CÁLCULO I Aula 01: Funções.
|
|
|
- Ronaldo Covalski do Amaral
- 9 Há anos
- Visualizações:
Transcrição
1 Inversa CÁLCULO I Aula 01: Funções. Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará
2 Inversa 1 Funções e seus 2 Inversa 3
3 Funções Funções e seus Inversa Consideremos A e B dois conjuntos. Uma função f é uma lei que associa cada elemento x A a um único elemento y B. O conjunto A é chamado domínio da função f e o conjunto B é chamado contradomínio da função f. Costuma-se representar uma função pela seguinte notação: f : A B
4 Inversa Para armarmos que um determinado x A está associado a certo y B através da função f, costumamos utilizar a notação: y = f (x)
5 Inversa Para armarmos que um determinado x A está associado a certo y B através da função f, costumamos utilizar a notação: y = f (x) Denimos também o seguinte subconjunto do contradomínio, chamado conjunto imagem da função f Im f = {y B y = f (x), x A}
6 Representação de Funções Funções e seus Uma forma de representarmos uma função é por meio do diagrama de echas, como ilustrado a seguir Inversa Figura: Representação de uma função por um diagrama de echas
7 Outra forma de representar uma função é através de seus valores numéricos. Por exemplo, considere a seguinte tabela: Funções e seus Inversa Dia Valor da Compra 02 2, , , , , , , , , , 2460
8 Inversa Em muitas situações não existe uma regra explícita que estabeleça a correspondência entre os do domínio e contradomínio, sendo isto feito por meio de tabela de valores. Usando técnicas apropriadas é possível encontrar uma expressão para uma função que aproxime os valores dados na tabela.
9 Inversa Contudo, tanto o diagrama de echas quanto a tabela de valores, não são ecientes para representar uma função cujo domínio é um conjunto innito. Por isso, a representação gráca de uma função é a melhor forma de visualizála e entender o seu comportamento. E para entendermos melhor esse tipo de representação, segue a denição de gráco de uma função.
10 Inversa Denição Seja f : A B uma função. O gráco de f, denotado por G f, é o seguinte subconjunto do produto cartesiano A B: G f = {(x, f (x)) A B x A}
11 Inversa Denição Seja f : A B uma função. O gráco de f, denotado por G f, é o seguinte subconjunto do produto cartesiano A B: G f = {(x, f (x)) A B x A} O gráco de uma função f nos dá uma imagem útil sobre o comportamento da função, pois uma vez que a coordenada y de qualquer ponto (x, y) sobre o gráco, é da forma y = f (x), podemos ler o valor f (x) como sendo a altura do ponto no gráco acima de x.
12 Inversa Figura: Entendendo f (x) como uma altura do ponto x no gráco de f.
13 O gráco também nos permite visualizar o domínio e a imagem da função f. Funções e seus Inversa Figura: Determinando a imagem e o domínio de um função através do seu gráco.
14 Teste da Reta Vertical Funções e seus Inversa Uma curva no plano xy é o gráco de uma função de x se, e somente se nenhuma reta vertical cortar a curva mais de uma vez.
15 Inversa Figura: Ilustração 1 do Teste da Reta Vertical.
16 Inversa Figura: Ilustração 2 do Teste da Reta Vertical.
17 Inversa Quando não especicado, o domínio de uma função é o maior subconjunto A R tal que a função esteja denida. Contudo, para determinar esse maior subconjunto é necessário fazer algumas considerações, pois podem haver restrições sobre o domínio de uma função.
18 Inversa Quando não especicado, o domínio de uma função é o maior subconjunto A R tal que a função esteja denida. Contudo, para determinar esse maior subconjunto é necessário fazer algumas considerações, pois podem haver restrições sobre o domínio de uma função. Exemplo Considere a função dada por f (x) = 1. Determine o seu domínio. x 2 1
19 Inversa Exemplo Seja g(x) = 4 x 2 2x. Determine o conjunto domínio de g.
20 Inversa Exemplo Seja g(x) = 4 x 2 2x. Determine o conjunto domínio de g. Exemplo Determine o domínio da função h(x) = 2x 4 x 3 8.
