MATEMÁTICA. Conceito de Funções. Professor : Dêner Rocha
|
|
|
- Leonardo Fidalgo Bennert
- 7 Há anos
- Visualizações:
Transcrição
1 MATEMÁTICA Conceito de Funções Professor : Dêner Rocha Monster Concursos 1
2 Noção de Função 1º) Dados A = {-, -1, 0, 1, } e B = {-8, -6, -4, -3, 0, 3, 6, 7} e a correspondência entre A e B dada pela fórmula y = 3x, com x A e y B, temos: Note que: * Todos os elementos de A têm correspondente em B; * A cada elemento de A corresponde um único elemento de B Nesse caso, temos uma função de A em B ) Dados A = {0, 4} e B = {, 3, 5} e a correspondência entre A e B dada pela desigualdade y > x, com x A e y B, temos: Note que: * Todos os elementos de A têm correspondente em B; * Ao elemento 0 de A correspondem três elementos de B e não a um único Nesse caso, NÃO temos uma função de A em B 3º) Dados A = {-4, -, 0,, 4} e B = {0,, 4, 6, 8} e a correspondência entre A e B dada pela fórmula y = x, com x A e y B, temos: Note que: * Há elementos de A (os números -4 e -) que não têm correspondente em B Nesse caso, NÃO temos uma função de A em B Monster Concursos
3 4º) Dados A = {-, -1, 0, 1, } e B = {0, 1, 4, 8, 16} e a correspondência entre A e B dada pela fórmula y = x, com x A e y B, temos: 4 Note que: * Todos os elementos de A têm correspondente em B; * A cada elemento de A corresponde um único elemento de B Nesse caso, temos uma função de A em B Definição e Notação Dados dois conjuntos não-vazios A e B, uma função de A em B é uma regra que diz como associar cada elemento x A a um único elemento y B Usamos a seguinte notação: que se lê: f é uma função de A em B f: A B ou A f B A função f transforma x de A em y de B 1) Quais dos seguintes diagramas representam uma função de A em B? a) b) Monster Concursos 3
4 c) d) ) Dados A = {0, 1,, 3}, B = {-1, 0, 1} e a correspondência entre A e B dada por y = x, com x A e y B, faça um diagrama e diga se f é uma função de A em B Domínio, Contradomínio e Conjunto Imagem 1º) Dados os conjuntos A = {0, 1,, 3} e B = {0, 1,, 3, 4, 5, 6}, vamos considerar a função f: A B que transforma x A em y B Em toda função f de A em B, Im(f) B Nesse caso, a função f: A B está definida por y = x ou por f(x) = x Veja que para caracterizar uma função é necessário conhecer seus três componentes: o domínio (A), o contradomínio (B) e uma regra que associa cada elemento de A a um único elemento y = f(x) de B Nesse exemplo, o domínio é A = {0, 1,, 3}, o contradomínio é B = {0, 1,, 3, 4, 5, 6}, a regra é dada por y = x e o conjunto imagem é dado por Im(f): {0,, 4, 6} definida por g(x) = x² Nesse caso a função g transforma todo º) Consideremos a função g: número inteiro x em outro número inteiro y que é o quadrado de x * A imagem de x = - é g(-) = (-)² = 4 * A imagem de x = -1 é g(-1) = (-1)² = 1 * A imagem de x = 0 é g(0) = (0)² = 0 * A imagem de x = 1 é g(1) = (1)² = 1 * A imagem de x = é g() = ()² = 4 Portanto, o domínio é, o contradomínio é, a regra é y = x² e o conjunto imagem é, isto é, Im(g) = Monster Concursos 4
5 Generalizando: Dada uma função h de A em B, o conjunto A chama-se domínio da função e o conjunto B, contradomínio da função Para cada x A, o elemento y B chama-se imagem de x pela função h ou o valor assumido pela função h para x A e o representamos por h(x) Assim, y = h(x) O conjunto de todos os y assim obtidos é chamado conjunto imagem da função h e é indicado por Im(h) 1) Considere a função A f B dada pelo diagrama e determine: a) D(f) b) CD(f) c) Im(f) d)f(4) e) y, quando x = 6 f) x, quando y = 7 g) f(x), quando x = 5 h) x, quando f(x) = 1 g ) Considere A B a função para a qual A = {0, 1,, 3, 4} e B = {-, -1, 0, 1, 4, 7, 10} e g(x) é o triplo de x diminuído de para todo x A a) Considere o diagrama de flechas da função: b) Determine D(g), CD(g) e Im(g): c) Determine g(3): d) Determine x para o qual g(x) = -: Estudo do Domínio de uma Função Real Vimos que uma função consta de três componentes: domínio, contradomínio e lei de correspondência Quando é citada uma função f de A em B, já ficam subentendidos o domínio (A) e o contradomínio (B) No entanto, às vezes é dada somente a lei da função f sem que A e B sejam citados Nesses casos consideramos o contradomínio B = e o domínio A como o maior subconjunto de (A ) tal que a lei dada defina uma função f: A Observe os seguintes exemplos: Monster Concursos 5
