CÁLCULO I Aula 17: Grácos.
|
|
|
- Natan Bacelar Bandeira
- 9 Há anos
- Visualizações:
Transcrição
1 CÁLCULO I Aula 17: Grácos. Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará
2 1 Grácos
3 (1) Domínio - vericar sempre em que pontos a função está denida ou não está denida;
4 (1) Domínio - vericar sempre em que pontos a função está denida ou não está denida; (2) Simetria - vericar se a função é par ou ímpar. No caso de trabalharmos com funções periódicas, determinar o período, caso exista.
5 (1) Domínio - vericar sempre em que pontos a função está denida ou não está denida; (2) Simetria - vericar se a função é par ou ímpar. No caso de trabalharmos com funções periódicas, determinar o período, caso exista. (3) Intervalos de Crescimento e Decrescimento / Máximos e Mínimos Locais - Utilizar a primeira derivada para determinar os intervalos de crescimento e decrescimento e o teste da primeira derivada para determinar os máximos e mínimos locais;
6 (1) Domínio - vericar sempre em que pontos a função está denida ou não está denida; (2) Simetria - vericar se a função é par ou ímpar. No caso de trabalharmos com funções periódicas, determinar o período, caso exista. (3) Intervalos de Crescimento e Decrescimento / Máximos e Mínimos Locais - Utilizar a primeira derivada para determinar os intervalos de crescimento e decrescimento e o teste da primeira derivada para determinar os máximos e mínimos locais; (4) Concavidade / Pontos de Inexão - Utilizar a segunda derivada para determinar a concavidade da função e também os pontos de inexão;
7 (5) Assíntotas - Utilizar os limites no innito para determinar a existência de assíntotas horizontais; vericar os pontos em que a função não está denida para determinar as assíntotas verticais e utilizar o conteúdo da seção anterior para determinar as assíntotas oblíquas, caso existam;
8 (5) Assíntotas - Utilizar os limites no innito para determinar a existência de assíntotas horizontais; vericar os pontos em que a função não está denida para determinar as assíntotas verticais e utilizar o conteúdo da seção anterior para determinar as assíntotas oblíquas, caso existam; (6) Raízes e Interseção com o eixo y - determinar as raízes da função e o ponto de interseção com o eixo y, caso existam;
9 (5) Assíntotas - Utilizar os limites no innito para determinar a existência de assíntotas horizontais; vericar os pontos em que a função não está denida para determinar as assíntotas verticais e utilizar o conteúdo da seção anterior para determinar as assíntotas oblíquas, caso existam; (6) Raízes e Interseção com o eixo y - determinar as raízes da função e o ponto de interseção com o eixo y, caso existam; (7) Esboçar o gráco.
10 Observação Sempre que determinarmos os extremos relativos e os pontos de concavidade se faz necessário determinar o valor da função nesses pontos para que possamos representá-los no gráco.
11 Observação Na procura por raízes de uma função, podemos utilizar diversos métodos que já foram ensinados como o Método de Briot-Runi, a divisão de polinômios, as relações entre raízes e coecientes de um polinômio e até mesmo o Teorema do Valor Intermediário. Um resultado pouco conhecido talvez mas que pode nos auxiliar, é o seguinte:
12 Observação Na procura por raízes de uma função, podemos utilizar diversos métodos que já foram ensinados como o Método de Briot-Runi, a divisão de polinômios, as relações entre raízes e coecientes de um polinômio e até mesmo o Teorema do Valor Intermediário. Um resultado pouco conhecido talvez mas que pode nos auxiliar, é o seguinte: Proposição Considere o polinômio a n x n + a n 1 x n a 2 x 2 + a 1 x + a 0. Se ele possui uma raiz inteira x (uma de suas raízes é um número inteiro) então x divide o termo independente a 0
13 Exemplo Esboce o gráco da função f (x) = x 3 x 2 x + 1
14
15 Exemplo Esboce o gráco de f (x) = x 4 2x 2
16
17 Exemplo Esboce o gráco da função f (x) = x 3 3x 2 + 3x.
18
19 Exemplo Esboce o gráco de f (x) = x 2 x + 1
20
21 Exemplo Esboce o gráco da função f (x) = x x + 1
22
23 Exemplo Esboce o gráco da função f (x) = 3 x 3 x
24
25 Exemplo Esboce o gráco da função f (x) = x tg x, x ( π 2, π 2 ).
26
27 Exemplo Esboce o gráco da função f (x) = ex x.
28
29 Na próxima aula... Grácos Primitivas;
30 Na próxima aula... Grácos Primitivas; Regra da Substituição.
CÁLCULO I. 1 Construção de Grácos. Objetivo da Aula. Aula n o 20: Grácos. Utilizar o Cálculo Diferencial para esboçar o gráco de uma função.