21 Inversa Funções e seus Inversa Uma função f : A B é chamada injetora se ela nunca assume o mesmo valor duas vezes, isto é, para x 1, x 2 A, Se x 1 x 2 então f (x 1 ) f (x 2 ) Analogamente, temos que Se f (x 1 ) = f (x 2 ) então x 1 = x 2
22 Inversa Uma forma de vericarmos gracamente se uma função é injetora ou não é o chamado teste da reta horizontal:
23 Inversa Uma forma de vericarmos gracamente se uma função é injetora ou não é o chamado teste da reta horizontal: Uma função é injetora se nenhuma reta horizontal intercepta seu gráco em mais de um ponto
24 Figura: Exemplo de um gráco de função injetora. Funções e seus Inversa
25 Inversa Figura: Exemplo de um gráco de função que não é injetora.
26 Inversa Dizemos que uma função f : A B é sobrejetora se Im f = B. Equivalentemente, para todo elemento y B, existe um x A tal que y = f (x). Um exemplo de função sobrejetora é a função exibida no seguinte exemplo.
27 Inversa Dizemos que uma função f : A B é sobrejetora se Im f = B. Equivalentemente, para todo elemento y B, existe um x A tal que y = f (x). Um exemplo de função sobrejetora é a função exibida no seguinte exemplo. Exemplo Considere f : R R, denida por f (x) = x 3. f é sobrejetora?
28 Inversa Assim como foi estudado para funções injetoras, existem funções que não são injetoras. Basta observar o seguinte exemplo. Exemplo Considere f : R R, denida por f (x) = x 2. f é sobrejetora?
29 Inversa Observação Uma forma de ultrapassar esse obstáculo é restringirmos o contradomínio à imagem da função. Por exemplo, note que se a função f fosse denida f : R R +, ela seria sobrejetora.
30 Inversa Observação Uma forma de ultrapassar esse obstáculo é restringirmos o contradomínio à imagem da função. Por exemplo, note que se a função f fosse denida f : R R +, ela seria sobrejetora. Denição Seja f : A B uma função. Dizemos que f é bijetora, se f é injetora e sobrejetora.
31 Inversa Observação Uma forma de ultrapassar esse obstáculo é restringirmos o contradomínio à imagem da função. Por exemplo, note que se a função f fosse denida f : R R +, ela seria sobrejetora. Denição Seja f : A B uma função. Dizemos que f é bijetora, se f é injetora e sobrejetora. Note que f (x) = x 3 é bijetora e f (x) = x 2 não é.
32 Inversa Seja f : A B uma função bijetora. Denimos a função inversa de f e denotaremos por f 1 como sendo a função f 1 : B A, tal que y = f (x) x = f 1 (y) (1)
33 Inversa Exemplo Considere os conjuntos A = 1, 2, 3 e B = 0, 4, 5 e uma função f : A B, dada por f (1) = 4 f (2) = 5 f (3) = 0 Determine a função f 1.
34 Inversa Exemplo Das as funções abaixo, determine as suas inversas. (i) f : R R, dada por f (x) = x 3 ; (ii) g : [0, 1] [0, 1], dada por g(x) = 1 x 2 ;
35 Inversa Observação Diversas vezes, tentaremos encontrar a inversa de uma função. Muitas delas não possuem função inversa em todo o seu domínio. Sendo assim, podemos determinar a inversa de uma função em subconjuntos do domínio, como é o caso das funções trigonométricas inversas. Um processo para fazer isso é: Encontrar um intervalo onde a função f é injetora; Restringir a função nesse intervalo.
36 Inversa Podemos utilizar uma ideia geométrica para identicar uma função f e sua inversa f 1, que é a seguinte: Sejam f e sua inversa f 1. Então os grácos de f e f 1 são simétricos em relação à reta y = x.
37 Inversa
38 Inversa Denição (Composição de funções) Dadas duas funções f e g, tal que a imagem de f é subconjunto do domínio de g, a função composta de f com g, denotada por g f (x) é denida por; g f : A R, cuja regra é dada por: (g f )(x) = g(f (x)). Simbolicamente: D(g f ) = {x D(f ) f (x) D(g)}.
39 Inversa Figura: Composição de Funções
40 Inversa Observação É comum usar a notação f 2 para f f, f 3 para f f f. No geral, para um inteiro n 1, denimos f n = f n 1 f e f 0 = I, onde I é a função identidade de A. Exemplo Sejam f (x) = x e g(x) = x 1. Encontre g f. Exemplo Sejam f (x) = x + 1 x e g(x) = x + 1. Encontre (f g)(x) e seu respectivo x 4 domínio.
41 Inversa Exemplo Sejam as funções: 0, se, x < 0 f (x) = x 2, se, 0 x 1 0, se, x > 1 1, se, x < 0 e g(x) = 2x, se, 0 x 1 1, se, x > 1 Determinar f g.
