Concavidade e pontos de inflexão Aula 20
|
|
|
- Terezinha Barroso Guterres
- 8 Há anos
- Visualizações:
Transcrição
1 Concavidade e pontos de inflexão Aula 20 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 22 de Abril de 2014 Primeiro Semestre de 2014 Turma Engenharia Mecânica
2 Concavidade (revisão) Agora vamos obter informação da f a partir do Teorema do Valor Médio e de sua derivada segunda. Sejam f derivável em (a,b) e p (a,b). Consideremos a reta tangente T p ao gráfico de f no ponto (p,f(p)) dada por T p (x) = f(p)+f (p)(x p).
3 Definição Seja f derivável em (a,b). Diremos que f tem concavidade para cima em (a,b) se, para quaisquer x,p (a,b), com x p, tivermos f(x) > T p (x). Neste caso, f será dita côncava ou côncava para cima em (a,b). f tem concavidade para baixo em (a,b) se, para quaisquer x,p (a,b), com x p, tivermos f(x) < T p (x). Neste caso, f será dita convexa ou côncava para baixo em (a,b).
4 O próximo teorema estabelece condições suficientes para que uma função f seja côncava para cima ou para baixo. Teorema Seja f uma função derivável em (a,b). Valem as afirmações (i) Se f for estritamente crescente em (a,b), então f será côncava para cima em (a,b). (ii) Se f for estritamente decrescente em (a,b), então f será côncava para baixo em (a,b). De fato, do Teorema do Valor Médio, para algum c entre x e p f(x) f(p) f (p)(x p) = (f (c) f (p))(x p). Uma simples análise de sinal prova o resultado.
5 Corolário (Critério de concavidade) Seja f uma função derivável até segunda ordem em (a,b). Valem as afirmações (i) Se f (x) > 0, para todo x (a,b), então f será côncava para cima (a,b). (ii) Se f (x) < 0, para todo x (a,b), então f será côncava para baixo em (a,b). Note que f (x) = (f ) (x) > 0 (< 0), para todo x (a,b), implica que f é estritamente crescente (decrescente) no intervalo (a,b). O resultado agora segue do teorema anterior.
6 Exemplo Estude a concavidade de f(x) = e x2 2 e esboce o gráfico. f (x) = xe x2 2 e f (x) = (x 2 1)e x2 2. Como e x2 2 > 0 para todo x, o sinal de f é dado pelo sinal de x 2 1. Portanto, f (x) > 0 em (, 1) e (1,+ ) f é côncava para cima em (, 1) e (1,+ ), f (x) < 0 em ( 1,1) f é côncava para baixo em ( 1,1).
7 Definição Seja f uma função contínua em p D f. Diremos que p é ponto de inflexão de f se existirem a,b R tais que (i) p (a,b) D f ; (ii) ou f (a,p) é côncava e f (p,b) é convexa, ou f (a,p) é convexa e f (p,b) é côncava. Ou seja, p é um ponto onde muda a concavidade da função.
8 Exemplo Os pontos x = 1 e x = 1 são pontos de inflexão de f(x) = e x2 2. Exemplo x = 0 é um ponto de inflexão de f(x) = 3 x. Exercício: Mostre que x = 0 é um ponto de inflexão de { x f(x) = 2, x 0 x 3, x < 0.
9 Definição Se f for uma função diferenciável em p (a,b) e p for um ponto de inflexão de f, diremos que p é um ponto de inflexão horizontal, se f (p) = 0. Caso contrário diremos que p é um ponto de inflexão obĺıquo. Observação: Os pontos de inflexão horizontais são pontos críticos, enquanto que os pontos de inflexão obĺıquos não os são. No exemplo acima, x = 0 é um ponto de inflexão horizontal.
10 Exemplo Os pontos x = 1 e x = 1 são pontos de inflexão obĺıquos de f(x) = e x2 2. Exemplo O ponto x = 0 é um ponto de inflexão horizontal de f(x) = x 3. Corolário Se f for duas vezes diferenciável em (a,b) e p (a,b) for um ponto de inflexão de f, então f (p) = 0.