6 1º) f(x) = x Sabemos que o denominador de uma fração tem que ser diferente de zero, pois não existe divisão por zero Nesse caso, temos que ter 0 para que Para cada 0, o valor x Logo, D(f) = - {0} = * º) f(x) = 4 x sempre existe e é único Sabemos que no conjunto dos números reais ( Portanto, temos que ter x 4 0 para que 4 seja possível em ), não existe raiz quadrada de número negativo seja possível em Para cada 4, f(x) = Logo, D(f) = {x x 4 0 existe e é único 4} = [4, + [ 4 4 3º) f(x) = 7 x Nesse caso, devemos ter: (I) e (II) x > 0 x > Ou seja, x ], 7] Para cada x ], 7], f(x) existe e é único Logo, D(f) = ], 7] 1) Explicite o domínio das funções reais definidas por: a) f(x) = x² - 7x + 6 c) f(x) = x² 3x 3 4 b) f(x) = d) f(x) = 6 x 3 1 Monster Concursos 6
7 Construção de Gráficos de Funções Para construir o gráfico de uma função dada por y = f(x), com x D(f), no plano cartesiano, devemos: * Construir uma tabela com valores de x escolhidos convenientemente no domínio D e com valores correspondentes para y = f(x); * A cada par ordenado (x, y) da tabela associar um ponto do plano cartesiano; * Marcar um número suficiente de pontos, até que seja possível esboçar o gráfico da função Exemplos: 1º) Vamos construir o gráfico da função f: dada por f(x) = x + 1 Como, neste caso, D =, vamos escolher alguns valores arbitrários de x: x y = f(x) = x O gráfico da função dada é o conjunto de todos os pontos (x, y), com x real e y = x + 1, resultando na reta da figura abaixo º) Vamos construir o gráfico da função f dada por f(x) = -x² x Y = f(x) = -x² (x, y) - -4 (-, -4) -1,5 -,5 (-1,5; -,5) -1-1 (-1, -1) 0 0 (0, 0) 1-1 (1, -1) 1,5 -,5 (1,5; -,5) -4 (, -4) Monster Concursos 7
8 A curva que contém todos os pontos obtidos com y = -x² é o gráfico da função dada Essa curva se chama parábola 3º) Vamos construir o gráfico das função f dada por f(x) = x, se 3 3, se x > 3 Nesse caso, a função está definida por duas sentenças: f(x) = x, se 3 f(x) = 3, se x > 3 3 x y = f(x) = x (x, y) -1-1 (-1, -1) 1 1 (1, 1) 3 3 (3, 3) x > 3 x y = f(x) = x (x, y) 4 3 (4, 3) 5 3 (5, 3) 6 3 (6, 3) Monster Concursos 8
9 1) Construa o gráfico de cada uma das seguintes funções y = f(x), f: : a) y = x + 3 b) f(x) = x² + 3 c) f(x) = 4x, se 0 0, se x < 0 Como determinar o domínio e a imagem de uma função a partir do seu gráfico? Observando o gráfico de uma função no plano cartesiano podemos, às vezes, determinar o domínio D e o conjunto Im da função, projetando o gráfico nos eixos: D(f) = { x 4} = [, 4] D(f) = { x 4} = [, 4] Im(f) = { 1 5} = [1, 5] Im(f) = { 1 5} = [1, 5] 1) Os seguintes gráficos representam funções; determine o domínio D e o conjunto imagem Im de cada uma delas: a) b) c) Monster Concursos 9
10 Determinando se um conjunto de pontos é gráfico de uma função Já vimos que, para ter uma função de A em B, a cada x A deve corresponder um único y B Geometricamente, isso significa que qualquer reta perpendicular ao eixo x que intersecta o gráfico deve fazê-lo uma única vez Assim, se essa reta intersectar o gráfico em mais de um ponto, esse gráfico não é gráfico de uma função Por exemplo: O gráfico acima é de uma função O gráfico acima não é de uma função 1) Determine se cada um dos gráficos abaixo representa uma função: a) b) c) d) Monster Concursos 10
11 Analisando o gráfico de uma função De modo geral, analisando o gráfico de uma função, podemos observar propriedades importantes dela, tais como: 1º) Onde ela é positiva (f(x) > 0), onde ela é negativa (f(x) < 0) e onde ela se anula (f(x) = 0) Os valores x 0 nos quais ela se anula (f(x 0 ) = 0) são chamados zeros ou raízes da função f º) Onde ela é crescente (se x 1< x, então f(x 1) < f(x )), onde ela é decrescente (se x 1 < x, então f(x 1) > f(x )), onde ela é constante (se x 1< x, então f(x 1) = f(x )) e onde ela assume um valor máximo ou um valor mínimo, se existirem Exemplo: Considere o gráfico abaixo de uma função definida no intervalo ]-6, 6[: * f é positiva em ]-5, -1[ e em ]5, 6[ * f é negativa em ]-6, -5[ e em ]-1, 5[ * f é nula em x = -5, x = -1 e x = 5 Esses são os zeros ou raízes da função * f é crescente em ]-6, -3] e em [, 6] * f é decrescente em [-3, ] * O ponto com x = -3 é um ponto de máximo e f(x) = é o valor máximo de f * O ponto com x = é um ponto de mínimo e f(x) = -3 é o valor mínimo de f 1) Considerando o gráfico a seguir, que representa uma função, responda: a) Qual o domínio e a imagem da função? b) Em que intervalos a função é crescente? c) Em que intervalo a função é decrescente? d) f (1) é maior, menor ou igual a f(4)? f (5) e) Qual o valor de? f ( 3) f () f) Quais são os zeros ou raízes da função? g) Qual é o valor mínimo de f? #umavagaéminha Monster Concursos 11
Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Cálculo Aula 1 Professor: Carlos Sérgio. Revisão de Funções
Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Cálculo - 01. Aula 1 Professor: Carlos Sérgio Revisão de Funções Sistema cartesiano ortogonal O Sistema de Coordenadas Cartesianas,
MATEMÁTICA Prof.: Alexsandro de Sousa
E. E. DONA ANTÔNIA VALADARES MATEMÁTICA Prof.: Alexsandro de Sousa Introdução ao conceito de funções FERNANDO FAVORETTO/CID A ideia de função no cotidiano Relação entre duas grandezas Quantidade de pães
FUNÇÕES I- PRÉ-REQUISITOS PARA O ESTUDO DAS FUNÇÕES
FUNÇÕES I- PRÉ-REQUISITOS PARA O ESTUDO DAS FUNÇÕES 1- PRODUTO CARTESIANO 1.1- Par Ordenado - Ao par de números reais a e b, dispostos em uma certa ordem, denominamos par ordenado e indicamos por: (a,
Notas de Aula Disciplina Matemática Tópico 03 Licenciatura em Matemática Osasco -2010
1. Funções : Definição Considere dois sub-conjuntos A e B do conjunto dos números reais. Uma função f: A B é uma regra que define uma relação entre os elementos de A e B, de tal forma que a cada elemento
eixo das ordenadas y eixo das abscissas Origem 1º quadrante 2º quadrante O (0, 0) x 4º quadrante 3º quadrante
PLANO CARTESIANO eixo das ordenadas y 2º quadrante 1º quadrante eixo das abscissas O (0, 0) x Origem 3º quadrante 4º quadrante y ordenado do ponto P 4 P P(3, 4) O 3 x abscissa do ponto P No caso, 3 e 4
Gênesis S. Araújo Pré-Cálculo
Gênesis Soares Jaboatão, de de 2016. Estudante: PAR ORDENADO: Um par ordenado de números reais é o conjunto formado por dois números reais em determinada ordem. Os parênteses, em substituição às chaves,
Plano Cartesiano. Relação Binária
Plano Cartesiano O plano cartesiano ortogonal é constituído por dois eixos x e y perpendiculares entre si que se cruzam na origem. O eixo horizontal é o eixo das abscissas (eixo OX) e o eixo vertical é
ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI
ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA INTRODUÇÃO AO ESTUDO DAS FUNÇÕES NOME: N O : blog.portalpositivo.com.br/capitcar 1 FUNÇÃO IDÉIA INTUITIVA DE FUNÇÃO O conceito de função é um
Matemática Básica Relações / Funções
Matemática Básica Relações / Funções 04 1. Relações (a) Produto cartesiano Dados dois conjuntos A e B, não vazios, denomina-se produto cartesiano de A por B ao conjunto A B cujos elementos são todos os
Todos os exercícios sugeridos nesta apostila se referem ao volume 1.
CONCEITO DE FUNÇÃO... 2 IMAGEM DE UMA FUNÇÃO... 8 IMAGEM A PARTIR DE UM GRÁFICO... 12 DOMÍNIO DE UMA FUNÇÃO... 15 DETERMIAÇÃO DO DOMÍNIO... 15 DOMÍNIO A PARTIR DE UM GRÁFICO... 17 GRÁFICO DE UMA FUNÇÃO...
RESUMO - GRÁFICOS. O coeficiente de x, a, é chamado coeficiente angular da reta e está ligado à inclinação da reta
RESUMO - GRÁFICOS Função do Primeiro Grau - f(x) = ax + b O gráfico de uma função do 1 o grau, y = ax + b, é uma reta. O coeficiente de x, a, é chamado coeficiente angular da reta e está ligado à inclinação
CÁLCULO I. Aula n o 02: Funções. Denir função e conhecer os seus elementos; Listar as principais funções e seus grácos.
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 02: Funções. Objetivos da Aula Denir função e conhecer os seus elementos; Reconhecer o gráco de uma função; Listar as
Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 RELAÇÕES e FUNÇÕES
PAR ORDENADO... 2 PRODUTO CARTESIANO... 3 REPRESENTAÇÃO GRÁFICA... 4 RELAÇÃO... 8 DOMÍNIO E IMAGEM... 12 CONTRA-DOMÍNIO... 13 RELAÇÃO INVERSA... 17 PROPRIEDADES DA RELAÇÃO INVERSA... 18 FUNÇÕES... 22 IMAGEM
Conjuntos Numéricos. I) Números Naturais N = { 0, 1, 2, 3,... }
Conjuntos Numéricos I) Números Naturais N = { 0, 1, 2, 3,... } II) Números Inteiros Z = {..., -2, -1, 0, 1, 2,... } Todo número natural é inteiro, isto é, N é um subconjunto de Z III) Números Racionais
E-books PCNA. Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 FUNÇÕES
E-books PCNA Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 FUNÇÕES 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 SUMÁRIO Apresentação -------------------------------------------------------2 Capítulo 3 ------------------------------------------------------
DEFINIÇÃO DE FUNÇÃO y = x²
DEFINIÇÃO DE FUNÇÃO Definimos função como a relação entre dois ou mais conjuntos, estabelecida por uma lei de formação, isto é, uma regra geral. Os elementos de um grupo devem ser relacionados com os elementos
FUNÇÕES. Carlos Eurico Galvão Rosa UNIVERSIDADE FEDERAL DO PARANÁ UFPR CAMPUS AVANÇADO DE JANDAIA DO SUL LICENCIATURAS UFPR JCE001 GALVÃO ROSA,C.E.
UNIVERSIDADE FEDERAL DO PARANÁ UFPR CAMPUS AVANÇADO DE JANDAIA DO SUL LICENCIATURAS Injetiva FUNÇÕES Sobrejetiva Bijetiva Carlos Eurico Galvão Rosa UFPR 1 / 33 de Injetiva Sobrejetiva Bijetiva : Dados
CÁLCULO I. Aula n o 02: Funções. Determinar o domínio, imagem e o gráco de uma função; Reconhecer funções pares, ímpares, crescentes e decrescentes;
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 02: Funções Objetivos da Aula Denir e reconhecer funções; Determinar o domínio, imagem e o gráco de uma função; Reconhecer funções pares,
Gráficos e Funções. Alex Oliveira Allysson Lacerda
Gráficos e Funções Alex Oliveira Allysson Lacerda Noção de Função O conceito de função é um dos mais importantes da matemática. Vejamos alguns exemplos: o Número de litros de gasolina e preço a pagar.
O gráfico da função constante é uma reta paralela ao eixo dos x passando pelo ponto (0, c). A imagem é o conjunto Im = {c}.
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Funções do 1 o Grau Prof.:
O ESTUDO DAS FUNÇÕES INTRODUÇÃO
O ESTUDO DAS FUNÇÕES INTRODUÇÃO DEFINIÇÃO As funções explicitam relações matemáticas especiais entre duas grandezas. As grandezas envolvidas nessas relações são conhecidas como variável dependente
Funções Reais a uma Variável Real
Funções Reais a uma Variável Real 1 Introdução As funções são utilizadas para descrever o mundo real em termos matemáticos, é o que se chama de modelagem matemática para as diversas situações. Podem, por
Letras a b c d e f g h i j l m n o p q r s t u v x z
UMA INTRODUÇÃO AO ESTUDO DAS FUNÇÕES MATEMÁTICAS. PROF. ILYDIO PEREIRA DE SÁ I) CRIPTOGRAFIA E FUNÇÕES MATEMÁTICAS Um dos problemas encarados como um passatempo até poucos anos atrás, e que se tornou de
FUNÇÕES. Prof.ª Adriana Massucci
FUNÇÕES Prof.ª Adriana Massucci Introdução: Muitas grandezas com as quais lidamos no nosso cotidiano dependem uma da outra, isto é, a variação de uma delas tem como consequência a variação da outra. Exemplo:
CÁLCULO I Aula 01: Funções.
Inversa CÁLCULO I Aula 01: Funções. Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará Inversa 1 Funções e seus 2 Inversa 3 Funções Funções e seus Inversa Consideremos A e B dois
Função Definida Por Várias Sentenças
Ministrante Profª. Drª. Patrícia Aparecida Manholi Material elaborado pela Profª. Drª. Patrícia Aparecida Manholi SUMÁRIO Função Definida Por Várias Sentenças Lembrando... Dados dois conjuntos não vazios
TEORIA CONSTRUINDO E ANALISANDO GRÁFICOS 812EE 1 INTRODUÇÃO
CONSTRUINDO E ANALISANDO GRÁFICOS 81EE 1 TEORIA 1 INTRODUÇÃO Os assuntos tratados a seguir são de importância fundamental não somente na Matemática, mas também na Física, Química, Geografia, Estatística
Capítulo 1. Conjuntos e Relações. 1.1 Noção intuitiva de conjuntos. Notação dos conjuntos
Conjuntos e Relações Capítulo Neste capítulo você deverá: Identificar e escrever os tipos de conjuntos, tais como, conjunto vazio, unitário, finito, infinito, os conjuntos numéricos, a reta numérica e
UNIDADE III INTRODUÇÃO AO ESTUDO DE FUNÇÃO PARTE 2 de 2
UNIDADE III INTRODUÇÃO AO ESTUDO DE FUNÇÃO PARTE de 3.0. IMAGEM DE UM ELEMENTO ATRAVÉS DO DIAGRAMA DE FLECHAS 3.. IMAGEM DE UM ELEMENTO ATRAVÉS DE Y = F(X) 3.. IMAGEM DE UM ELEMENTO ATRAVÉS DO GRÁFICO
ALUNO(A): Prof.: André Luiz Acesse: 02/05/2012
1. FUNÇÃO 1.1. DEFINIÇÃO Uma função é um conjunto de pares ordenados de números (x,y) no qual duas duplas ordenadas distintas não podem ter o mesmo primeiro número, ou seja, garante que y seja único para
FUNÇÕES Disciplina: Lógica Aplicada Prof. Rafael Dias Ribeiro. Autoria: Prof. Denise Candal
FUNÇÕES Disciplina: Lógica Aplicada Prof. Rafael Dias Ribeiro Autoria: Prof. Denise Candal Plano Cartesiano Fixando em um plano dois eixos reais Ox e Oy, perpendiculares entre si no ponto O, podemos determinar
Lista de Exercícios 1. Num papel quadriculado, em um mesmo plano cartesiano, localize os pontos:
Lista de Exercícios 1. Num papel quadriculado, em um mesmo plano cartesiano, localize os pontos: A = ( 0, 4 ); B = ( -4, 5 ); C = ( 3, - 4 ); D = ( 2, 2 ); E = ( 0, 0 ) 2. No plano cartesiano abaixo, dê
A idéia de função. O conceito de função é um dos mais importantes em toda a Matemática. https://ueedgartito.wordpress.com.
Matemática Básica Unidade 5 Estudo de Funções RANILDO LOPES Slides disponíveis no nosso SITE: O conceito de função é um dos mais importantes em toda a Matemática. https://ueedgartito.wordpress.com A idéia
Campos dos Goytacazes/RJ Maio 2015
Instituto Federal Fluminense Campus Campos Centro Programa Tecnologia Comunicação Educação (PTCE) Apostila organizada por: Vanderlane Andrade Florindo Silvia Cristina Freitas Batista Carmem Lúcia Vieira
INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA PROF. ILYDIO PEREIRA DE SÁ UMA INTRODUÇÃO AO ESTUDO DAS FUNÇÕES
CAp/UERJ Álgebra 1ª Série do Ensino Médio Prof Ilydio P de Sá 1 INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA PROF ILYDIO PEREIRA DE SÁ UMA INTRODUÇÃO AO ESTUDO DAS FUNÇÕES 1) Primeiras idéias
Matemática I Capítulo 11 Função Modular
Nome: Nº Curso: Mecânica Integrado Disciplina: Matemática I 1 Ano Prof. Leonardo Data: / /016 Matemática I Capítulo 11 Função Modular 11.1 - Módulo O módulo, ou valor absoluto, de um número real x representado
FUNÇÕES CONSTANTE, DE PRIMEIRO E DE SEGUNDO GRAUS. DEFINIÇÕES:
FUNÇÕES CONSTANTE, DE PRIMEIRO E DE SEGUNDO GRAUS. DEFINIÇÕES: FUNÇÃO CONSTANTE: Uma função é chamada constante se puder ser escrita na forma, onde a é um número real fixo. Como exemplos, podemos escrever,,.
BANCO DE EXERCÍCIOS - 24 HORAS
BANCO DE EXERCÍCIOS - HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº GABARITO COMENTADO ) A função será y,5x +, onde y (preço a ser pago) está em função de x (número de quilômetros
Capítulo 2- Funções. Dado dois conjuntos não vazios e e uma lei que associa a cada elemento de um único elemento de, dizemos que é uma função de em.
Conceitos Capítulo 2- Funções O termo função foi primeiramente usado para denotar a dependência entre uma quantidade e outra. A função é usualmente denotada por uma única letra,,,... Definição: Dado dois
Matemática I Capítulo 06 Propriedades das Funções
Nome: Nº Curso: Mineração Integrado Disciplina: Matemática I 1 Ano Prof. Leonardo Data: / /016 Matemática I Capítulo 06 Propriedades das Funções 6.1 Paridade das Funções 6.1.1 - Função par Dada uma função
Pré-Cálculo. Humberto José Bortolossi. Aula 8 26 de abril de Departamento de Matemática Aplicada Universidade Federal Fluminense
Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 8 26 de abril de 200 Aula 8 Pré-Cálculo O que é uma função? Funções reais Uma função real f
1. Considere os conjuntos A = {0; 2} e B = {1; 2; 3}. A respeito de produto cartesiano entre dois conjuntos, assinale a alternativa correta:
. Considere os conjuntos A = {0; 2} e B = {; 2; 3}. A respeito de produto cartesiano entre dois conjuntos, assinale a alternativa correta: a. AxB = {(0; ); (0; 2); (0; 3); (2; ); (2; 2); (2; 3)} b. BxA
Explorando a ideia de função
Instituto Municipal de Ensino Superior de Catanduva SP Curso de Licenciatura em Matemática 3º ano Prática de Ensino da Matemática III Prof. M.Sc. Fabricio Eduardo Ferreira [email protected] Explorando
CÁLCULO FUNÇÕES DE UMA E VÁRIAS VARIÁVEIS Pedro A. Morettin, Samuel Hazzan, Wilton de O. Bussab.
Introdução Função é uma forma de estabelecer uma ligação entre dois conjuntos, sujeita a algumas condições. Antes, porém, será exposta uma forma de correspondência mais geral, chamada relação. Sejam dois
Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES. FUNÇÕES Parte A
Universidade Federal do Rio Grande FURG Instituto de Matemática, Estatística e Física IMEF Edital 5 CAPES FUNÇÕES Parte A Prof. Antônio Maurício Medeiros Alves Profª Denise Maria Varella Martinez UNIDADE
Funções EXERCÍCIOS ( ) ( )
Funções Quando relacionamos grandezas variáveis, onde variando uma interfere no valor de outra, estamos trabalhando com conceito de função. Por eemplo, um taista abastece seu carro no posto de combustível
1º) Esboce o gráfico das funções, calcule e marque os interceptos: a) f(x) = x b) f(x) = - 3x + 2
1º) Esboce o gráfico das funções, calcule e marque os interceptos: a) f() = b) f() = - 3 + 2 (0,0) (0,2) no eio (,0) no eio c) f() = + 3 d) f() = 2-3 (0,3) no (0,-3) no (-3,0) no (1,5;0) no 2º) Determine
MATEMÁTICA. ENSINO MÉDIO - 1º ANO Função Polinomial do 1º Grau (FUNÇÃO AFIM) PROFESSOR: ALEXSANDRO DE SOUSA
E.E. Dona Antônia Valadares MATEMÁTICA ENSINO MÉDIO - 1º ANO Função Polinomial do 1º Grau (FUNÇÃO AFIM) PROFESSOR: ALEXSANDRO DE SOUSA http://donaantoniavaladares.comunidades.net Definição: Uma função
Um par ordenado é indica por x e y dentro de parêntese e separado por vírgula.
PRODUTO CARTESIANO PAR ORDENADO Um par ordenado é indica por x e y dentro de parêntese e separado por vírgula. ( x, y ) pode ser indicado para representar uma determinada posição e que esta ordem de primeiro
Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO QUADRÁTICA PARTE 2
EIXO DE SIMETRIA... COEFICIENTES a, b E c NO GRÁFICO... SINAL DA FUNÇÃO QUADRÁTICA...4 INEQUAÇÕES DO º GRAU...9 INEQUAÇÕES PRODUTO E QUOCIENTE... 4 SISTEMA DE INEQUAÇÕES DO º GRAU... 8 REFERÊNCIA BIBLIOGRÁFICA...
Inequação do Segundo Grau
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.1 Inequação do Segundo Grau Iva Emanuelly Pereira Lima - Engenharia Civil Na aula de hoje... Introdução e Exemplos de Inequação do Segundo Grau; Solucionando
Neste capítulo estamos interessados em resolver numericamente a equação
CAPÍTULO1 EQUAÇÕES NÃO-LINEARES 1.1 Introdução Neste capítulo estamos interessados em resolver numericamente a equação f(x) = 0, onde f é uma função arbitrária. Quando escrevemos resolver numericamente,
Equação de 1º Grau. ax = -b
Introdução Equação é toda sentença matemática aberta que exprime uma relação de igualdade. A palavra equação tem o prefixo equa, que em latim quer dizer "igual". Exemplos: 2x + 8 = 0 5x - 4 = 6x + 8 3a
Matemática Básica Função polinomial do primeiro grau
Matemática Básica Função polinomial do primeiro grau 05 1. Função polinomial do primeiro grau (a) Função constante Toda função f :R R definida como f ()=c, com c R é denominada função constante. Por eemplo:
Ano: 1º ano Ensino Médio Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 2º BIMESTRE
Nome: Nº: Ano: 1º ano Ensino Médio Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi a) Conteúdos : Introdução: a noção intuitiva de função. ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 2º BIMESTRE
Função. Definição formal: Considere dois conjuntos: o conjunto X com elementos x e o conjunto Y com elementos y. Isto é:
Função Toda vez que temos dois conjuntos e algum tipo de associação entre eles, que faça corresponder a todo elemento do primeiro conjunto um único elemento do segundo, ocorre uma função. Definição formal:
Capítulo 2. Retas no plano. 1. Retas verticais e não-verticais. Definição 1
Capítulo 2 Retas no plano O objetivo desta aula é determinar a equação algébrica que representa uma reta no plano. Para isso, vamos analisar separadamente dois tipos de reta: reta vertical e reta não-vertical.
Definição 3.1: Seja x um número real. O módulo de x, denotado por x, é definido como: { x se x 0 x se x < 0
Capítulo 3 Módulo e Função Módular A função modular é uma função que apresenta o módulo na sua lei de formação. No entanto, antes de falarmos sobre funções modulares devemos definir o conceito de módulo,
Funções. Pré-Cálculo. O que é uma função? O que é uma função? Humberto José Bortolossi. Parte 2. Definição
Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Funções Parte 2 Parte 2 Pré-Cálculo Parte 2 Pré-Cálculo 2 O que é uma função? O que é uma função?
Aula 15 Parábola. Objetivos
MÓDULO 1 - AULA 15 Aula 15 Parábola Objetivos Descrever a parábola como um lugar geométrico determinando a sua equação reduzida nos sistemas de coordenadas com eixo x paralelo à diretriz l e origem no
AXB = {(x, y) x A e y B}
CENTRO UNIVERSITÁRIO DO NORTE PAULISTA LÓGICA E MATEMÁTICA DISCRETA 2010 1 Produto Cartesiano Par ordenado: são dois elementos em uma ordem fixa, (x,y) Produto Cartesiano: Dados dois conjuntos A e B, não
Função Inversa. 1.Função sobrejetora 2.Função injetora 3.Função bijetora 4.Função inversa
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Função Inversa Prof.: Rogério
As funções quadráticas são usadas em diversas aplicações: - Equacionamento do movimento de um ponto com aceleração constante.
Módulo 4 FUNÇÕES QUADRÁTICAS 1. APRESENTAÇÃO As funções quadráticas são usadas em diversas aplicações: - Equacionamento do movimento de um ponto com aceleração constante. - Modelagem de trajetórias na
Teoremas e Propriedades Operatórias
Capítulo 10 Teoremas e Propriedades Operatórias Como vimos no capítulo anterior, mesmo que nossa habilidade no cálculo de ites seja bastante boa, utilizar diretamente a definição para calcular derivadas
Inequação do Segundo Grau
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.2 Inequação do Segundo Grau Vitor Bruno Santos Pereira - Engenharia Civil Na aula de hoje... Introdução e Exemplos de Inequação do Segundo Grau; Solucionando
APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS FUNÇÃO DO 1º GRAU
FUNÇÃO DO 1º GRAU DEFINIÇÃO Chama-se função do 1. grau toda função definida de por f() = a b com a, b e a 0. Eemplos: f() = 3, onde a = e b = 3 (função afim) f() = 6, onde a = 6 e b = 0 (função linear)
Capítulo Coordenadas no Espaço. Seja E o espaço da Geometria Euclidiana tri-dimensional.
Capítulo 9 1. Coordenadas no Espaço Seja E o espaço da Geometria Euclidiana tri-dimensional. Um sistema de eixos ortogonais OXY Z em E consiste de três eixos ortogonais entre si OX, OY e OZ com a mesma
f x x x f x x x f x x x f x x x
Página 1 de 7 I. FUNÇÃO DO º GRAU (ou QUADRÁTICA) 1. Definição Chama-se função do º grau (ou função quadrática) a toda função do tipo onde a, e c são números reais e a 0. São exemplos: f ( x) ax x c =
Matemática A Intensivo V. 1
Intensivo V Eercícios ) V F F F F V V V ) D a) Verdadeiro Zero é elemento do conjunto {,,, 3, } b) Falso Neste caso temos {a} como subconjunto de {a, b} logo a relação correta seria a} {a, b} c) Falso
Curso de Administração Centro de Ciências Sociais Aplicadas Universidade Católica de Petrópolis. Matemática 1. Revisão - Conjuntos e Relações v. 0.
Curso de Administração Centro de Ciências Sociais Aplicadas Universidade Católica de Petrópolis Matemática 1 Revisão - Conjuntos e Relações v. 0.1 Baseado nas notas de aula de Matemática I da prof. Eliane
Unidade II MATEMÁTICA APLICADA. Prof. Luiz Felix
Unidade II MATEMÁTICA APLICADA Prof. Luiz Felix Equações do 1º grau Resolver uma equação do 1º grau significa achar valores que estejam em seus domínios e que satisfaçam à sentença do problema, ou seja,
Cálculo Numérico. Santos Alberto Enriquez-Remigio FAMAT-UFU 2015
Cálculo Numérico Santos Alberto Enriquez-Remigio FAMAT-UFU 2015 1 Capítulo 1 Solução numérica de equações não-lineares 1.1 Introdução Lembremos que todo problema matemático pode ser expresso na forma de
1. Conceito de função. 1, existe um só elemento y B tal que (x, y) S. 1. Conceito de função. 1. Conceito de função
UNIVERSIDDE DO ESTDO DE MTO GROSSO CMPUS UNIVERSITÁRIO DE SINOP FCULDDE DE CIÊNCIS EXTS E TECNOLÓGICS CURSO DE ENGENHRI CIVIL DISCIPLIN: FUNDMENTOS DE MTEMÁTIC Introdução às Funções. Conceito de função
Hewlett-Packard FUNÇÃO QUADRÁTICA. Aulas 01 a 07 + EXTRA. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz
Hewlett-Packard FUNÇÃO QUADRÁTICA Aulas 01 a 07 + EXTRA Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ano: 2016 Sumário O CONCEITO DE FUNÇÃO QUADRÁTICA... 2 (Função polinomial do 2 grau)... 2 EXERCÍCIO
IFSP - EAD _nº 5 FUNÇÃO POLINOMIAL DE PRIMEIRO GRAU, OU FUNÇÃO DE PRIMEIRO GRAU :
IFSP - EAD _nº 5 FUNÇÕES CONSTANTE, DE PRIMEIRO E DE SEGUNDO GRAUS. DEFINIÇÕES : FUNÇÃO CONSTANTE : Uma função f: R R é chamada constante se puder ser escrita na forma y = f() = a, onde a é um número real
As funções do 1º grau estão presentes em
Postado em 01 / 04 / 13 FUNÇÃO DO 1º GRAU Aluno(: 1.1.2 TURMA: 1- FUNÇÃO DO PRIMEIRO GRAU As funções do 1º grau estão presentes em diversas situações do cotidiano. Vejamos um exemplo: Uma loja de eletrodomésticos
Material Didático. Matemática Elementar. Maio Universidade Federal do Pará. Equipe de Matemática: José Benício da Cruz Costa (Coordenação)
Matemática Elementar Material Didático Equipe de Matemática: (PCNA - Maio de 016) José Benício da Cruz Costa (Coordenação) Maio 016 Universidade Federal do Pará Monitores: Daniel de Souza Avelar da Costa
Geometria Analítica. Números Reais. Faremos, neste capítulo, uma rápida apresentação dos números reais e suas propriedades, mas no sentido
Módulo 2 Geometria Analítica Números Reais Conjuntos Numéricos Números naturais O conjunto 1,2,3,... é denominado conjunto dos números naturais. Números inteiros O conjunto...,3,2,1,0,1, 2,3,... é denominado
2. Generalidade Sobre Funções 2.1. O Plano Cartesiano
2. Generalidade Sobre Funções 2.1. O Plano Cartesiano Assim como podemos representar números reais por pontos numa recta de números reais, podemos também representar pares ordenados de números reais por
Notas de Aula Disciplina Matemática Tópico 05 Licenciatura em Matemática Osasco -2010
1. Função Afim Uma função f: R R definida por uma expressão do tipo f x = a. x + b com a e b números reais constantes é denominada função afim ou função polinomial do primeiro grau. A função afim está
Função Inversa. f(x) é invertível. Assim,
Função Inversa. (Eear 07) Sabe-se que a função a) b) 4 c) 6 d) x f(x) é invertível. Assim, 5 f () é. (Espm 07) O conjunto imagem de uma função inversível é igual ao domínio de sua x inversa. Sendo f :
REVISÃO - DESIGUALDADE, MÓDULO E FUNÇÕES
REVISÃO - DESIGUALDADE, MÓDULO E FUNÇÕES Marina Vargas R. P. Gonçalves a a Departamento de Matemática, Universidade Federal do Paraná, [email protected], http:// www.estruturas.ufpr.br 1 REVISÃO
Cálculo diferencial em IR n
Cálculo diferencial em IR n (Funções) DMAT 7 Abril Conteúdo Introdução Campos Escalares e Vectoriais Noção de Domínio e de Contradomínio 6 4 Composição de Funções 8 5 Representação Gráfica de Funções 5
Exercícios 5 e 6 do MUROLO, páginas 59 e 60. Matemática Aplicada (UNIP, 2011)
Exercícios 5 e 6 do MUROLO, páginas 59 e 60 Matemática Aplicada (UNIP, 2011) Exercício 5 (página 59) a) a função receita é dada por: R = p x q então, R = (-2q + 400). q é a função receita. Para esboçar
FUNÇÕES Parte 2 Disciplina: Lógica Aplicada Prof. Rafael Dias Ribeiro. Autoria: Prof. Denise Candal
FUNÇÕES Parte 2 Disciplina: Lógica Aplicada Prof. Rafael Dias Ribeiro Autoria: Prof. Denise Candal Função Quadrática ou do 2 o grau Definição: Toda função do tipo y = ax 2 + bx + c, com {a, b, c} R e a
CÁLCULO I. 1 Funções Crescentes e Decrescentes
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 14: Crescimento e Decrescimento. Teste da Primeira Derivada. Objetivos da Aula Denir funções crescentes e decrescentes; Determinar os intervalos
Equação de Segundo Grau. Rafael Alves
Equação de Segundo Grau Rafael Alves Equação do 2º Grau As equações são caracterizadas de acordo com o maior expoente de uma das incógnitas. 2x + 1 = 0 (Equação de 1º grau) 2x² + 2x + 6 = 0 (Equação de
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Função do 2º grau. Lucas Araújo Engenharia de Produção Rafael Carvalho Engenharia Civil
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2016.1 Função do 2º grau Lucas Araújo Engenharia de Produção Rafael Carvalho Engenharia Civil Roteiro Função do Segundo Grau; Gráfico da Função Quadrática;
MÉTODOS MATEMÁTICOS. Claudia Mazza Dias Sandra Mara C. Malta
MÉTODOS MATEMÁTICOS Claudia Mazza Dias Sandra Mara C. Malta 1 Métodos Matemáticos Aulas: De 03/11 a 08/11-8:30 as 11:00h Ementa: 1. Funções 2. Eq. Diferenciais Ordinárias de 1 a ordem 3. Sistemas de Equações
Em Matemática existem situações em que há necessidade de distinguir dois pares pela ordem dos elementos. Por exemplo, no sistema de equações
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Relações Prof.: Rogério Dias
EXERCÍCIOS 2006 APOSTILA MATEMÁTICA
EXERCÍCIOS 2006 APOSTILA MATEMÁTICA Professor: LUIZ ANTÔNIO 1 >>>>>>>>>> PROGRESSÃO ARITMÉTICA P. A.
PARTE 2- MEDIDAS DE TENDÊNCIA CENTRAL VERSÃO: JANEIRO DE 2017
COMUNICAÇÃO SOCIAL E MARKETING CENTRO DE CIÊNCIAS SOCIAIS APLICADAS UNIVERSIDADE CATÓLICA DE PETRÓPOLIS ESTATÍSTICA APLICADA PARA PESQUISA EM MARKETING E COMUNICAÇÃO (BASEADO NO MATERIAL DE AULA DO PROFESSOR
Unidade 2 Conceito de Funções
Unidade 2 Conceito de Funções Conceito Sistema Cartesiano Ortogonal Estudo do domínio, contradomínio e imagem de função Representações de funções por meio de tabelas, gráficos e fórmulas Conceito de Função
Aula 04 Funções. Professor Marcel Merlin dos Santos Página 1
PARIDADE Define-se como paridade o estudo das características do que é igual ou semelhante, ou seja, é uma comparação para provar que uma coisa pode ser igual ou semelhante à outra. Função Par Define-se
Função de 2º Grau. Parábola: formas geométricas no cotidiano
1 Função de 2º Grau Parábola: formas geométricas no cotidiano Toda função estabelecida pela lei de formação f(x) = ax² + bx + c, com a, b e c números reais e a 0, é denominada função do 2º grau. Generalizando
Plotar Gráficos com Recursos Computacionais
Plotar 1 Gráficos com Recursos Computacionais Plotar (esboçar) o gráfico de uma função nem sempre é uma tarefa fácil. Para facilitar nosso trabalho, podemos utilizar softwares matemáticos especialmente
{ } { } { } { } { } Professor: Erivaldo. Função Composta SUPERSEMI. 01)(Aman 2013) Sejam as funções reais ( ) 2
Centro de Estudos Matemáticos Florianópolis Professor: Erivaldo Santa Catarina Função Composta SUPERSEMI 01)(Aman 013) Sejam as funções reais ( ) f x = x + 4x e gx ( ) = x 1. O domínio da função f(g(x))
Aulas 10 e 11 / 18 e 20 de abril
1 Conjuntos Aulas 10 e 11 / 18 e 20 de abril Um conjunto é uma coleção de objetos. Estes objetos são chamados de elementos do conjunto. A única restrição é que em geral um mesmo elemento não pode contar