42 Inversa Proposição Sejam f : A B e g = f 1. Então g(f (a)) = a, a A e f (g(b)) = b, b B Se A = B = R, então g(f (x)) = x x R
43 Na próxima aula... Funções e seus Inversa Mais sobre Funções
44 Na próxima aula... Funções e seus Inversa Mais sobre Funções Funções Elementares;
45 Na próxima aula... Funções e seus Inversa Mais sobre Funções Funções Elementares; Transformações no gráco de uma função.
CÁLCULO I. 1 Funções. Objetivos da Aula. Aula n o 01: Funções. Denir função e conhecer os seus elementos; Reconhecer o gráco de uma função;
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 01: Funções. Objetivos da Aula Denir função e conhecer os seus elementos; Reconhecer o gráco de uma função; Denir funções compostas e inversas.
CÁLCULO I. Aula n o 02: Funções. Determinar o domínio, imagem e o gráco de uma função; Reconhecer funções pares, ímpares, crescentes e decrescentes;
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 02: Funções Objetivos da Aula Denir e reconhecer funções; Determinar o domínio, imagem e o gráco de uma função; Reconhecer funções pares,
CÁLCULO I. Aula n o 02: Funções. Denir função e conhecer os seus elementos; Listar as principais funções e seus grácos.
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 02: Funções. Objetivos da Aula Denir função e conhecer os seus elementos; Reconhecer o gráco de uma função; Listar as
CÁLCULO I. Efetuar transformações no gráco de uma função. Aplicando esse teste às seguintes funções, notamos que
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 03: Funções Inversas e Compostas.Transformações no Gráco de uma Função. Objetivos da Aula Denir função bijetora e função
Gênesis S. Araújo Pré-Cálculo
Gênesis Soares Jaboatão, de de 2016. Estudante: PAR ORDENADO: Um par ordenado de números reais é o conjunto formado por dois números reais em determinada ordem. Os parênteses, em substituição às chaves,
1 FUNÇÃO - DEFINIÇÃO. Chama-se função do 1. grau toda função definida de por f(x) = ax + b com a, b e a 0.
MATEMÁTICA ENSINO MÉDIO FUNÇÃO - DEFINIÇÃO FUNÇÃO - DEFINIÇÃO Chama-se função do 1. grau toda função definida de por f(x) = ax + b com a, b e a 0. EXEMPLOS: f(x) = 5x 3, onde a = 5 e b = 3 (função afim)
Chamamos de funções numéricas aquelas cujas variáveis envolvidas são números reais. Isso é funções denidas sobre R ou uma parte de R e a valor em R.
Capítulo 2 Funções e grácos 2.1 Funções númericas Chamamos de funções numéricas aquelas cujas variáveis envolvidas são números reais. Isso é funções denidas sobre R ou uma parte de R e a valor em R. Denição
CÁLCULO I. Reconhecer, através do gráco, a função que ele representa; (f + g)(x) = f(x) + g(x). (fg)(x) = f(x) g(x). f g
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 03: Operações com funções. Funções Polinominais, Racionais e Trigonométricas Objetivos da Aula Denir operações com funções; Apresentar algumas
CÁLCULO I Aula 05: Limites Laterais. Teorema do Valor Intermediário. Teorema do Confronto. Limite Fundamental Trigonométrico.
s Laterais CÁLCULO I Aula 05: s Laterais.... Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará s Laterais 1 s Laterais 2 3 4 s Laterais Considere a função de Heaviside, denida
CÁLCULO I Aula 11: Limites Innitos e no Innito. Assíntotas. Regra de l'hôspital.
Limites s CÁLCULO I Aula 11: Limites s e no... Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará Limites s 1 Limites no 2 Limites s 3 4 5 Limites s Denição Seja f uma função denida
CÁLCULO I Aula 08: Regra da Cadeia. Derivação Implícita. Derivada da Função Inversa.