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Prof. Emerson Veiga Prof. Tiago Coelho Aula n o 0: Grácos. Objetivo da Aula Utilizar o Cálculo Diferencial para esboçar o gráco
CÁLCULO I. 1 Assíntotas Oblíquas. Objetivos da Aula. Aula n o 19: Grácos.
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 9: Grácos. Objetivos da Aula Denir e determinar as assíntotas oblíquas ao gráco de uma função, Utilizar o Cálculo Diferencial
CÁLCULO I Aula 14: Crescimento e Decrescimento. Teste da Primeira Derivada.
CÁLCULO I Aula 14:.. Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará 1 2 3 Denição Sejam f : A B uma função e x 1, x 2 D f. Denimos que f é uma (i) função crescente se x 1
CÁLCULO I Aula 15: Concavidade. Teste da Segunda Derivada.
CÁLCULO I Aula 15: Concavidade.. Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará 1 Concavidade 2 Considere um intervalo I e uma função f : I R derivável cujo gráco é dado abaixo.
CÁLCULO I. 1 Concavidade. Objetivos da Aula. Aula n o 19: Concavidade. Teste da Segunda Derivada. Denir concavidade de uma função;
CÁLCULO I Prof. Marcos Diniz Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 19: Concavidade. Teste da Segunda Derivada. Objetivos da Aula Denir concavidade de uma função; Denir ponto de inexão;
CÁLCULO I. 1 Concavidade. Objetivos da Aula. Aula n o 18: Concavidade. Teste da Segunda Derivada. Denir concavidade do gráco de uma função;
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 18: Concavidade. Teste da Segunda Derivada. Objetivos da Aula Denir concavidade do gráco de uma função; Denir ponto de
CÁLCULO I Aula 11: Limites Innitos e no Innito. Assíntotas. Regra de l'hôspital.
Limites s CÁLCULO I Aula 11: Limites s e no... Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará Limites s 1 Limites no 2 Limites s 3 4 5 Limites s Denição Seja f uma função denida
CÁLCULO I. 1 Funções Crescentes e Decrescentes
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 17: Crescimento e Decrescimento de funções. Teste da Primeira Derivada. Objetivos da Aula Denir funções crescentes e
CÁLCULO I. 1 Funções Crescentes e Decrescentes
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 14: Crescimento e Decrescimento. Teste da Primeira Derivada. Objetivos da Aula Denir funções crescentes e decrescentes; Determinar os intervalos
LISTA DE EXERCÍCIOS Cálculo I -A- Humberto José Bortolossi
LISTA DE EXERCÍCIOS Cálculo I -A- Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ 18 Esboço de gráficos de funções [01] Verdadeiro ou falso? Se f : R R é uma função de classe C e f (p)
CÁLCULO I. Apresentar e aplicar a Regra de L'Hospital.
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o : Limites Innitos e no Innito. Assíntotas. Regra de L'Hospital Objetivos da Aula Denir ite no innito e ites innitos; Apresentar alguns tipos
CÁLCULO I. Aula n o 02: Funções. Denir função e conhecer os seus elementos; Listar as principais funções e seus grácos.
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 02: Funções. Objetivos da Aula Denir função e conhecer os seus elementos; Reconhecer o gráco de uma função; Listar as
Limites. Slides de apoio sobre Limites. Prof. Ronaldo Carlotto Batista. 7 de outubro de 2013
Cálculo 1 ECT1113 Slides de apoio sobre Limites Prof. Ronaldo Carlotto Batista 7 de outubro de 2013 AVISO IMPORTANTE Estes slides foram criados como material de apoio às aulas e não devem ser utilizados
CÁLCULO I. 1 A Função Logarítmica Natural. Objetivos da Aula. Aula n o 22: A Função Logaritmo Natural. Denir a função f(x) = ln x;
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 22: A Função Logaritmo Natural Objetivos da Aula Denir a função f(x) = ln x; Calcular limites, derivadas e integral envolvendo a função
CÁLCULO I. 1 Regra de l'hôspital. Objetivos da Aula. Aula n o 14: Regra de L'Hospital. Apresentar e aplicar a Regra de L'Hospital.