11 Teorema Seja f três vezes diferenciável em (a, b) com derivada terceira contínua. Se p (a,b) for tal que f (p) = 0 e f (p) 0, então p será um ponto de inflexão de f.
12 Teorema Sejam f : [a,b] R derivável em (a,b) e p [a,b]. Valem as afirmações: (i) Se f (p) = 0 e f for crescente em (a,b), então p será ponto de mínimo local de f. (ii) Se f (p) = 0 f for decrescente em (a,b), então p será ponto de máximo local de f.
13 Proposição (Critério da derivada segunda) Suponhamos que f : [a,b] R admita derivadas até segunda ordem contínuas em (a,b) e seja p (a,b). Valem as afirmações: (i) Se f (p) = 0 e f (p) > 0, então p será ponto de mínimo local de f. (ii) Se f (p) = 0 e f (p) < 0, então p será ponto de máximo local de f.
14 Seja f : D f R R. Para conhecer o comportamento de f (com o que desenvolvemos até agora) procedemos da seguinte forma: Determinamos, se possível, os pontos onde f se anula e os intervalos onde f é positiva e onde f é negativa. Determinamos, caso existam, as assíntotas horizontais e verticais de f. Calculamos f e determinamos, se possível, os pontos críticos de f (zeros de f e pontos onde f não existe). Estudamos o sinal de f e determinamos os intervalos onde f é crescente ou decrescente. Calculamos f e f e classificamos os pontos críticos (máximos, mínimos e pontos de inflexão). Analisamos o sinal de f para determinar a concavidade em cada intervalo.
15 Exemplo Determine os pontos críticos da função f e classifique-os (pontos máximo, mínimo local) sendo (a) f(x) = x4 4 x3 2x 2 +3; (b) f(x) = x 2 e 5x. (a) Temos f (x) = x 3 3x 2 4x = x(x 2 3x 4). Portanto, x = 1, x = 0 e x = 4 são os pontos críticos de f. Como f ( 1) = 5, f (0) = 4 e f (4) = 20 concluímos que 0 é ponto de máximo e 1 e 4 são pontos de mínimo. (b) x = 0 é ponto de mínimo e x = 2 5 é ponto de máximo.
16 Exemplo Esboce o gráfico de f(x) = x 2/3 (6 x) 1/3. Calculando as derivadas f (x) = 4 x x 1/3 (6 x) 2/3, f (x) = 8 x 4/3 (6 x) 5/3. Os pontos críticos são x = 4, x = 0 e x = 6. Analisando o sinal da derivada primeira Se x < 0 f (x) < 0 f é estritamente decrescente. Se 0 < x < 4 f (x) > 0 f é estritamente crescente. Se 4 < x < 6 f (x) < 0 f é estritamente decrescente. Se x > 6 f (x) < 0 f é estritamente decrescente.
17 Pelo teste da Derivada Primeira x = 0 é um ponto de mínimo local. x = 4 é um ponto de máximo local. Observe que o teste da Derivada Segunda poderia ser usado em 4, mas não em 0. Analisando o sinal da derivada segunda Se x < 0 f (x) < 0 f é côncava para baixo. Se 0 < x < 6 f (x) < 0 f é côncava para baixo. Se x > 6 f (x) > 0 f é côncava para cima. O único ponto de inflexão é x = 6. Observe que as retas tangentes em x = 0 e x = 6 são verticais.
18 Exemplo Esboce o gráfico de f(x) = x x. Calculando as derivadas f (x) = 2x 1 x 2 = 2x3 1 x 2, f (x) = 2+ 2 x 3 = 2(x3 +1) x 3. Os pontos críticos são x = 0 e x = 3 1. Analisando o sinal da 2 derivada primeira f (x) > 0 se x > 3 1 f é crescente em ( 1 2 3,+ ). 2 f (x)<0 se x < f é decrescente em (,0) e (0, ). Pelo teste da Derivada Primeira ou Segunda x = 1 3 é um ponto 2 de mínimo local.