CÁLCULO I Aula 08: Regra da Cadeia.. Função Inversa. Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará 1 2 3 Teorema (Regra da Cadeia) Sejam g(y) e y = f (x) duas funções deriváveis,
CÁLCULO I Aula 03: Funções Logarítmicas, Exponenciais e
CÁLCULO I Aula 03: s, e. Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará 1 2 3 4 A Seja x > 0. Denimos a função logarítmica natural como sendo a função dada pela medida da área
APLICAÇÕES IMAGEM DIRETA - IMAGEM INVERSA. Professora: Elisandra Bär de Figueiredo
Professora: Elisandra Bär de Figueiredo APLICAÇÕES DEFINIÇÃO 1 Seja f uma relação de E em F. Dizemos que f é uma aplicação de E em F se (i) D(f) = E; (ii) dado a D(f), existe um único b F tal que (a, b)
Matemática Complementos de Funções. Professor Marcelo Gonsalez Badin
Matemática Complementos de Funções Professor Marcelo Gonsalez Badin Paridade Função PAR f (x) é chamada FUNÇÃO PAR se f ( x) = f (x) Exemplo: f (x) = x 4 f ( x) = ( x) 4 = x 4 = f (x) O gráfico de uma
Capítulo 1. Funções e grácos
Capítulo 1 Funções e grácos Denição 1. Sejam X e Y dois subconjuntos não vazios do conjunto dos números reais. Uma função de X em Y ou simplesmente uma função é uma regra, lei ou convenção que associa
FUNÇÕES. Prof.ª Adriana Massucci
FUNÇÕES Prof.ª Adriana Massucci Introdução: Muitas grandezas com as quais lidamos no nosso cotidiano dependem uma da outra, isto é, a variação de uma delas tem como consequência a variação da outra. Exemplo:
CÁLCULO I. 1 Número Reais. Objetivos da Aula
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida EMENTA: Conceitos introdutórios de limite, limites trigonométricos, funções contínuas, derivada e aplicações. Noções introdutórias sobre a integral
Notas de Aula Disciplina Matemática Tópico 03 Licenciatura em Matemática Osasco -2010
1. Funções : Definição Considere dois sub-conjuntos A e B do conjunto dos números reais. Uma função f: A B é uma regra que define uma relação entre os elementos de A e B, de tal forma que a cada elemento
V Workshop de Álgebra UFG-CAC. Só Funções. Francismar Ferreira Lima. Universidade Tecnológica Federal do Paraná (UTFPR) 09 de novembro de / 43
V Workshop de Álgebra UFG-CAC Só Funções Francismar Ferreira Lima Universidade Tecnológica Federal do Paraná (UTFPR) 09 de novembro de 2016 1 / 43 Planejamento da Apresentação 1 Produto Cartesiano 2 Relação
Universidade Federal de Pelotas. Instituto de Física e Matemática Pró-reitoria de Ensino. Módulo de Funções. Aula 01. Projeto GAMA
Universidade Federal de Pelotas Instituto de Física e Matemática Pró-reitoria de Ensino Atividades de Reforço em Cálculo Módulo de Funções Aula 0 08/ Projeto GAMA Grupo de Apoio em Matemática Definição
CÁLCULO I Aula 14: Crescimento e Decrescimento. Teste da Primeira Derivada.
CÁLCULO I Aula 14:.. Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará 1 2 3 Denição Sejam f : A B uma função e x 1, x 2 D f. Denimos que f é uma (i) função crescente se x 1
MATEMÁTICA. Conceito de Funções. Professor : Dêner Rocha
MATEMÁTICA Conceito de Funções Professor : Dêner Rocha Monster Concursos 1 Noção de Função 1º) Dados A = {-, -1, 0, 1, } e B = {-8, -6, -4, -3, 0, 3, 6, 7} e a correspondência entre A e B dada pela fórmula
CÁLCULO I Aula 15: Concavidade. Teste da Segunda Derivada.
CÁLCULO I Aula 15: Concavidade.. Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará 1 Concavidade 2 Considere um intervalo I e uma função f : I R derivável cujo gráco é dado abaixo.
FUNÇÕES. Carlos Eurico Galvão Rosa UNIVERSIDADE FEDERAL DO PARANÁ UFPR CAMPUS AVANÇADO DE JANDAIA DO SUL LICENCIATURAS UFPR JCE001 GALVÃO ROSA,C.E.
UNIVERSIDADE FEDERAL DO PARANÁ UFPR CAMPUS AVANÇADO DE JANDAIA DO SUL LICENCIATURAS Injetiva FUNÇÕES Sobrejetiva Bijetiva Carlos Eurico Galvão Rosa UFPR 1 / 33 de Injetiva Sobrejetiva Bijetiva : Dados
CÁLCULO I. 1 Concavidade. Objetivos da Aula. Aula n o 19: Concavidade. Teste da Segunda Derivada. Denir concavidade de uma função;
CÁLCULO I Prof. Marcos Diniz Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 19: Concavidade. Teste da Segunda Derivada. Objetivos da Aula Denir concavidade de uma função; Denir ponto de inexão;
CÁLCULO I. Estabelecer a relação entre continuidade e derivabilidade; Apresentar a derivada das funções elementares. f f(x + h) f(x) c c
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 11: Derivada de uma função. Continuidade e Derivabilidade. Derivada das Funções Elementares. Objetivos da Aula Denir
A derivada da função inversa
A derivada da função inversa Sumário. Derivada da função inversa............... Funções trigonométricas inversas........... 0.3 Exercícios........................ 7.4 Textos Complementares................