CÁLCULO I Prof Marcos Diniz Prof Edilson Neri Júnior Prof André Almeida Aula n o 4: Regra de L'Hospital Objetivos da Aula Apresentar e aplicar a Regra de L'Hospital Regra de l'hôspital A regra de l'hôspital,
CÁLCULO I Aula 05: Limites Laterais. Teorema do Valor Intermediário. Teorema do Confronto. Limite Fundamental Trigonométrico.
s Laterais CÁLCULO I Aula 05: s Laterais.... Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará s Laterais 1 s Laterais 2 3 4 s Laterais Considere a função de Heaviside, denida
Material de Apoio. Roteiro para Esboçar uma Curva 1
Universidade Federal Rural de Pernambuco Departamento de Matemática Disciplina: Cálculo M I Prof a Yane Lísle Material de Apoio Roteiro para Esboçar uma Curva A lista a seguir pretende servir como um guia
= 6 lim. = lim. 2x + 2 sin(x) cos(x) 4 sin(4x) 2 x cos(x) = lim. x + ln(x) cos ) ] 3x. 3 ln. = lim x 1 x +
UFRGS - PAG Cálculo - MAT05-0/ Lista 5-04/05/0 - Soluções.a ln + 0 + ln = + + 0 =.b sin8 0 sin4 = 0 8 cos8 4 cos4 =.c.d + sin 0 cos4 = 0 + sin cos 4 sin4 = 0 + cos sin 6 cos4 = 4 0 + sin e cos = 0 + e
CÁLCULO I. 1 Funções. Objetivos da Aula. Aula n o 01: Funções. Denir função e conhecer os seus elementos; Reconhecer o gráco de uma função;
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 01: Funções. Objetivos da Aula Denir função e conhecer os seus elementos; Reconhecer o gráco de uma função; Denir funções compostas e inversas.
MAT146 - Cálculo I - Esboço de Gráficos. Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira
Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira Nas aulas anteriores, estudamos várias ferramentas (Teste da Derivada Primeira, Teste da Derivada Segunda, Existência de Pontos Críticos,
Aula 22 O teste da derivada segunda para extremos relativos.
O teste da derivada segunda para extremos relativos. MÓDULO 2 - AULA 22 Aula 22 O teste da derivada segunda para extremos relativos. Objetivo: Utilizar a derivada segunda para determinar pontos de máximo
Aulas n o 22: A Função Logaritmo Natural
CÁLCULO I Aulas n o 22: A Função Logaritmo Natural Prof. Edilson Neri Júnior Prof. André Almeida 1 A Função Logaritmo Natural 2 Derivadas e Integral Propriedades dos Logaritmos 3 Gráfico Seja x > 0. Definimos
UNIVERSIDADE FEDERAL DO OESTE DO PARÁ PRÓ-REITORIA DE ENSINO DE GRADUAÇÃO INSTITUTO DE ENGENHARIA E GEOCIENCIAS-IEG PROGRAMA DE COMPUTAÇÃO
1 UNIVERSIDADE FEDERAL DO OESTE DO PARÁ PRÓ-REITORIA DE ENSINO DE GRADUAÇÃO INSTITUTO DE ENGENHARIA E GEOCIENCIAS-IEG PROGRAMA DE COMPUTAÇÃO NOTAS DE AULA DA DISCIPLINA DE CÁLCULO 1 MATERIAL EM CONSTRUÇÃO
Gráficos. Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html
Gráficos Material online: h-p://www.im.ufal.br/professor/thales/calc12010_2.html O que f nos diz sobre f? O que f nos diz sobre f? f (x) < 0 f (x) > 0 f(x) =x 2 f (x) =2x x>0 f (x) > 0 x
CÁLCULO I. Reconhecer, através do gráco, a função que ele representa; (f + g)(x) = f(x) + g(x). (fg)(x) = f(x) g(x). f g
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 03: Operações com funções. Funções Polinominais, Racionais e Trigonométricas Objetivos da Aula Denir operações com funções; Apresentar algumas
Concavidade e pontos de inflexão Aula 20
Concavidade e pontos de inflexão Aula 20 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 22 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica
CÁLCULO I. 1 Concavidade. Objetivos da Aula. Aula n o 16: Máximos e Mínimos - 2 a Parte