19 Analisando o sinal da derivada segunda Se 1 < x < 0 f (x) < 0 f é côncava para baixo. Se x > 0 ou x < 1 f (x) > 0 f é côncava para cima. O único ponto de inflexão é x = 1. Observações: Seja f : [a,b] R derivável em (a,b). preciso destacarmos que Se f (p) = 0, então p não será necessariamente um ponto de máximo ou de mínimo local. Neste caso, p poderá ser ponto de inflexão (horizontal). Nas condições da Proposição, se f (p) 0, então p não será ponto de máximo ou mínimo local de f. Entretanto, Podemos ter p um ponto de máximo ou mínimo local de f sem que exista f (p). Neste caso, p será ponto das extremidades de [a,b], isto é, p = a ou p = b.
MAT146 - Cálculo I - Esboço de Gráficos. Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira
Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira Nas aulas anteriores, estudamos várias ferramentas (Teste da Derivada Primeira, Teste da Derivada Segunda, Existência de Pontos Críticos,
Estudo de funções. Universidade Portucalense Departamento de Inovação, Ciência e Tecnologia Curso Satélite - Módulo I - Matemática.
Universidade Portucalense Departamento de Inovação, Ciência e Tecnologia Curso Satélite - Módulo I - Matemática Estudo de funções Continuidade Consideremos as funções: f : R R g : R R x x + x x +, x 1
Esboço de Gráfico - Exemplos e Regras de L Hospital Aula 23
Esboço de Gráfico - s e Regras de L Hospital Aula 23 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 06 de Maio de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia
LISTA DE EXERCÍCIOS Cálculo I -A- Humberto José Bortolossi
LISTA DE EXERCÍCIOS Cálculo I -A- Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ 18 Esboço de gráficos de funções [01] Verdadeiro ou falso? Se f : R R é uma função de classe C e f (p)
AULA 30/05/2017 MÁXIMOS E MÍNIMOS, ESTUDO COMPLETO DE FUNÇÕES, APLICAÇÃO DE DERIVADA
AULA 30/05/2017 MÁXIMOS E MÍNIMOS, ESTUDO COMPLETO DE FUNÇÕES, APLICAÇÃO DE DERIVADA As derivadas têm inúmeras aplicações. Com o estudo da primeira e da segunda derivada podemos esboçar o gráfico de uma
Aula 25. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil
Assíntotas, Esboço de Gráfico e Aplicações Aula 25 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 09 de Maio de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia
Aula 24. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil
Polinômios de Taylor Aula 24 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 08 de Maio de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica Os polinômios
ANEXOS Anexo A: Esboço de Curvas Anexo B: Exemplos Extras Anexo C: Aplicação do Software SLD
ANEXOS Anexo A: Esboço de Curvas Anexo B: Exemplos Extras Anexo C: Aplicação do Software SLD ANEXO A Critérios para determinar o comportamento de uma função através do estudo da derivada. Vamos relembrar
Instituto de Matemática - IM/UFRJ Cálculo I - MAC118 1 a Prova - Gabarito - 13/10/2016
Instituto de Matemática - IM/UFRJ Cálculo I - MAC118 1 a Prova - Gabarito - 13/10/2016 Questão 1: (2 pontos) x (a) (0.4 ponto) Calcule o ite: 2 + 3 2. x 1 x 1 ( πx + 5 ) (b) (0.4 ponto) Calcule o ite:
Gráficos. Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html
Gráficos Material online: h-p://www.im.ufal.br/professor/thales/calc12010_2.html O que f nos diz sobre f? O que f nos diz sobre f? f (x) < 0 f (x) > 0 f(x) =x 2 f (x) =2x x>0 f (x) > 0 x
Para identificar intervalos de crescimento e decrescimento de uma função analisamos o comportamento de sua primeira derivada.
