Capítulo 1. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas.

Capítulo 1. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas. Capítulo 1 Funções Sejam A e B conjuntos não vazios. Uma função com domínio A e contradomínio B é uma regra f que a cada elemento em A associa um único elemento em B. A notação usual para uma função f

Leia mais

Posição relativa entre retas e círculos e distâncias

Posição relativa entre retas e círculos e distâncias 4 Posição relativa entre retas e círculos e distâncias Sumário 4.1 Distância de um ponto a uma reta.......... 2 4.2 Posição relativa de uma reta e um círculo no plano 4 4.3 Distância entre duas retas no

Leia mais

CÁLCULO I Aula 08: Regra da Cadeia. Derivação Implícita. Derivada da Função Inversa.

CÁLCULO I Aula 08: Regra da Cadeia. Derivação Implícita. Derivada da Função Inversa. CÁLCULO I Aula 08: Regra da Cadeia.. Função Inversa. Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará 1 2 3 Teorema (Regra da Cadeia) Sejam g(y) e y = f (x) duas funções deriváveis,

Leia mais

CAPÍTULO 8 REGRA DA CADEIA (UM CASO PARTICULAR)

CAPÍTULO 8 REGRA DA CADEIA (UM CASO PARTICULAR) CAPÍTULO 8 REGRA DA CADEIA UM CASO PARTICULAR 81 Introdução Em Cálculo 1A, aprendemos que, para derivar a função hx x 2 3x + 2 37, o mais sensato é fazer uso da regra da cadeia A regra da cadeia que é

Leia mais

CDI-II. Resumo das Aulas Teóricas (Semana 4) ; k = 1, 2,..., n.

CDI-II. Resumo das Aulas Teóricas (Semana 4) ; k = 1, 2,..., n. Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Prof. Gabriel Pires CDI-II esumo das Aulas Teóricas (Semana 4 1 Derivadas de Ordem Superior Seja f : D n, definida num

Leia mais

Funções de Uma Variável - 1 a Avaliação - Turma B3 31 de outubro de Prof. Armando Caputi

Funções de Uma Variável - 1 a Avaliação - Turma B3 31 de outubro de Prof. Armando Caputi Funções de Uma Variável - 1 a Avaliação - Turma B 1 de outubro de 017 - Prof. Armando Caputi 1 Determine o domínio da função g(x) = arctan ( ln(x x + ) ) (justifique) e a equação da reta tangente ao seu

Leia mais

Derivadas Parciais Capítulo 14

Derivadas Parciais Capítulo 14 Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS No Exemplo 6 da Seção 14.7 maximizamos a função volume V = xyz sujeita à restrição 2xz + 2yz + xy = que expressa a condição de a área da superfície ser

Leia mais

CÁLCULO I. 1 A Função Logarítmica Natural. Objetivos da Aula. Aula n o 22: A Função Logaritmo Natural. Denir a função f(x) = ln x;

CÁLCULO I. 1 A Função Logarítmica Natural. Objetivos da Aula. Aula n o 22: A Função Logaritmo Natural. Denir a função f(x) = ln x; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 22: A Função Logaritmo Natural Objetivos da Aula Denir a função f(x) = ln x; Calcular limites, derivadas e integral envolvendo a função

Leia mais

Cálculo Diferencial e Integral II

Cálculo Diferencial e Integral II Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral II Ficha de trabalho 1 (versão de 6/0/009 (Esboço de Conjuntos. Topologia. Limites. Continuidade

Leia mais

CÁLCULO I. Aula n o 02: Funções. Determinar o domínio, imagem e o gráco de uma função; Reconhecer funções pares, ímpares, crescentes e decrescentes;

CÁLCULO I. Aula n o 02: Funções. Determinar o domínio, imagem e o gráco de uma função; Reconhecer funções pares, ímpares, crescentes e decrescentes; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 02: Funções Objetivos da Aula Denir e reconhecer funções; Determinar o domínio, imagem e o gráco de uma função; Reconhecer funções pares,

Leia mais

Capítulo 2. Retas no plano. 1. Retas verticais e não-verticais. Definição 1

Capítulo 2. Retas no plano. 1. Retas verticais e não-verticais. Definição 1 Capítulo 2 Retas no plano O objetivo desta aula é determinar a equação algébrica que representa uma reta no plano. Para isso, vamos analisar separadamente dois tipos de reta: reta vertical e reta não-vertical.

Leia mais

Curvas Planas em Coordenadas Polares

Curvas Planas em Coordenadas Polares Curvas Planas em Coordenadas Polares Sumário. Coordenadas Polares.................... Relações entre coordenadas polares e coordenadas cartesianas...................... 6. Exercícios........................