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 16: Máximos e Mínimos - 2 a Parte Objetivos da Aula Denir e discutir a concavidade de uma função em um intervalo do domínio; Denir e calcular
CÁLCULO I. Aula n o 02: Funções. Determinar o domínio, imagem e o gráco de uma função; Reconhecer funções pares, ímpares, crescentes e decrescentes;
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 02: Funções Objetivos da Aula Denir e reconhecer funções; Determinar o domínio, imagem e o gráco de uma função; Reconhecer funções pares,
JOÃO CARLOS MOREIRA CÁLCULO DIFERENCIAL E INTEGRAL
UMA NOVA ABORDAGEM NO ENSINO DA MATEMÁTICA JOÃO CARLOS MOREIRA CÁLCULO DIFERENCIAL E INTEGRAL FUN COLEÇÃO ESCOLA DE CÁLCULO VOLUME 2 - FUNÇÕES RACIONAIS UMA NOVA ABORDAGEM NO ENSINO DA MATEMÁTICA CÁLCULO
AULA 30/05/2017 MÁXIMOS E MÍNIMOS, ESTUDO COMPLETO DE FUNÇÕES, APLICAÇÃO DE DERIVADA
AULA 30/05/2017 MÁXIMOS E MÍNIMOS, ESTUDO COMPLETO DE FUNÇÕES, APLICAÇÃO DE DERIVADA As derivadas têm inúmeras aplicações. Com o estudo da primeira e da segunda derivada podemos esboçar o gráfico de uma
Instituto de Matemática - IM/UFRJ Cálculo I - MAC118 1 a Prova - Gabarito - 13/10/2016
Instituto de Matemática - IM/UFRJ Cálculo I - MAC118 1 a Prova - Gabarito - 13/10/2016 Questão 1: (2 pontos) x (a) (0.4 ponto) Calcule o ite: 2 + 3 2. x 1 x 1 ( πx + 5 ) (b) (0.4 ponto) Calcule o ite:
Lista 8: Análise do comportamento de funções - Cálculo Diferencial e Integral I - Turma D. Professora: Elisandra Bär de Figueiredo
Lista 8: Análise do comportamento de funções - Cálculo Diferencial e Integral I - Turma D Professora: Elisandra Bär de Figueiredo 1. Seja f() = 5 + + 1. Justique a armação: f tem pelo menos uma raiz no
CÁLCULO I Aula 01: Funções.
Inversa CÁLCULO I Aula 01: Funções. Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará Inversa 1 Funções e seus 2 Inversa 3 Funções Funções e seus Inversa Consideremos A e B dois
4 Obs.: A indeterminação no limite do termo be 2b foi resolvida pela regra de L'Hôpital. x dx. x 2 dx. 19 b3 b3
UFRGS - PAG Cálculo - MAT15-1/1 Lista 11 - /6/1 - Soluções 1.a xe x dx = x ex 1 ( e x dx = x ex ex + C = ex x 1 ) + C 1. 1 xe x dx = [ e x ( x 1 )] 1 = e + e e 1.c 1 xe x dx = ( ) e lim + e e = e + = e
Lista de Exercícios 2 1
Universidade Federal de Ouro Preto Departamento de Matemática MTM - CÁLCULO DIFERENCIAL E INTEGRAL I Lista de Eercícios Mostre, utilizando a definição formal, que os ites abaio eistem e são iguais ao valor
CÁLCULO I. Efetuar transformações no gráco de uma função. Aplicando esse teste às seguintes funções, notamos que
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 03: Funções Inversas e Compostas.Transformações no Gráco de uma Função. Objetivos da Aula Denir função bijetora e função
Aula 25. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil
Assíntotas, Esboço de Gráfico e Aplicações Aula 25 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 09 de Maio de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia
Prova de Conhecimentos Específicos 1 a QUESTÃO: (2,0 pontos)
Prova de Conhecimentos Específicos 1 a QUESTÃO: (,0 pontos) 5x Considere a função f(x)=. Determine, se existirem: x +7 (i) os pontos de descontinuidade de f; (ii) as assíntotas horizontais e verticais
26 CAPÍTULO 4. LIMITES E ASSÍNTOTAS
Capítulo 4 Limites e assíntotas 4.1 Limite no ponto Considere a função f(x) = x 1 x 1. Observe que esta função não é denida em x = 1. Contudo, fazendo x sucientemente próximo de 1 (mais não igual a1),
Para identificar intervalos de crescimento e decrescimento de uma função analisamos o comportamento de sua primeira derivada.