Funções. Pré-Cálculo. O que é uma função? O que é uma função? Humberto José Bortolossi. Parte 2. Definição
Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Funções Parte 2 Parte 2 Pré-Cálculo 1 Parte 2 Pré-Cálculo 2 O que é uma função? O que é uma função?
CÁLCULO I. 1 Funções Exponenciais e Logarítmicas
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 05: Funções Logarítmica, Exponencial e Hiperbólicas. Objetivos da Aula Denir as funções logarítmica, exponencial e hiperbólicas;
Aula 1 Revendo Funções
Tecnólogo em Análise e Desenvolvimentos de Sistemas _ TADS 1 Aula 1 Revendo Funções Professor Luciano Nóbrega 2 SONDAGEM 1 Calcule o valor das expressões abaixo. Dê as respostas de todas as formas possíveis
Aula 2 Função_Uma Ideia Fundamental
1 Tecnólogo em Construção de Edifícios Aula 2 Função_Uma Ideia Fundamental Professor Luciano Nóbrega 2 NOÇÃO FUNDAMENTAL DE FUNÇÃO A função é como uma máquina onde entram elementos que são transformados
CÁLCULO I. Figura 1: Círculo unitário x2 + y 2 = 1
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Prof. Emerson Veiga Prof. Tiago Coelho Aula no 04: Funções Trigonométricas, Logarítmica, Exponencial e Hiperbólicas. Objetivos
Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Cálculo Aula 1 Professor: Carlos Sérgio. Revisão de Funções
Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Cálculo - 01. Aula 1 Professor: Carlos Sérgio Revisão de Funções Sistema cartesiano ortogonal O Sistema de Coordenadas Cartesianas,
Capítulo 3. Fig Fig. 3.2
Capítulo 3 3.1. Definição No estudo científico e na engenharia muitas vezes precisamos descrever como uma quantidade varia ou depende de outra. O termo função foi primeiramente usado por Leibniz justamente
CÁLCULO I. Figura 1: Círculo unitário x2 + y 2 = 1
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula no 05: Funções Logarítmica, Exponencial e Hiperbólicas. Objetivos da Aula De nir as funções trigonométricas, trigonométricas
Funções. Matemática Básica. O que é uma função? O que é uma função? Folha 1. Humberto José Bortolossi. Parte 07. Definição
Folha 1 Matemática Básica Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Funções Parte 07 Aula 9 Matemática Básica 1 Aula 9 Matemática Básica 2 O que é uma
CÁLCULO I. 1 Assíntotas Oblíquas. Objetivos da Aula. Aula n o 19: Grácos.
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 9: Grácos. Objetivos da Aula Denir e determinar as assíntotas oblíquas ao gráco de uma função, Utilizar o Cálculo Diferencial
CÁLCULO I. 1 Concavidade. Objetivos da Aula. Aula n o 18: Concavidade. Teste da Segunda Derivada. Denir concavidade do gráco de uma função;
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 18: Concavidade. Teste da Segunda Derivada. Objetivos da Aula Denir concavidade do gráco de uma função; Denir ponto de
CÁLCULO I. Calcular o limite de uma função composta;
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 06: Limites Laterais. Limite da Função Composta. Objetivos da Aula Denir ites laterais de uma função em um ponto de seu
CÁLCULO I. Apresentar e aplicar a Regra de L'Hospital.
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o : Limites Innitos e no Innito. Assíntotas. Regra de L'Hospital Objetivos da Aula Denir ite no innito e ites innitos; Apresentar alguns tipos
CÁLCULO I. 1 A Função Logarítmica Natural. Objetivos da Aula. Aula n o 22: A Função Logaritmo Natural. Denir a função f(x) = ln x;
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 22: A Função Logaritmo Natural Objetivos da Aula Denir a função f(x) = ln x; Calcular limites, derivadas e integral envolvendo a função
A idéia de função. O conceito de função é um dos mais importantes em toda a Matemática. https://ueedgartito.wordpress.com.