O CONCEITO DE DERIVADA (continuação) Funções Crescentes e Decrescentes Existe uma relação direta entre a derivada de uma função e o crescimento desta função. Em geral, temos: Se, para todo x ]a, b[ tivermos
CÁLCULO I. 1 Concavidade. Objetivos da Aula. Aula n o 18: Concavidade. Teste da Segunda Derivada. Denir concavidade do gráco de uma função;
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 18: Concavidade. Teste da Segunda Derivada. Objetivos da Aula Denir concavidade do gráco de uma função; Denir ponto de
A derivada da função inversa, o Teorema do Valor Médio e Máximos e Mínimos - Aula 18
A derivada da função inversa, o Teorema do Valor Médio e - Aula 18 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 10 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014106
Concavidade. Universidade de Brasília Departamento de Matemática
Universidade de Brasília Departamento de Matemática Cálculo 1 Concavidade Conforme vimos anteriormente, o sinal da derivada de uma função em um intervalo nos dá informação sobre crescimento ou decrescimento
CÁLCULO I. 1 Concavidade. Objetivos da Aula. Aula n o 19: Concavidade. Teste da Segunda Derivada. Denir concavidade de uma função;
CÁLCULO I Prof. Marcos Diniz Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 19: Concavidade. Teste da Segunda Derivada. Objetivos da Aula Denir concavidade de uma função; Denir ponto de inexão;
Concavidade e o Teste da Derivada Segunda
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Concavidade e o Teste
MAT 111 Cálculo Diferencial e Integral I. Prova 2 14 de Junho de 2012
MAT 111 Cálculo Diferencial e Integral I Prof. Paolo Piccione Prova 2 14 de Junho de 2012 Nome: Número USP: Assinatura: Instruções A duração da prova é de duas horas. Assinale as alternativas corretas
MAT 111 Cálculo Diferencial e Integral I. Prova 2 14 de Junho de 2012
MAT 111 Cálculo Diferencial e Integral I Prof. Paolo Piccione Prova 2 14 de Junho de 2012 Nome: Número USP: Assinatura: Instruções A duração da prova é de duas horas. Assinale as alternativas corretas
MAT140 - Cálculo I - Máximos e Mínimos Locais e Globais, Pontos Críticos e o Teste da Derivada Primeira
MAT140 - Cálculo I - Máximos e Mínimos Locais e Globais, Pontos Críticos e o Teste da Derivada Primeira 4 de novembro de 2015 Vimos que a derivada de uma função em um ponto é a inclinação da reta tangente
Aula 22 O teste da derivada segunda para extremos relativos.
O teste da derivada segunda para extremos relativos. MÓDULO 2 - AULA 22 Aula 22 O teste da derivada segunda para extremos relativos. Objetivo: Utilizar a derivada segunda para determinar pontos de máximo
Universidade Federal de Juiz de Fora Departamento de Matemática
Universidade Federal de Juiz de Fora Departamento de Matemática Cálculo I - Segunda Avaliação - Segundo Semestre Letivo de 2016-03/12/2016 - FILA A Aluno(a): Matrícula: Turma: Instruções Gerais: 1- A prova
CÁLCULO I Aula 15: Concavidade. Teste da Segunda Derivada.
CÁLCULO I Aula 15: Concavidade.. Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará 1 Concavidade 2 Considere um intervalo I e uma função f : I R derivável cujo gráco é dado abaixo.
UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Instituto de Matemática PRIMEIRA PROVA UNIFICADA CÁLCULO I POLITÉCNICA E ENGENHARIA QUÍMICA 13/12/2012.
UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Instituto de Matemática PRIMEIRA PROVA UNIFICADA CÁLCULO I POLITÉCNICA E ENGENHARIA QUÍMICA 13/12/2012. GABARITO 1 a Questão. (3.0 pontos). (a) Calcule: lim x 0 +
Aula 21 Máximos e mínimos relativos.
Aula 21 Objetivo Utilizar o conceito de derivada para determinar pontos de máximo e mínimo relativos de funções. Quando olhamos uma montanha, identificamos facilmente os picos da montanha e os fundos dos
Prova de Conhecimentos Específicos 1 a QUESTÃO: (2,0 pontos)
Prova de Conhecimentos Específicos 1 a QUESTÃO: (,0 pontos) 5x Considere a função f(x)=. Determine, se existirem: x +7 (i) os pontos de descontinuidade de f; (ii) as assíntotas horizontais e verticais
Funções de Uma Variável - 1 a Avaliação - Turma B3 31 de outubro de Prof. Armando Caputi
Funções de Uma Variável - 1 a Avaliação - Turma B 1 de outubro de 017 - Prof. Armando Caputi 1 Determine o domínio da função f(x) = arctan x x + 1 (justifique) e a equação da reta tangente ao seu gráfico
Funções de Uma Variável - 1 a Avaliação - Turma B3 31 de outubro de Prof. Armando Caputi
Funções de Uma Variável - 1 a Avaliação - Turma B 1 de outubro de 017 - Prof. Armando Caputi 1 Determine o domínio da função g(x) = arctan ( ln(x x + ) ) (justifique) e a equação da reta tangente ao seu
Propriedades das Funções Contínuas e Limites Laterais Aula 12
Propriedades das Funções Contínuas e Limites Laterais Aula 12 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 27 de Março de 2014 Primeiro Semestre de 2014 Turma 2014106 -
CÁLCULO I. 1 Funções Crescentes e Decrescentes
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 14: Crescimento e Decrescimento. Teste da Primeira Derivada. Objetivos da Aula Denir funções crescentes e decrescentes; Determinar os intervalos
Concavidade e o Teste da Derivada Segunda. Concavidade e o Teste da Derivada Segunda. Definição de Concavidade:
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Definição de Concavidade:
Cálculo 1 A Turma F1 Prova VR
Cálculo 1 A 2017.2 Turma F1 Prova VR Nome (MAIÚSCULO): Matrícula: O IMPORTANTE É O RACIOCÍNIO, PORTANTO DEIXE-O TODO NA PROVA. RESPOSTAS SEM AS DEVIDAS JUSTIFICATIVAS SERÃO DESCONSIDERADAS. (1) Esboce
Assíntotas. 1.Assíntotas verticais e limites infinitos 2.Assíntotas horizontais e limites no infinito 3.Assíntotas inclinadas
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Assíntotas Prof.:
MAT 111 Cálculo Diferencial e Integral I. Prova 2 5 de junho de 2014
MAT 111 Cálculo Diferencial e Integral I Prof. Paolo Piccione Prova 2 5 de junho de 2014 Nome: Número USP: Assinatura: Instruções A duração da prova é de duas horas. Assinale as alternativas corretas na
MAT 111 Cálculo Diferencial e Integral I. Prova 2 5 de junho de 2014
MAT 111 Cálculo Diferencial e Integral I Prof. Paolo Piccione Prova 2 5 de junho de 2014 Nome: Número USP: Assinatura: Instruções A duração da prova é de duas horas. Assinale as alternativas corretas na
A Derivada. Derivadas Aula 16. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil
Derivadas Aula 16 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 04 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014104 - Engenharia Mecânica A Derivada Seja x = f(t)
CÁLCULO I. 1 Funções Crescentes e Decrescentes
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 17: Crescimento e Decrescimento de funções. Teste da Primeira Derivada. Objetivos da Aula Denir funções crescentes e
Cálculo 1 Fuja do Nabo. Resumo e Exercícios P2
Cálculo 1 Fuja do Nabo Resumo e Exercícios P2 Fórmulas e Resumo Teórico Limites Exponenciais e Logarítmicos lim $ &' 1 + 1 x $ = e ou lim $ 0 1 + h 2 3 = e a $ 1 lim $ 0 x = ln a, a > 0 Derivadas Exponenciais
A Segunda Derivada: Análise da Variação de Uma Função
A Segunda Derivada: Análise da Variação de Uma Função Suponhamos que a função y = f() possua derivada em um segmento [a, b] do eio-. Os valores da derivada f () também dependem de, ou seja, a derivada
Universidade Federal de Juiz de Fora Departamento de Matemática
Universidade Federal de Juiz de Fora Departamento de Matemática Nota da 3 a Avaliação Cálculo I - Terceira Avaliação - Primeiro Semestre Letivo de 2018-09/07/2018 - FILA A Aluno(a): Matrícula: Turma: Instruções