O CONCEITO DE DERIVADA (continuação) Funções Crescentes e Decrescentes Existe uma relação direta entre a derivada de uma função e o crescimento desta função. Em geral, temos: Se, para todo x ]a, b[ tivermos
Curvas Planas em Coordenadas Polares
Curvas Planas em Coordenadas Polares Sumário. Coordenadas Polares.................... Relações entre coordenadas polares e coordenadas cartesianas...................... 6. Exercícios........................
Cálculo Diferencial e Integral I
Provas e listas: Cálculo Diferencial e Integral I Período 204.2 Sérgio de Albuquerque Souza 4 de maio de 205 UNIVERSIDADE FEDERAL DA PARAÍBA CCEN - Departamento de Matemática http://www.mat.ufpb.br/sergio
Universidade Federal de Juiz de Fora Departamento de Matemática
Universidade Federal de Juiz de Fora Departamento de Matemática Cálculo I - Segunda Avaliação - Segundo Semestre Letivo de 2016-03/12/2016 - FILA A Aluno(a): Matrícula: Turma: Instruções Gerais: 1- A prova
ANEXOS Anexo A: Esboço de Curvas Anexo B: Exemplos Extras Anexo C: Aplicação do Software SLD
ANEXOS Anexo A: Esboço de Curvas Anexo B: Exemplos Extras Anexo C: Aplicação do Software SLD ANEXO A Critérios para determinar o comportamento de uma função através do estudo da derivada. Vamos relembrar
UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Instituto de Matemática PRIMEIRA PROVA UNIFICADA CÁLCULO I POLITÉCNICA E ENGENHARIA QUÍMICA 13/12/2012.
UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Instituto de Matemática PRIMEIRA PROVA UNIFICADA CÁLCULO I POLITÉCNICA E ENGENHARIA QUÍMICA 13/12/2012. GABARITO 1 a Questão. (3.0 pontos). (a) Calcule: lim x 0 +
MAT Cálculo I - POLI Gabarito da P2 - A
MAT 45 - Cálculo I - POLI - 006 Gabarito da P - A Questão A) Calcule (.0) (a) lim ( cos() ) / (.0) (b) 0 ( ( π ) ) cos + e d (a) Tem-se, ( π/4, π/4) \ {0}: (cos ) / = ep( ln(cos )). Pondo f() =. ln(cos
CÁLCULO I. Calcular o limite de uma função composta;
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 06: Limites Laterais. Limite da Função Composta. Objetivos da Aula Denir ites laterais de uma função em um ponto de seu
DERIVAÇÃO de FUNÇÕES REAIS de VARIÁVEL REAL
DERIVAÇÃO de FUNÇÕES REAIS de VARIÁVEL REAL Derivada de uma função num ponto. Sejam f uma função denida num intervalo A R e a um ponto de acumulação de A. Cama-se derivada de f no ponto a ao ite, caso
CÁLCULO I. 1 Área entre Curvas. Objetivos da Aula. Aula n o 28: Área entre Curvas, Comprimento de Arco e Trabalho. Calcular área entre curvas;
CÁLCULO I Prof. Marcos Diniz Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 8: Área entre Curvas, Comprimento de Arco e Trabalho Objetivos da Aula Calcular área entre curvas; Calcular o comprimento
CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1. CAPÍTULO 2 Sistemas de Coordenadas Retangulares 9. CAPÍTULO 3 Retas 18
Sumário CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1 Sistema de Coordenadas Lineares 1 Intervalos Finitos 3 Intervalos Infinitos 3 Desigualdades 3 CAPÍTULO 2 Sistemas de
CÁLCULO I. 1 Aproximações Lineares. Objetivos da Aula. Aula n o 16: Aproximações Lineares e Diferenciais. Regra de L'Hôspital.
CÁLCULO I Prof Marcos Diniz Prof André Almeida Prof Edilson Neri Júnior Prof Emerson Veiga Prof Tiago Coelho Aula n o 6: Aproimações Lineares e Diferenciais Regra de L'Hôspital Objetivos da Aula Denir
t 2 se t 0 Determine a expansão em série de potências para a função F (x) = ( 1) n y2n (2n)!, ( 1) n t4n (2n)! (2n)! ( 1) n t4n 2 dt = ( 1) n t 4n 2 )
MAT456 - Cálculo Diferencial e Integral IV para Engenharia Escola Politecnica - a. Prova - 8// Turma A a Questão (,) a) Seja cos (t ) f(t) = t se t se t = Determine a expansão em série de potências para
RESUMO - GRÁFICOS. O coeficiente de x, a, é chamado coeficiente angular da reta e está ligado à inclinação da reta
RESUMO - GRÁFICOS Função do Primeiro Grau - f(x) = ax + b O gráfico de uma função do 1 o grau, y = ax + b, é uma reta. O coeficiente de x, a, é chamado coeficiente angular da reta e está ligado à inclinação
CÁLCULO I. 1 Número Reais. Objetivos da Aula
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida EMENTA: Conceitos introdutórios de limite, limites trigonométricos, funções contínuas, derivada e aplicações. Noções introdutórias sobre a integral
= ; a = -1, b = 3. 1 x ; a = -1, b = 0. M > 0 é um número real fixo. Prove que quaisquer que sejam x, y em I temos f ( x) < x.
INSTITUTO DE MATEMÁTICA -UFBA DEPARTAMENTO DE MATEMÁTICA LIMITES E DERIVADAS MAT B a LISTA DE EXERCÍCIOS - 008. - Prof a Graça Luzia Dominguez Santos. Prove que entre duas raízes consecutivas de uma função
Aula n o 29:Técnicas de Integração: Integrais Trigonométricas - Substituição Trigonométrica
CÁLCULO I Aula n o 29:Técnicas de Integração: Integrais Trigonométricas - Substituição Trigonométrica Prof. Edilson Neri Júnior Prof. André Almeida 1 Integrais Trigonométricas Iniciaremos com o seguinte
P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 6
P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 6 GRUPO I ITENS DE ESCOLHA MÚLTIPLA 1. Tem-se, ( Assim,. Resposta: B 2. Considere-se a variável aleatória : «peso dos alunos do.º ano» ( e os
CÁLCULO I Aula n o 10: Taxa de Variação, Velocidade, Aceleração e Taxas Relacionadas
de CÁLCULO I Aula n o 10: de, Velocidade, e Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará de 1 de 2 3 4 de de Suponha que y seja uma quantidade que depende de outra quantidade
x 3 x3 dx = 1 + x2 u = 1 + x 2 5u 1 (u + 1)(u 1) du = A x ln xdx = x2 2 (ln x)2 x2 x2
Questão -A. (, pontos) Calcule a) arctg d = arctg() 1 d = 1 + arctg() 1 u 1 6 u du = u = arctg() du = 1 dv = d v = 1+ d u = 1 + du = d = arctg() 1 1 + [u ln u ] + k = arctg() + ln(1 + ) + k. 6 6 6 b) 5e
CÁLCULO I. Estabelecer a relação entre continuidade e derivabilidade; Apresentar a derivada das funções elementares. f f(x + h) f(x) c c
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 11: Derivada de uma função. Continuidade e Derivabilidade. Derivada das Funções Elementares. Objetivos da Aula Denir
Funções de Uma Variável - 1 a Avaliação - Turma B3 31 de outubro de Prof. Armando Caputi
Funções de Uma Variável - 1 a Avaliação - Turma B 1 de outubro de 017 - Prof. Armando Caputi 1 Determine o domínio da função f(x) = arctan x x + 1 (justifique) e a equação da reta tangente ao seu gráfico
CÁLCULO I. 1 Teorema do Confronto. Objetivos da Aula
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Prof. Emerson Veiga Prof. Tiago Coelho Ala n o 07: Teorema do Confronto. Limite Fndamental Trigonométrico. Teorema do Valor Intermediário.