Leia mais

MAT 3210 Cálculo Diferencial e Integral II. Prova 2 C

MAT 3210 Cálculo Diferencial e Integral II. Prova 2 C MAT 310 Cálculo Diferencial e Integral II Prof. Paolo Piccione 3 de Novembro de 011 Prova C Nome: Número USP: Assinatura: Instruções A duração da prova é de uma hora e quarenta minutos. Assinale as alternativas

Leia mais

MAT 3210 Cálculo Diferencial e Integral II. Prova 2 A

MAT 3210 Cálculo Diferencial e Integral II. Prova 2 A MAT 310 Cálculo Diferencial e Integral II Prof. Paolo Piccione 3 de Novembro de 011 Prova A Nome: Número USP: Assinatura: Instruções A duração da prova é de uma hora e quarenta minutos. Assinale as alternativas

Leia mais

MAT 3210 Cálculo Diferencial e Integral II. Prova 2 B

MAT 3210 Cálculo Diferencial e Integral II. Prova 2 B MAT 3210 Cálculo Diferencial e Integral II Prof. Paolo Piccione 23 de Novembro de 2011 Prova 2 B Nome: Número USP: Assinatura: Instruções A duração da prova é de uma hora e quarenta minutos. Assinale as

Leia mais

Estudo de funções. Universidade Portucalense Departamento de Inovação, Ciência e Tecnologia Curso Satélite - Módulo I - Matemática.

Estudo de funções. Universidade Portucalense Departamento de Inovação, Ciência e Tecnologia Curso Satélite - Módulo I - Matemática. Universidade Portucalense Departamento de Inovação, Ciência e Tecnologia Curso Satélite - Módulo I - Matemática Estudo de funções Continuidade Consideremos as funções: f : R R g : R R x x + x x +, x 1

Leia mais

Capítulo Coordenadas no Espaço. Seja E o espaço da Geometria Euclidiana tri-dimensional.

Capítulo Coordenadas no Espaço. Seja E o espaço da Geometria Euclidiana tri-dimensional. Capítulo 9 1. Coordenadas no Espaço Seja E o espaço da Geometria Euclidiana tri-dimensional. Um sistema de eixos ortogonais OXY Z em E consiste de três eixos ortogonais entre si OX, OY e OZ com a mesma

Leia mais

Prof.Letícia Garcia Polac. 8 de novembro de 2018

Prof.Letícia Garcia Polac. 8 de novembro de 2018 Fundamentos de Matemática Prof.Letícia Garcia Polac Universidade Federal de Uberlândia UFU-MG 8 de novembro de 2018 Sumário 1 Máximos e Mínimos 2 Funções Monótonas: Crescimento e Decrescimento 3 Concavidades

Leia mais

LISTA 9 (GABARITO) - CÁLCULO I - MAT111 - IAG - Diurno 1 o SEMESTRE de 2009 Professor Oswaldo Rio Branco

LISTA 9 (GABARITO) - CÁLCULO I - MAT111 - IAG - Diurno 1 o SEMESTRE de 2009 Professor Oswaldo Rio Branco LISTA 9 (GABARITO) - CÁLCULO I - MAT - IAG - Diurno o SEMESTRE de 009 Professor Oswaldo Rio Branco () Assumindo y = y(x) e derivando a equação da elipse em relação a x temos, d {x a + y b } = x a + y(x)y

Leia mais

UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 03. Palavras-chaves: Vetores, norma, produto escalar, produto interno.

UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 03. Palavras-chaves: Vetores, norma, produto escalar, produto interno. Assunto: Vetores, Norma e Produto escalar UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 03 Palavras-chaves: Vetores, norma, produto escalar, produto interno. Vetores Segmento orientado

Leia mais

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Módulo I: Cálculo Diferencial e Integral Funções de Duas ou Mais Variáveis

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Módulo I: Cálculo Diferencial e Integral Funções de Duas ou Mais Variáveis Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo Módulo I: Cálculo Diferencial e Integral Funções de Duas ou Mais Variáveis Professora Renata Alcarde Sermarini Notas de aula do

Leia mais

UFRJ - Instituto de Matemática Programa de Pós-Graduação em Ensino de Matemática Mestrado em Ensino de Matemática

UFRJ - Instituto de Matemática Programa de Pós-Graduação em Ensino de Matemática  Mestrado em Ensino de Matemática UFRJ - Instituto de Matemática Programa de Pós-Graduação em Ensino de Matemática www.pg.im.ufrj.br/pemat Mestrado em Ensino de Matemática Seleção 0 Etapa Questão. Considere f : [, ] R a função cujo gráfico

Leia mais

6. FUNÇÃO QUADRÁTICA 6.1. CONSIDERAÇÕES PRELIMINARES

6. FUNÇÃO QUADRÁTICA 6.1. CONSIDERAÇÕES PRELIMINARES 47 6. FUNÇÃO QUADRÁTICA 6.1. CONSIDERAÇÕES PRELIMINARES Na figura abaixo, seja a reta r e o ponto F de um determinado plano, tal que F não pertence a r. Consideremos as seguintes questões: Podemos obter,

Leia mais

Aula 21 Máximos e mínimos relativos.

Aula 21 Máximos e mínimos relativos. Aula 21 Objetivo Utilizar o conceito de derivada para determinar pontos de máximo e mínimo relativos de funções. Quando olhamos uma montanha, identificamos facilmente os picos da montanha e os fundos dos

Leia mais