Matemática Básica Unidade 5 Estudo de Funções RANILDO LOPES Slides disponíveis no nosso SITE: O conceito de função é um dos mais importantes em toda a Matemática. https://ueedgartito.wordpress.com A idéia
Função: parte 1. Prof. Santos Alberto Enriquez Remigio. 26 de março de 2018 FAMAT/UFU
Função: parte 1 Prof. Santos Alberto Enriquez Remigio FAMAT/UFU 26 de março de 2018 Denição Sejam os conjuntos A, B (conjunto vazio). Uma função de A em B é uma relação que associa a cada elemento a A
ÁLGEBRA. Aula 4 _ Classificação das Funções Professor Luciano Nóbrega. Maria Auxiliadora
1 ÁLGEBRA Aula 4 _ Classificação das Funções Professor Luciano Nóbrega Maria Auxiliadora 2 FUNÇÃO INJETORA É quando quaisquer dois elementos diferentes do conjunto A têm imagens diferentes no conjunto
Notas de aula: Cálculo e Matemática Aplicados à Notas de aula: Gestão Ambiental
Notas de aula: Cálculo e Matemática Aplicados à Notas de aula: Gestão Ambiental 1 Funções Definição: Sejam A e B, dois conjuntos, A /0, B /0. Uma função definida em A com valores em B é uma lei que associa
CÁLCULO I. Conhecer a interpretação geométrica da derivada em um ponto. y = f(x 2 ) f(x 1 ). y x = f(x 2) f(x 1 )
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 0: Taxa de Variação. Derivadas. Reta Tangente. Objetivos da Aula Denir taxa de variação média e a derivada como a taxa
Matemática I Capítulo 06 Propriedades das Funções
Nome: Nº Curso: Mineração Integrado Disciplina: Matemática I 1 Ano Prof. Leonardo Data: / /016 Matemática I Capítulo 06 Propriedades das Funções 6.1 Paridade das Funções 6.1.1 - Função par Dada uma função
Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Módulo I: Cálculo Diferencial e Integral Fundamentos e tópicos de revisão
Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo Módulo I: Cálculo Diferencial e Integral Fundamentos e tópicos de revisão Professora Renata Alcarde Sermarini Notas de aula do professor
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida
Objetivos da Aula CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 03: Funções Logarítmica, Exponencial e Hiperbólicas Definir as funções logarítmica, exponencial e hiperbólicas; Enunciar
ÁLGEBRA. Aula 4 _ Classificação das Funções Professor Luciano Nóbrega. Maria Auxiliadora
1 ÁLGEBRA Aula 4 _ Classificação das Funções Professor Luciano Nóbrega Maria Auxiliadora 2 FUNÇÃO INJETORA É quando quaisquer dois elementos diferentes do conjunto A têm imagens diferentes no conjunto
Pré-Cálculo. Humberto José Bortolossi. Aula 8 26 de abril de Departamento de Matemática Aplicada Universidade Federal Fluminense
Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 8 26 de abril de 200 Aula 8 Pré-Cálculo O que é uma função? Funções reais Uma função real f
MATEMÁTICA 3. Professor Renato Madeira. MÓDULO 4 Função injetora, sobrejetora, bijetora, par, ímpar, crescente, decrescente, limitada e periódica
MATEMÁTICA 3 Professor Renato Madeira MÓDULO 4 Função injetora, sobrejetora, bijetora, par, ímpar, crescente, decrescente, limitada e periódica SUMÁRIO 1. Funções monotônicas (crescente ou decrescente)
CÁLCULO I. Aula n o 02: Funções. Denir função e conhecer os seus elementos; Listar as principais funções e seus grácos.
CÁLCULO I Prf. Marcs Diniz Prf. André Almeida Prf. Edilsn Neri Júnir Prf. Emersn Veiga Prf. Tiag Celh Aula n 02: Funções. Objetivs da Aula Denir funçã e cnhecer s seus elements; Recnhecer grác de uma funçã;
(j) f(x) = (w) h(x) = x. (y) f(x) = sin(2x) (z) h(x) = 2 sin x. > 0 x 2 4x (g) x + 4 2x 6 (h)
Professora: Elisandra Bär de Figueiredo Lista : Funções - Cálculo Diferencial e Integral I. Determine o domínio e construa o gráco das seguintes funções. A seguir identique como estão relacionados os grácos
CÁLCULO I. 1 Funções Crescentes e Decrescentes
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 14: Crescimento e Decrescimento. Teste da Primeira Derivada. Objetivos da Aula Denir funções crescentes e decrescentes; Determinar os intervalos
CÁLCULO I Aula 17: Grácos.