Demonstração. Sabemos que o volume de um cone reto com base circular de raio r e altura h é dado por
UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL 1-018.1 1A VERIFICAÇÃO DE APRENDIZAGEM - PARTE Nome Legível RG CPF Respostas sem justificativas
Lista de Férias. 6 Prove a partir da definição de limite que: a) lim. (x + 6) = 9. 1 Encontre uma expressão para a função inversa: b) lim
Lista de Férias Bases Matemáticas/FUV Encontre uma epressão para a função inversa: + 3 a) 5 2 + e b) e c) 2 + 5 d) ln( + 3) 6 Prove a partir da definição de ite que: a) 3 ( + 6) = 9 b) = c) 2 = 4 2 d)
MAT140 - Cálculo I - Máximos e Mínimos Locais e Globais, Pontos Críticos e o Teste da Derivada Primeira
MAT140 - Cálculo I - Máximos e Mínimos Locais e Globais, Pontos Críticos e o Teste da Derivada Primeira 4 de novembro de 2015 Vimos que a derivada de uma função em um ponto é a inclinação da reta tangente
CÁLCULO I. 1 Área de Superfície de Revolução
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 6: Área de Superfície de Revolução e Pressão Hidrostática Objetivos da Aula Calcular a área de superfícies de revolução; Denir pressão hidrostática.
CÁLCULO I. Iniciaremos com o seguinte exemplo: u 2 du = cos x + u3 3 + C = cos3 x
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aulas n o 9: Técnicas de Integração II - Integrais Trigonométricas e Substituição Trigonométrica Objetivos da Aula Calcular integrais de potências
CÁLCULO I. Calcular integrais envolvendo funções trigonométricas; Apresentar a substituição trigonométrica. Iniciaremos com o seguinte exemplo:
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Prof. Emerson Veiga Prof. Tiago Coelho Aula n o 8: Integrais Trigonométricas. Substituição Trigonométrica. Objetivos da Aula Calcular
AULA 16 Esboço de curvas (gráfico da função
Belém, 1º de junho de 015 Caro aluno, Seguindo os passos dados você ará o esboço detalhado do gráico de uma unção. Para achar o zero da unção, precisamos de teorias que você estudará na disciplina Cálculo
Cálculo I - Lista 1: Números reais. Desigualdades. Funções.
Faculdade de Zootecnia e Engenharia de Alimentos Universidade de São Paulo Cálculo I - Lista : Números reais Desigualdades Funções Prof Responsável: Andrés Vercik Um inteiro positivo n é par se n k para
MAT Cálculo Diferencial e Integral para Engenharia II 1 a lista de exercícios
MAT454 - Cálculo Diferencial e Integral para Engenharia II 1 a lista de exercícios - 008 POLINÔMIO DE TAYLOR 1. Utilizando o polinômio de Taylor de ordem, calcule um valor aproximado e avalie o erro: a)
Cálculo 1 Fuja do Nabo. Resumo e Exercícios P2
Cálculo 1 Fuja do Nabo Resumo e Exercícios P2 Fórmulas e Resumo Teórico Limites Exponenciais e Logarítmicos lim $ &' 1 + 1 x $ = e ou lim $ 0 1 + h 2 3 = e a $ 1 lim $ 0 x = ln a, a > 0 Derivadas Exponenciais
CÁLCULO I. 1 Primitivas. Objetivos da Aula. Aula n o 18: Primitivas. Denir primitiva de uma função; Calcular as primitivas elementares.
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 8: Primitivas. Objetivos da Aula Denir primitiva de uma função; Calcular as primitivas elementares. Primitivas Em alguns problemas, é necessário
Cálculo I. Lista de Exercícios Aulão P1
Cálculo I Lista de Exercícios Aulão P1 Lista Resolvida no Aulão Parte I: Revisão de Matemática 1. P1 2018.1 Exercício 1 Diurno (2,0) Resolva, dê o intervalo solução e ilustre a solução sobre a reta real
CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano
CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano [email protected] Aula 7 04/2014 Zeros reais de funções Parte 1 Objetivo Determinar valores aproximados para as soluções (raízes) de equações da