Gabarito da Prova Final Unificada de Cálculo I- 2015/2, 08/03/2016. ln(ax. cos (
Gabarito da Prova Final Unificada de Cálculo I- 05/, 08/03/06. Considere a função f : (0, ) R definida por ln(ax ), se x, f(x) = 6 ln cos ( π, x 3 se 0 < x
3 A Reta Tangente Definição: Seja y = f(x) uma curva definida no intervalo. curva y = f(x). A reta secante s é a reta que passa pelos pontos
3 A Reta Tangente Definição: Seja y = f(x) uma curva definida no intervalo (a, b) Sejam P(p, f(p)) e Q(x, f(x)) dois pontos distintos da curva y = f(x). A reta secante s é a reta que passa pelos pontos
Instituto de Matemática - IM/UFRJ Gabarito da Primeira Prova Unificada de Cálculo I Politécnica e Engenharia Química
Página de 5 Questão : (3.5 pontos) Calcule: + Instituto de Matemática - IM/UFRJ Politécnica e Engenharia Química 3 2 + (a) 3 + 2 + + ; + (b) ; + (c) 0 +(sen )sen ; (d) f (), onde f() = e sen(3 + +). (a)
CÁLCULO I. 1 Assíntotas Oblíquas. Objetivos da Aula. Aula n o 19: Grácos.
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 9: Grácos. Objetivos da Aula Denir e determinar as assíntotas oblíquas ao gráco de uma função, Utilizar o Cálculo Diferencial
Esboço de Gráficos (resumo)
Esboço de Gráficos (resumo) 1 Máximos e Mínimos Definição: Diz-se que uma função tem um valor máximo relativo (máximo local) em c se existe um intervalo ( a, b) aberto contendo c tal que f ( c) f ( x)
Primitivas e a integral de Riemann Aula 26
Primitivas e a integral de Riemann Aula 26 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 13 de Maio de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica
Índice. AULA 5 Derivação implícita 3. AULA 6 Aplicações de derivadas 4. AULA 7 Aplicações de derivadas 6. AULA 8 Esboço de gráficos 9
www.matematicaemexercicios.com Derivadas Vol. 2 1 Índice AULA 5 Derivação implícita 3 AULA 6 Aplicações de derivadas 4 AULA 7 Aplicações de derivadas 6 AULA 8 Esboço de gráficos 9 www.matematicaemexercicios.com
UFRJ - Instituto de Matemática Programa de Pós-Graduação em Ensino de Matemática Mestrado em Ensino de Matemática
UFRJ - Instituto de Matemática Programa de Pós-Graduação em Ensino de Matemática www.pg.im.ufrj.br/pemat Mestrado em Ensino de Matemática Seleção 0 Etapa Questão. Considere f : [, ] R a função cujo gráfico
Universidade de São Paulo Escola Superior de Agricultura Luiz de Queiroz Departamento de Ciências Exatas
Universidade de São Paulo Escola Superior de Agricultura Luiz de Queiroz Departamento de Ciências Exatas LCE0176 - Cálculo e Matemática Aplicados às Ciências Biológicas Professora: Clarice G. B. Demétrio
JOÃO CARLOS MOREIRA CÁLCULO DIFERENCIAL E INTEGRAL
UMA NOVA ABORDAGEM NO ENSINO DA MATEMÁTICA JOÃO CARLOS MOREIRA CÁLCULO DIFERENCIAL E INTEGRAL FUN COLEÇÃO ESCOLA DE CÁLCULO VOLUME 2 - FUNÇÕES RACIONAIS UMA NOVA ABORDAGEM NO ENSINO DA MATEMÁTICA CÁLCULO
Limites infinitos e limites no infinito Aula 15
Propriedades dos ites infinitos Limites infinitos e ites no infinito Aula 15 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 03 de Abril de 2014 Primeiro Semestre de 2014
Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Aplicações da Derivada
1) Velocidade e Aceleração 1.1 Velocidade Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Aplicações da Derivada Suponhamos que um corpo se move em
c) R 2 e f é decrescente no intervalo 1,. , e f é crescente no intervalo 2, 2
UFJF ICE Departamento de Matemática CÁLCULO I - LISTA DE EXERCÍCIOS Nº As questões de números a 9 referem-se à função f ( ). - O domínio da função f é o conjunto: a) R b) R c) R R, 0 e) R 0 - A derivada
Assíntotas. Assíntotas. Os limites infinitos para a função f(x) = 3/(x 2) podem escrever-se como
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Assíntotas Os limites
CÁLCULO I Aula 14: Crescimento e Decrescimento. Teste da Primeira Derivada.