CÁLCULO I Aula 17: Grácos. Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará 1 Grácos (1) Domínio - vericar sempre em que pontos a função está denida ou não está denida; (1) Domínio
E-books PCNA. Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 FUNÇÕES
E-books PCNA Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 FUNÇÕES 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 SUMÁRIO Apresentação -------------------------------------------------------2 Capítulo 3 ------------------------------------------------------
Lista 6 - Bases Matemáticas
Lista 6 - Bases Matemáticas Funções - Parte 1 Conceitos Básicos e Generalidades 1 Sejam dados A e B conjuntos não vazios. a) Defina rigorosamente o conceito de função de A em B. b) Defina rigorosamente
Função Inversa. 1.Função sobrejetora 2.Função injetora 3.Função bijetora 4.Função inversa
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Função Inversa Prof.: Rogério
MAT154: Cálculo 1. Beatriz Ribeiro, Flaviana Ribeiro e Reginaldo Braz. Departamento de Matemática - UFJF. Versão: fevereiro de 2018
MAT54: Cálculo Beatriz Ribeiro, Flaviana Ribeiro e Reginaldo Braz Departamento de Matemática - UFJF Versão: fevereiro de 208 0 Baseada na apostila da professora Maria Julieta Ventura Carvalho de Araújo.
Ana Carolina Boero. Página: Sala Bloco A - Campus Santo André
Funções de uma variável real a valores reais E-mail: [email protected] Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Funções de uma variável real a valores
Especialização em Matemática - Estruturas Algébricas
1 Universidade Estadual de Santa Cruz Departamento de Ciências Exatas e Tecnológicas Especialização em Matemática - Estruturas Algébricas Prof a.: Elisangela Farias e Sérgio Motta FUNÇÕES Sejam X e Y conjuntos.
REVISÃO - DESIGUALDADE, MÓDULO E FUNÇÕES
REVISÃO - DESIGUALDADE, MÓDULO E FUNÇÕES Marina Vargas R. P. Gonçalves a a Departamento de Matemática, Universidade Federal do Paraná, [email protected], http:// www.estruturas.ufpr.br 1 REVISÃO
CÁLCULO I. 1 Funções Crescentes e Decrescentes
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 17: Crescimento e Decrescimento de funções. Teste da Primeira Derivada. Objetivos da Aula Denir funções crescentes e
FUNÇÕES PROFESSOR: JARBAS
FUNÇÕES PROFESSOR: JARBAS Aplicação do conceito O conceito de função é um dos mais importantes da Matemática e ocupa lugar em destaque em vários de seus ramos, bem como em outras áreas do conhecimento.
4. AS FUNÇÕES EXPONENCIAL E LOGARÍTMICA
43 4. AS FUNÇÕES EXPONENCIAL E LOGARÍTMICA 4.1. A FUNÇÃO EXPONENCIAL Vimos no capítulo anterior que dado a R +, a potência a pode ser definida para qualquer número R. Portanto, fiando a R +, podemos definir
Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES. FUNÇÕES Parte A
Universidade Federal do Rio Grande FURG Instituto de Matemática, Estatística e Física IMEF Edital 5 CAPES FUNÇÕES Parte A Prof. Antônio Maurício Medeiros Alves Profª Denise Maria Varella Martinez UNIDADE
Capítulo 2- Funções. Dado dois conjuntos não vazios e e uma lei que associa a cada elemento de um único elemento de, dizemos que é uma função de em.
Conceitos Capítulo 2- Funções O termo função foi primeiramente usado para denotar a dependência entre uma quantidade e outra. A função é usualmente denotada por uma única letra,,,... Definição: Dado dois
Funções, Seqüências, Cardinalidade
Funções, Seqüências, Cardinalidade Prof.: Rossini Monteiro Noções Básicas Definição (Função) Sejam A e B conjuntos. Uma função de A em B é um mapeamento de exatamente um elemento de B para cada elemento
CÁLCULO I. 1 Concavidade. Objetivos da Aula. Aula n o 16: Máximos e Mínimos - 2 a Parte
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 16: Máximos e Mínimos - 2 a Parte Objetivos da Aula Denir e discutir a concavidade de uma função em um intervalo do domínio; Denir e calcular
Relações Binárias, Aplicações e Operações
Relações Binárias, Aplicações e Operações MAT 131-2018 II Pouya Mehdipour 6 de dezembro de 2018 Pouya Mehdipour 6 de dezembro de 2018 1 / 24 Referências ALENCAR FILHO, E. Teoria Elementar dos Conjuntos,
GRUPOS CÍCLICOS. Professora: Elisandra Bär de Figueiredo
Professora: Elisandra Bär de Figueiredo GRUPOS CÍCLICOS Potências e Múltiplos DEFINIÇÃO 1 Seja G um grupo multiplicativo. Dado a G dene-se a potência m-ésima de a, para todo inteiro m, ˆ se m 0, por recorrência
Curso de Pré Cálculo Dif. Int. I Aula 03 Ministrante Profª. Drª. Silvana Heidemann Rocha Material elaborado pela Profª. Drª. Silvana Heidemann Rocha
Ministrante Profª. Drª. Silvana Heidemann Rocha Material elaborado pela Profª. Drª. Silvana Heidemann Rocha SUMÁRIO 4 FUNÇÃO REAL DE UMA VARIÁVEL REAL 1 4.1 DEFINIÇÃO E NOTAÇÃO Definição Dados dois conjuntos
UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 03. Palavras-chaves: Vetores, norma, produto escalar, produto interno.