CÁLCULO I Aula 14:.. Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará 1 2 3 Denição Sejam f : A B uma função e x 1, x 2 D f. Denimos que f é uma (i) função crescente se x 1
Aplicações de Derivadas
Capítulo 6 Aplicações de Derivadas 6.1 Acréscimos e Diferenciais Seja y = f(x) uma função. Em muitas aplicações a variável independente x está sujeita à pequenas variações e é necessário encontrar a correspondente
Aula 32. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil
Superfícies de Revolução e Outras Aplicações Aula 32 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 29 de Maio de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia
CÁLCULO I. 1 Construção de Grácos. Objetivo da Aula. Aula n o 20: Grácos. Utilizar o Cálculo Diferencial para esboçar o gráco de uma função.
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Prof. Emerson Veiga Prof. Tiago Coelho Aula n o 0: Grácos. Objetivo da Aula Utilizar o Cálculo Diferencial para esboçar o gráco
Quando consideramos, por exemplo, a função f(x) = x 2, já sabemos do
Módulo 2 Derivação e Aplicações Quando consideramos, por exemplo, a função f(x) = x 2, já sabemos do Pré-Cálculo que seu gráfico é uma parábola. Algumas perguntas naturais que podemos fazer são: Se tomarmos
Demonstração. Sabemos que o volume de um cone reto com base circular de raio r e altura h é dado por
UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL 1-018.1 1A VERIFICAÇÃO DE APRENDIZAGEM - PARTE Nome Legível RG CPF Respostas sem justificativas
= 6 lim. = lim. 2x + 2 sin(x) cos(x) 4 sin(4x) 2 x cos(x) = lim. x + ln(x) cos ) ] 3x. 3 ln. = lim x 1 x +
UFRGS - PAG Cálculo - MAT05-0/ Lista 5-04/05/0 - Soluções.a ln + 0 + ln = + + 0 =.b sin8 0 sin4 = 0 8 cos8 4 cos4 =.c.d + sin 0 cos4 = 0 + sin cos 4 sin4 = 0 + cos sin 6 cos4 = 4 0 + sin e cos = 0 + e
CÁLCULO I Aula 17: Grácos.
CÁLCULO I Aula 17: Grácos. Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará 1 Grácos (1) Domínio - vericar sempre em que pontos a função está denida ou não está denida; (1) Domínio
Extremos e o Teste da Derivada Primeira
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Extremos e o Teste
MATEMÁTICA A - 11o Ano Funções - Derivada (extremos, monotonia e retas tangentes) Propostas de resolução
MATEMÁTICA A - o Ano Funções - Derivada extremos, monotonia e retas tangentes) Propostas de resolução Exercícios de exames e testes intermédios. Temos que, pela definição de derivada num ponto, f ) fx)
Máximos e mínimos UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 22. Assunto: Máximos e mínimos
Assunto: Máximos e mínimos UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA Palavras-chaves: máximos e mínimos, valores máximos e valores mínimos Máximos e mínimos Sejam f uma função a valores
CÁLCULO I. 1 Concavidade. Objetivos da Aula. Aula n o 16: Máximos e Mínimos - 2 a Parte
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 16: Máximos e Mínimos - 2 a Parte Objetivos da Aula Denir e discutir a concavidade de uma função em um intervalo do domínio; Denir e calcular
Capítulo 6 Aplicações de Derivadas
Departamento de Matemática - ICE - UFJF Disciplina MAT154 - Cálculo 1 Capítulo 6 Aplicações de Derivadas 5.1 Acréscimos e Diferenciais Seja y = f(x) uma função. Em muitas aplicações a variável independente