Assunto: Vetores, Norma e Produto escalar UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 03 Palavras-chaves: Vetores, norma, produto escalar, produto interno. Vetores Segmento orientado
Curvas Planas em Coordenadas Polares
Curvas Planas em Coordenadas Polares Sumário. Coordenadas Polares.................... Relações entre coordenadas polares e coordenadas cartesianas...................... 6. Exercícios........................
CÁLCULO I. 1 Área entre Curvas. Objetivos da Aula. Aula n o 28: Área entre Curvas, Comprimento de Arco e Trabalho. Calcular área entre curvas;
CÁLCULO I Prof. Marcos Diniz Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 8: Área entre Curvas, Comprimento de Arco e Trabalho Objetivos da Aula Calcular área entre curvas; Calcular o comprimento
GRUPOS ALGUNS GRUPOS IMPORTANTES. Professora: Elisandra Bär de Figueiredo
Professora: Elisandra Bär de Figueiredo GRUPOS DEFINIÇÃO 1 Sejam G um conjunto não vazio e (x, y) x y uma lei de composição interna em G. Dizemos que G é um grupo em relação a essa lei se (a) a operação
Capítulo 1. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas.
Capítulo 1 Funções Sejam A e B conjuntos não vazios. Uma função com domínio A e contradomínio B é uma regra f que a cada elemento em A associa um único elemento em B. A notação usual para uma função f
CÁLCULO I. 1 Velocidade Instantânea. Objetivos da Aula. Aula n o 04: Limites e Continuidade. Denir limite de funções; Calcular o limite de uma função;
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 04: Limites e Continuidade Objetivos da Aula Denir ite de funções; Calcular o ite de uma função; Utilizar as propriedades operatórias do
CÁLCULO I. 1 Derivada de Funções Elementares
CÁLCULO I Prof. Marcos Diniz Prof. Edilson Neri Prof. André Almeida Aula n o : Derivada das Funções Elementares. Regras de Derivação. Objetivos da Aula Apresentar a derivada das funções elementares; Apresentar
Aula 2: Funções. Margarete Oliveira Domingues PGMET/INPE. Aula 2 p.1/57
Aula 2 p.1/57 Aula 2: Funções. Margarete Oliveira Domingues PGMET/INPE Definição e representação Aula 2 p.2/57 Aula 2 p.3/57 Função Definição: Uma função de um conjunto em um conjunto, é uma correspondência
CÁLCULO I Aula 26: Área de Superfície de Revolução e Pressão
CÁLCULO I Aula 26: Área de e Pressão Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará 1 Área de 2 Uma superfície de revolução é um superfície gerada pela rotação de uma curva
Capítulo 2. f : A B. 3. A regra em (3) não define uma função de A em B porque 4 A está associado a mais de um. elemento de B.
Departamento de Matemática Disciplina MAT154 - Cálculo 1 Capítulo 2 Funções 2.1 Definição Sejam A e B conjuntos não vazios. Uma função com domínio A e contradomínio B é uma regra f que a cada elemento
Capítulo 2. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas.
Capítulo 2 Funções Sejam A e B conjuntos não vazios. Uma função com domínio A e contradomínio B é uma regra f que a cada elemento em A associa um único elemento em B. A notação usual para uma função f
Limite de uma função quando a variável independente tende a um número real a
Limite de uma função quando a variável independente tende a um número real a Santos Alberto Enriquez Remigio 10 de abril de 2018 Notação Seja f uma função e y = f (x) sua regra de correspondência, então:
