{ } { } { } { } { } Professor: Erivaldo. Função Composta SUPERSEMI. 01)(Aman 2013) Sejam as funções reais ( ) 2

Tamanho: px
Começar a partir da página:

Download "{ } { } { } { } { } Professor: Erivaldo. Função Composta SUPERSEMI. 01)(Aman 2013) Sejam as funções reais ( ) 2"

Transcrição

1 Centro de Estudos Matemáticos Florianópolis Professor: Erivaldo Santa Catarina Função Composta SUPERSEMI 01)(Aman 013) Sejam as funções reais ( ) f x = x + 4x e gx ( ) = x 1. O domínio da função f(g(x)) é a) D = x R x 3 ou x 1 { } { } { } { } { } b) D = x R 3 x 1 c) D = x R x 1 d) D = x R 0 x 4 e) D = x R x 0 ou x 4 0)(Pucrj 01) Sejam f(x) = x + 1 e g(x) = 3x + 1. Então f(g(3)) g(f(3)) é igual a: a) 1 b) 0 c) 1 d) e) 3 03)(Uern 01) Sejam as funções compostas f(g(x)) = x 1 e g(f(x)) = x. Sendo g(x) = x + 1, então f(5) + g() é a) 10. b) 8. c) 7. d) 6. 04)(Ufsj 01) Sendo a função f( x) = ax+ b, tal que ( ( )) CORRETO afirmar que a) 1 x f ( x) = + 3 b) f( 0) = 8 c) f( x) = 3x+ 4 d) 1 ( x ) f ( x) = 3 f f x = 9x+ 8, é

2 Centro de Estudos Matemáticos 05)(Uem 01) Considere as funções f e g, ambas com domínio e contradomínio real, dadas por f(x) = 5x e g(x) = x 6x + 1, para qualquer x real. A respeito dessas funções, assinale o que for correto. 01. A imagem de qualquer número racional, pela função f, é um número irracional. 0. A função g possui uma única raiz real. 04. Ambas as funções são crescentes no intervalo [ 0,+ [ do domínio. 08. O gráfico da função f o g é uma parábola. 16. Ambas as funções possuem inversas. 06)(Ufsm 01) Os praticantes de exercícios físicos se preocupam com o conforto dos calçados utilizados em cada modalidade. O mais comum é o tênis, que é utilizado em corridas, caminhadas, etc. A numeração para esses calçados é diferente em vários países, porém existe uma forma para converter essa numeração de acordo com os tamanhos. x Assim, a função g(x) = converte a numeração dos tênis fabricados no 6 Brasil para a dos tênis fabricados nos Estados Unidos, e a função f(x) = 40x + 1 converte a numeração dos tênis fabricados nos Estados Unidos para a dos tênis fabricados na Coreia. A função h que converte a numeração dos tênis brasileiros para a dos tênis coreanos é a) b) c) d) e) 0 1 h(x) = x h(x) = x h(x) = x x + 1 h(x) =. 3 x+ 1 h(x) =. 3

3 Centro de Estudos Matemáticos 07)(CFTMG 01) Sendo f(x) = x + x + 1 definida em A = {x R / x 1} e g(x) = x definida em R +, o gráfico que representa a função (gof)(x) é a) b) c) d)

4 Centro de Estudos Matemáticos 08)(IFSC 01) Em uma fábrica de bijuterias o custo de produção de um lote de brincos é calculado a partir de um valor fixo de R$ 15,00, mais R$ 1,50 por unidade produzida. Nessa fábrica, são produzidos lotes de, no máximo, brincos, sendo vendido cada lote com 5% de lucro sobre o valor de custo. Sobre essa situação, leia e analise as afirmações abaixo: I. A função C que relaciona o custo de produção a uma quantidade x de brincos produzidos é C(x) = 16,50x. II. A função V que relaciona o valor de venda de um lote de brincos e o custo C de produção é V(C) = 1,5C. III. O custo para produção de um lote com 400 brincos é R$ 75,00. IV. Considerando C a função que relaciona o custo de produção de uma quantidade x de brincos e V a função que relaciona o valor de venda de um lote de brincos com o custo C de produção, então a função composta V(C(x)) é a função que relaciona o valor de venda de um lote de brincos e a quantidade x de brincos produzidos. V. O preço de venda de um lote com 100 brincos é R$ 343,75. Assinale a alternativa CORRETA. a) Apenas as afirmações II, III, IV e V são VERDADEIRAS. b) Apenas as afirmações I, III, IV e V são VERDADEIRAS. c) Apenas as afirmações III, IV e V são VERDADEIRAS. d) Apenas as afirmações I e II são VERDADEIRAS. e) Todas as afirmações são VERDADEIRAS. 09)(Espm 01) Sejam f e g funções reais tais que Podemos afirmar que a f( x+ 1) = x+ 4 e g( x+ 1) = x 1para todo x R. função fog(x) é igual a: a) x 1 b) x + c) 3x + 1 d) x e) x 3

5 Centro de Estudos Matemáticos 10)(Uepg 011) Sobre uma função afim f(x) = ax + b, assinale o que for correto. 01. Se a > 0 e b < 0 então f(x) é crescente e possui raiz negativa. 0. Se o gráfico de f(x) passa pelos pontos, ( 1, 1) e (3, 5) então f(f( 3)) = Se f(x) + f(x 3) = x então f(x) = 1 x Se b = 3 e f(f( )) = 5 então a = Se a.b > 0 a raiz de f(x) é um número positivo. 11)(Ifal 011) Considere o gráfico da função y segmentos de reta: = f(x), representado por I. ( ) f(4) = f(1). II. ( ) f(f(f(0))) = f(). III. ( ) f(f(6)) = f(f(f(8))). Podemos afirmar que a) somente as afirmativas (I) e (II) são verdadeiras. b) somente as afirmativas (I) e (III) são verdadeiras. c) somente as afirmativas (II) e (III) são verdadeiras. d) todas as afirmativas são verdadeiras. e) todas as afirmativas são falsas.

6 Centro de Estudos Matemáticos 1)(Espm 011) função f (x). A figura abaixo representa o gráfico cartesiano da Sabendo-se que f (1) =, o valor de f f ( π) a) 1 b) 3 c) 3 4 d) e) 5 13)(Afa 011) Considere o conjunto A = { 0,1,,3 } e a função f:a A tal que f( 3) = 1 e f( x) = x+ 1, se x 3. A soma dos valores de x para os quais ( fofof )( x) = 3é a) b) 3 c) 4 d) 5 14) Classifique as seguintes funções em par, ímpar ou sem paridade: a) f(x) = 4x 4 5x + 7 b) g(x) = 9x 7 6x 5 + 4x c) h(x) = 15x 5 + 6x 3 5x d) f(x) = x 4 + cosx e) g(x) = x 3 senx f) h(x) = x.cosx

7 Centro de Estudos Matemáticos 15)(Fei 1996) Em relação à função polinomial f(x) = x 3-3x, é válido afirmar-se que: a) f(-x) = f(x) b) f(-x) = - f(x) c) f(x ) = ( f(x) ) d) f(ax) = a f(x) e) f(ax) = a f(x) 16)(Unifesp 010) Uma função f : R R diz-se par quando f( x) = f(x), para todo x R, e ímpar quando f( x) = f(x), para todo x R. a) Quais, dentre os gráficos exibidos, melhor representam funções pares ou funções ímpares? Justifique sua resposta. b) Dê dois exemplos de funções, y = f(x) e y = g(x), sendo uma par e outra ímpar, e exiba os seus gráficos. 17)(Ita 010) Sejam f, g: afirmações: I. f. g e impar, II. f o g e par, III. g o f e impar, é (são) verdadeira(s) a) apenas I. b) apenas II. c) apenas III. d) apenas I e II. e) todas. R R tais que f é par e g é impar. Das seguintes

8 Centro de Estudos Matemáticos 18)(Afa 011) Considere as funções reais f e g tal que f( x) = x + 1e que existe a composta de g com f dada por ( )( ) ( ) função g, é incorreto afirmar que ela é a) par. b) sobrejetora. c) tal que g x ( ) 0, x R d) crescente se x + [ 1, [ gof x = x + 1. Sobre a 19)(Uepg 011) Considerando os conjuntos: R = {0, 1, 3, 5, 7}, S = {, 4, 6} e P = {1, }, assinale o que for correto (S P). 0. Existe uma função f: S P que é bijetora. 04. (S P) R = R. 08. R S P =. 16. Nenhuma função f: S R é sobrejetora. 0)(Uft 010) Seja a um número real e f: ], [ [ a, [ uma função definida por f(x) = m x + 4mx + 1, com m 0. O valor de a para que a função f seja sobrejetora é: a) - 4 b) - 3 c) 3 d) 0 e) 1)(Ita 005) Considere os conjuntos S = {0,, 4, 6}, T = {1, 3, 5} e U = {0,1} e as afirmações: I. {0} S e S U. II. {} (S - U) e S T U = {0, 1}. III. Existe uma função f: S T injetiva. IV. Nenhuma função g: T S é sobrejetiva. Então, é(são) verdadeira(s) a) apenas I. b) apenas IV. c) apenas I e IV. d) apenas II e III. e) apenas III e IV.

9 Centro de Estudos Matemáticos )(Unifesp 00) Há funções y = f(x) que possuem a seguinte propriedade: "a valores distintos de x correspondem valores distintos de y". Tais funções são chamadas injetoras. Qual, dentre as funções cujos gráficos aparecem abaixo, é injetora?

10 Centro de Estudos Matemáticos Gabarito: 01) a 0) a 03) a 04) d 05) 09 06) c 07) a 08) a 09) d 10) 06 11) d 1) d 13) b 14) a) par b) sem paridade c) ímpar d) par e) ímpar f) par 15) b 16) a) As funções pares são I e III, pois f(-a) = f(a) para qualquer a real. As funções ímpares são IV e V, pois f(-a) = - f(a) para qualquer a. b) função y = x é par e a função y = x é ímpar. 17) b 18) b 19) 4 0) b 1) b ) e

11 Centro de Estudos Matemáticos Resolução: Questão 01: Temos que f(g(x)) = (x 1) + 4(x 1) = x x+ 1+ 4x 4 = x + x 3 = (x + 3)(x 1). Assim, a função f o g está definida para os valores de x tais que (x + 3)(x 1) 0 x 3 ou x 1, ou seja, D = {x R x 3 ou x 1}. Questão 0: Como f(3) = 3+ 1= 7 e g(3) = = 10, segue que f(g(3)) g(f(3)) = f(10) g(7) = (37 + 1) = = 1. Questão 03: Sabendo que g(f(x)) = x e g(x) = x + 1, vem g(f(x)) = f(x) + 1 x = f(x) + 1 f(x) = x 3. Portanto, f(5) + g() = = 10.

12 Centro de Estudos Matemáticos Questão 04: ( ( )) ( ) f f x = 9x+ 8 aax+ b+ b= 9x+ 8 ( ) a x + b a + 1 = 9 x + 8 a = 9, logo a = 3 ou a = 3. Considerando a = 3, temos: ( ) b3+ 1= 8 b = Logo f( x) = 3x+ e f ( x) ( ) 1 x = 3 OBS: Poderíamos também ter considerado a = 3. Questão 05: (01) Verdadeiro. Para qualquer x Q Im(f) I (I ConjuntodosIrracionais) (0) Falso. x1 = 3+ g(x) = 0 x 6x + 1 = 0 x = 3 (04) Falso. A função f(x) = 5x é crescente para todo x R A função g(x) x 6x 1 = + é crescente para todo x [ 3, ) (08) Verdadeiro. (f og)(x) = f(g(x)) = 5(x 6x + 1) ) = 5x 30x + 5 é uma parábola. (16) Falso. Considerando as funções f e g, ambas com domínio e contradomínio real, temos: I. II. f(x) = 5x com D = R e CD = 1 x+ f (x) = com D = R e CD = 5 g(x) = x 6x + 1 com D =R e CD = R 1 g (x) = 3+ x+ 8 comd= 8, + e CD = 0, + [ ) [ ) Portanto, a inversa de g possui restrição quanto ao domínio. Logo, não admite inversa.

13 Centro de Estudos Matemáticos Questão 06: h(x) = f[g(x)] h(x) = x h(x) = 0 x Questão 07: A função composta g(f(x)) será dada por: gf(x) ( ) = x + x+ 1 ( ) g f(x) = x + x + 1 para x 1 Portanto, o seu gráfico é o da alternativa [A] (apenas o ramo direito da parábola). Questão 08: I. Falsa, pois C(x) = ,5x. II. Verdadeira. Como o lucro da produção é de 5% temos V(C) = 1,5 C. III. Verdadeira, pois C(400) = ,5 400 = R$ 75,00. IV. Verdadeira, pois V(C(x)) = 1,5 (15 + 1,5x). V. Verdadeira, pois V(C(100)) = 1,5 (15 + 1,5 100) = 1,5 75 = 343,75. Apenas as afirmações II, III, IV e V são VERDADEIRAS.

14 Centro de Estudos Matemáticos Questão 09: Fazendo t = x+ 1, vem 1 x 1 x = t+ 1 t = (x). Logo, x 1 x 1 f + 1 = + 4 f(x) = x+ 3. Por outro lado, se u= x+ 1, então 1 x = u+ 1 u (x) = x 1. Desse modo, g(x 1+ 1) = (x 1) 1 g(x) = x 3. Portanto, f og(x) = f(g(x)) = g(x) + 3 = x = x. Questão 10: Item (01) Falso Sendo f(x) = ax + b, temos para a > 0 e b < 0 o gráfico a seguir: Portanto, f(x) = ax + b é crescente, porém não possui raiz negativa (intercepta x num valor positivo)

15 Centro de Estudos Matemáticos Item (0) Verdadeiro Considerando f(x) = ax + b, temos: ( 1,1) f( 1) = a( 1) + b a+ b = 1 a = 1 (3,5) f( 3) = a( 3) + b 3a+ b = 5 b = Portanto: f( 3) = ( 3) + = 1 Logo: f(f( 3)) = ( 1) + = 1, então f(x) = x + Item (04) Verdadeiro f(x) = ax + b f(x) + f(x 3) = 1x (ax + b) + (a(x 3) + b) = 1x ax + b + ax 3a + b = 1x ax + b 3a = 1x Logo : 1 a = 1 a = 3 b 3a = 0 b = 4 Portanto: 1 3 f(x) = x + 4 Item (08) Falso Para b = 3 f(x) = ax 3 f( ) = a 3 f(f( )) = a( a 3) ) 3 f(f( )) = a 3a 3 Portanto: f(f( )) = 5 Logo a 3a 3 = 5 a 3a + = 0 Temos : 1 a1 = = ou a Item (16) Falso Se a < 0 e b < 0 ab 0 > Logo : A raiz de f(x) = ax + b será negativa..

16 Centro de Estudos Matemáticos Questão 11: A lei da função f é dada por 3x + 6, se 0 x 8 < f(x) = 30,se 8 x 15 <. x + 60, se 15 x 30 I. Verdadeira. f(4) = = 18 e f(1) = = 18. II. Verdadeira. f(f(f(0))) = f(f(3 0 6)) + = f(f(6)) = f(3 6 6) + = f(4) = = 1. e f() = = 1. III. Verdadeira f(f(6)) = 1. e f(f(f(8))) = f(f(30)) = f( ) = f(0) = (30 + 6) = 1. Questão 1: Observando que f é constante para x 4 e sabendo que π 3,14, basta calcularmos f(f()) para determinarmos f(f( π )). Do gráfico, temos que para x f é uma função afim, isto é, f(x) = ax + b. Como o gráfico intersecta o eixo y no ponto de ordenada 3, temos que b = 3. Além disso, sabemos que f(1) =. Logo, a 1 3 a 1 Desse modo, f(x) = + x 3 para x e, assim, f() = + 3 = 1. Portanto, f(f( π )) = f(f()) = f(1) =. = + =.

17 Centro de Estudos Matemáticos Questão 13: f[f(f(x))] =3 f(f(x)) = f(x) =1 Portanto, x = 3. Questão 14: a) Função polinomial só com expoentes pares b) Função polinomial com expoentes pares e com expoentes ímpares c) Função polinomial só com expoentes ímpares d) Soma de funções pares e) Soma de funções ímpares f) Produto de funções pares Questão 15: A Função f(x) = x 3-3x é uma função polinomial só com expoentes ímpares, portanto ela é ímpar, ou seja f(-x) = -f(x) Questão 16: a) As funções pares são I e III, pois f(-a) = f(a) para qualquer a real. As funções ímpares são IV e V, pois f(-a) = - f(a) para qualquer a. b) função y = x é par e a função y = x é ímpar. Questão 17: I. f(-x).g(-x) = - f(x).g(x) (função ímpar) II.f(g(-x)) = f(-g(x)) = f(g(x)) ( função par) III.g(f(-x)) = g(f(x)) ( função par) Apenas I e II estão corretas.

18 Centro de Estudos Matemáticos Questão 18: g(f(x)) = (f(x)) = f(x) portanto g(x) = x g(x) não é sobrejetora, pois seu conjunto imagem é contradomínio é o conjunto dos números reais. 0,+ e seu Questão 19: Item (01) - Falso S P = {4,6}. Portanto 1 (S P). Item (0) - Falso Função Bijetora Função injetora e função sobrejetora. Função injetora: x1 x y1 y Função sobrejetora: CD(f) = Im(f) Portanto: f:s P não é injetora, pois existirá x1 x y1 = y Item (04) - Falso (S P) R = { 0,1,,3,5,7 } R Item (08) Verdadeiro R S P = pois, não possuem nenhum elemento em comum. Item (16) Verdadeiro Função sobrejetora: CD(f) = Im(f) Portanto: Qualquer associação entre S e R que defina uma função terá CD(f) Im(f).

19 Centro de Estudos Matemáticos Questão 0: a deverá ser o y do vértice. Δ ((4m) 4. m.1) 1m Portanto, s = = = = 3 4a 4. m 4m Questão 1: b Questão : e

Revisão de Função. Inversa e Composta. Professor Gaspar. f : 1,,3, f(x) x 2x 2 e. g(x) x 2x 4. Para qual valor de x tem f(g(x)) g(f(x))? g(x) 2x.

Revisão de Função. Inversa e Composta. Professor Gaspar. f : 1,,3, f(x) x 2x 2 e. g(x) x 2x 4. Para qual valor de x tem f(g(x)) g(f(x))? g(x) 2x. Revisão de Função. (Espcex (Aman) 05) Considere a função bijetora f :,,, definida por f(x) x x e seja (a,b) o ponto de intersecção de f com sua inversa. O valor numérico da expressão a b é a). b) 4. c)

Leia mais

MATEMÁTICA - SEMI/NOITE PROF. FELIPE HEY 20/04/ Assinale V para as afirmativas verdadeiras e F para as falsas. a) ( ) -8 = 8 b) ( ) 5 = ±5

MATEMÁTICA - SEMI/NOITE PROF. FELIPE HEY 20/04/ Assinale V para as afirmativas verdadeiras e F para as falsas. a) ( ) -8 = 8 b) ( ) 5 = ±5 MATEMÁTICA - SEMI/NOITE PROF. FELIPE HEY 20/04/2016 Aula 04 FUNÇÃO MODULAR 01.01. Assinale V para as afirmativas verdadeiras e F para as falsas. a) ( ) -8 = 8 b) ( ) 5 = ±5 c) ( ) x² d) ( ) 3 ² 3 e) (

Leia mais

Lista Função - Ita Carlos Peixoto

Lista Função - Ita Carlos Peixoto Lista Função - Ita Carlos Peixoto. (Ita 07) Sejam X e Y dois conjuntos finitos com X Y e X Y. Considere as seguintes afirmações: I. Existe uma bijeção f : X Y. II. Existe uma função injetora g: Y X. III.

Leia mais

MÓDULO 41. Funções II. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA

MÓDULO 41. Funções II. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA MÓDULO 41 Funções II 1. (OPM) Seja f uma função de domínio dada por x x + 1 f(x) =. Determine o conjunto-imagem x + x + 1 da função.. Considere

Leia mais

Matemática I Capítulo 06 Propriedades das Funções

Matemática I Capítulo 06 Propriedades das Funções Nome: Nº Curso: Mineração Integrado Disciplina: Matemática I 1 Ano Prof. Leonardo Data: / /016 Matemática I Capítulo 06 Propriedades das Funções 6.1 Paridade das Funções 6.1.1 - Função par Dada uma função

Leia mais

1. (Unicamp) Considere as funções f e g, cujos gráficos estão representados na figura abaixo.

1. (Unicamp) Considere as funções f e g, cujos gráficos estão representados na figura abaixo. 1. (Unicamp) Considere as funções f e g, cujos gráficos estão representados na figura abaixo. O valor de f(g(1)) g(f(1)) é igual a a) 0. b) 1. c) 2. d) 1. 2. (G1 - ifce) Seja f : 1, uma função dada por

Leia mais

Exercícios de Matemática Funções Função Bijetora

Exercícios de Matemática Funções Função Bijetora Exercícios de Matemática Funções Função Bijetora 1. (Ufpe) Sejam A e B conjuntos com m e n elementos respectivamente. Analise as seguintes afirmativas: ( ) Se f:aëb é uma função injetora então m n. ( )

Leia mais

Lista de Função Inversa, Bijeção e Paridade Extensivo Alfa Professor: Leandro (Pinda)

Lista de Função Inversa, Bijeção e Paridade Extensivo Alfa Professor: Leandro (Pinda) Lista de Função Inversa, Bijeção e Paridade Etensivo Alfa Professor: Leandro (Pinda). (Udesc 0) A função f definida por f() é uma função bijetora, se os conjuntos que representam o domínio (D(f)) e a imagem

Leia mais

LISTA DE REVISÃO DE ÁLGEBRA 3ºANO

LISTA DE REVISÃO DE ÁLGEBRA 3ºANO LISTA DE REVISÃO DE ÁLGEBRA 3ºANO. (Espcex (Aman)) Considerando a função real definida por a) 8 b) 0 c) d) e) 4 x 3, se x, x x, se x o valor de f(0) f(4) é. (Enem) Após realizar uma pesquisa de mercado,

Leia mais

2. (Ufpe 96) Seja A um conjunto com 3 elementos e B um conjunto com 5 elementos. Quantas funções injetoras de A em B existem?

2. (Ufpe 96) Seja A um conjunto com 3 elementos e B um conjunto com 5 elementos. Quantas funções injetoras de A em B existem? 1. (Unirio 99) Sejam as funções f : IR ë IR x ë y= I x I e g : IR ë IR x ë y = x - 2x - 8 Faça um esboço gráfico da função fog. 2. (Ufpe 96) Seja A um conjunto com 3 elementos e B um conjunto com 5 elementos.

Leia mais

Matemática Complementos de Funções. Professor Marcelo Gonsalez Badin

Matemática Complementos de Funções. Professor Marcelo Gonsalez Badin Matemática Complementos de Funções Professor Marcelo Gonsalez Badin Paridade Função PAR f (x) é chamada FUNÇÃO PAR se f ( x) = f (x) Exemplo: f (x) = x 4 f ( x) = ( x) 4 = x 4 = f (x) O gráfico de uma

Leia mais

EXERCÍCIOS REVISIONAIS SOBRE FUNÇÕES - 1ª PARTE

EXERCÍCIOS REVISIONAIS SOBRE FUNÇÕES - 1ª PARTE QUESTÃO 1: Sabendo-se que o diagrama a seguir representa uma função f de A em B, responda: A) Qual é o domínio da função f?? B) Qual é o contradomínio da função f? C) Qual é o conjunto imagem da função

Leia mais

Função Quadrática SUPERSEMI. 1)(Afa 2013) O gráfico de uma função polinomial do segundo grau y = f( x ),

Função Quadrática SUPERSEMI. 1)(Afa 2013) O gráfico de uma função polinomial do segundo grau y = f( x ), Florianópolis Professor: Erivaldo Santa Catarina Função Quadrática SUPERSEMI 1)(Afa 013) O gráfico de uma função polinomial do segundo grau y = f( x ), que tem como coordenadas do vértice (5, ) e passa

Leia mais

Função Inversa. f(x) é invertível. Assim,

Função Inversa. f(x) é invertível. Assim, Função Inversa. (Eear 07) Sabe-se que a função a) b) 4 c) 6 d) x f(x) é invertível. Assim, 5 f () é. (Espm 07) O conjunto imagem de uma função inversível é igual ao domínio de sua x inversa. Sendo f :

Leia mais

Função Inversa SUPERSEMI. 01)(Aman 2013) Na figura abaixo está representado o gráfico de uma função real do 1º grau f(x).

Função Inversa SUPERSEMI. 01)(Aman 2013) Na figura abaixo está representado o gráfico de uma função real do 1º grau f(x). Centro de Estudos Matemáticos Florianópolis Professor: Erivaldo Santa Catarina Função Inversa SUPERSEMI 0)(Aman 0) Na figura abaio está representado o gráfico de uma função real do º grau f(). A epressão

Leia mais

6. Sendo A, B e C os respectivos domínios das

6. Sendo A, B e C os respectivos domínios das 1 FGV. Seja f uma função tal que f(xy) = f (x) y todos os números reais positivos x e y. Se f(300) = 5, então, f(700) é igual a: A) 15/7 B) 16/7 C) 17/7 D) 8/3 E) 11/4 para 5 Insper. O conjunto A = {1,,

Leia mais

f(x) ax b definida para todo número real x, onde a e b são números reais. Sabendo que f(4) 2,

f(x) ax b definida para todo número real x, onde a e b são números reais. Sabendo que f(4) 2, Ensino Aluno (: Nº: Turma: ª série Bimestre: º Disciplina: Espanhol Atividade Complementar Funções Compostas e Inversas Professor (: Cleber Costa Data: / /. (Eear 07) Sabe-se que a função invertível. Assim,

Leia mais

UFJF ICE Departamento de Matemática Cálculo I Primeira Avaliação Primeiro Semestre Letivo de /04/2014 FILA A Aluno (a): Matrícula: Turma:

UFJF ICE Departamento de Matemática Cálculo I Primeira Avaliação Primeiro Semestre Letivo de /04/2014 FILA A Aluno (a): Matrícula: Turma: UFJF ICE Departamento de Matemática Cálculo I Primeira Avaliação Primeiro Semestre Letivo de 014 6/04/014 FILA A Aluno (a): Matrícula: Turma: Instruções Gerais: 1- A prova pode ser feita a lápis, exceto

Leia mais

b) Para que valores reais de x, f(x) > 2x + 2? 2. (Ufscar 2002) Sejam as funções f(x) = x - 1 e g(x) = (x + 4x - 4).

b) Para que valores reais de x, f(x) > 2x + 2? 2. (Ufscar 2002) Sejam as funções f(x) = x - 1 e g(x) = (x + 4x - 4). 1. (Fuvest 2000) a) Esboce, para x real, o gráfico da função f(x)= x-2 + 2x+1 -x-6. O símbolo a indica o valor absoluto de um número real a e é definido por a =a, se aµ0 e a =-a, se a

Leia mais

Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA RESOLUÇÃO: f(x) = f(x) = x f(x) = x ) a 2. 2) a função g: * 1.

Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA RESOLUÇÃO: f(x) = f(x) = x f(x) = x ) a 2. 2) a função g: * 1. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA MÓDULO 4 Funções II. (OPM) Seja f uma função de domínio dada por + f() =. Determine o conjunto-imagem + + da função. O conjunto-imagem da

Leia mais

A. PAR ORDENADO 01. Determine a e b de modo que: (a) (a + 3, b + 1) = (3a 5, 4) (b) (a 2, 3b + 4) = (2a + 3, b + 2) (c) ( a 2 5 a,b 2 ) = ( 6, 2b 1) (d) (a, 2a) = (b + 4, 7 b) 02. Represente num mesmo

Leia mais

FUNÇÕES(1) FUNÇÃO POLINOMIAL DO 2º GRAU

FUNÇÕES(1) FUNÇÃO POLINOMIAL DO 2º GRAU FUNÇÕES(1) FUNÇÃO POLINOMIAL DO º GRAU 1. (Uece 015) Se a função real de variável real, definida por f(1) =, f() = 5 e f(3) =, então o valor de f() é a). b) 1. c) 1. d). f(x) = ax + bx + c, é tal que.

Leia mais

Exercícios de Matemática Funções Função Composta

Exercícios de Matemática Funções Função Composta Exercícios de Matemática Funções Função Composta TEXTO PARA A PRÓXIMA QUESTÃO (Ufba) Na(s) questão(ões) a seguir escreva nos parênteses a soma dos itens corretos. 1. Considerando-se as funções f(x) = x

Leia mais

Lista de Exercícios de Funções

Lista de Exercícios de Funções Lista de Eercícios de Funções ) Seja a R, 0< a < e f a função real de variável real definida por : f() = ( a a ) cos( π) + 4cos( π) + 3 Sobre o domínio A desta função podemos afirmar que : a) (], [ Z)

Leia mais

UFJF ICE Departamento de Matemática Cálculo I Primeira Avaliação 12/01/2013 FILA A Aluno (a): Matrícula: Turma:

UFJF ICE Departamento de Matemática Cálculo I Primeira Avaliação 12/01/2013 FILA A Aluno (a): Matrícula: Turma: UFJF ICE Departamento de Matemática Cálculo I Primeira Avaliação /0/03 FILA A Aluno (a): Matrícula: Turma: Instruções Gerais: - A prova pode ser feita a lápis, exceto o quadro de respostas das questões

Leia mais

1. Considere os conjuntos A = {0; 2} e B = {1; 2; 3}. A respeito de produto cartesiano entre dois conjuntos, assinale a alternativa correta:

1. Considere os conjuntos A = {0; 2} e B = {1; 2; 3}. A respeito de produto cartesiano entre dois conjuntos, assinale a alternativa correta: . Considere os conjuntos A = {0; 2} e B = {; 2; 3}. A respeito de produto cartesiano entre dois conjuntos, assinale a alternativa correta: a. AxB = {(0; ); (0; 2); (0; 3); (2; ); (2; 2); (2; 3)} b. BxA

Leia mais

Resposta: f(g(x)) = x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo 5, 5 5, 5 3, 3. f(g(x) = x 5.

Resposta: f(g(x)) = x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo 5, 5 5, 5 3, 3. f(g(x) = x 5. 1. (Espcex (Aman) 016) Considere as funções reais f e g, tais que f(x) = x + 4 e f(g(x)) = x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo conjunto contém todos os possíveis

Leia mais

Aula 2 Função_Uma Ideia Fundamental

Aula 2 Função_Uma Ideia Fundamental 1 Tecnólogo em Construção de Edifícios Aula 2 Função_Uma Ideia Fundamental Professor Luciano Nóbrega 2 NOÇÃO FUNDAMENTAL DE FUNÇÃO A função é como uma máquina onde entram elementos que são transformados

Leia mais

Capítulo 1. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas.

Capítulo 1. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas. Capítulo 1 Funções Sejam A e B conjuntos não vazios. Uma função com domínio A e contradomínio B é uma regra f que a cada elemento em A associa um único elemento em B. A notação usual para uma função f

Leia mais

Capítulo 2. f : A B. 3. A regra em (3) não define uma função de A em B porque 4 A está associado a mais de um. elemento de B.

Capítulo 2. f : A B. 3. A regra em (3) não define uma função de A em B porque 4 A está associado a mais de um. elemento de B. Departamento de Matemática Disciplina MAT154 - Cálculo 1 Capítulo 2 Funções 2.1 Definição Sejam A e B conjuntos não vazios. Uma função com domínio A e contradomínio B é uma regra f que a cada elemento

Leia mais

LISTA DE EXERCÍCIOS. Humberto José Bortolossi

LISTA DE EXERCÍCIOS. Humberto José Bortolossi GMA DEPARTAMENTO DE MATEMÁTICA APLICADA LISTA DE EXERCÍCIOS Cálculo I A Humberto José Bortolossi http://wwwprofessoresuffbr/hjbortol/ 03 Operações com funções: soma, diferença, produto, quociente, composição

Leia mais

Matemática Básica. Fração geratriz e Sistema de numeração 1) 0, = ) 2, =

Matemática Básica. Fração geratriz e Sistema de numeração 1) 0, = ) 2, = Erivaldo UDESC Matemática Básica Fração geratriz e Sistema de numeração 1) 0,353535... = 35 99 2) 2,1343434... = 2134 21 99 0 Decimal (Indo-Arábico): 2107 = 2.10 3 + 1.10 2 + 0.10 1 + 7.10 0 Número de

Leia mais

Capítulo 2. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas.

Capítulo 2. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas. Capítulo 2 Funções Sejam A e B conjuntos não vazios. Uma função com domínio A e contradomínio B é uma regra f que a cada elemento em A associa um único elemento em B. A notação usual para uma função f

Leia mais

O ESTUDO DAS FUNÇÕES INTRODUÇÃO

O ESTUDO DAS FUNÇÕES INTRODUÇÃO O ESTUDO DAS FUNÇÕES INTRODUÇÃO DEFINIÇÃO As funções explicitam relações matemáticas especiais entre duas grandezas. As grandezas envolvidas nessas relações são conhecidas como variável dependente

Leia mais

Lista de Função Quadrática e Módulo (Prof. Pinda)

Lista de Função Quadrática e Módulo (Prof. Pinda) Lista de Função Quadrática e Módulo (Prof. Pinda) 1. (Pucrj 015) Sejam as funções f(x) x 6x e g(x) x 1. O produto dos valores inteiros de x que satisfazem a desigualdade f(x) g(x) é: a) 8 b) 1 c) 60 d)

Leia mais

Função Modular. 1. (Eear 2017) Seja f(x) x 3 uma função. A soma dos valores de x para os quais a função assume o valor 2 é a) 3 b) 4 c) 6 d) 7

Função Modular. 1. (Eear 2017) Seja f(x) x 3 uma função. A soma dos valores de x para os quais a função assume o valor 2 é a) 3 b) 4 c) 6 d) 7 Função Modular 1. (Eear 2017) Seja f(x) x 3 uma função. A soma dos valores de x para os quais a função assume o valor 2 é a) 3 b) 4 c) 6 d) 7 2. (Pucrj 2016) Qual dos gráficos abaixo representa a função

Leia mais

ÁLGEBRA. Aula 4 _ Classificação das Funções Professor Luciano Nóbrega. Maria Auxiliadora

ÁLGEBRA. Aula 4 _ Classificação das Funções Professor Luciano Nóbrega. Maria Auxiliadora 1 ÁLGEBRA Aula 4 _ Classificação das Funções Professor Luciano Nóbrega Maria Auxiliadora 2 FUNÇÃO INJETORA É quando quaisquer dois elementos diferentes do conjunto A têm imagens diferentes no conjunto

Leia mais

Matemática A Intensivo V. 1

Matemática A Intensivo V. 1 Matemática A Intensivo V Eercícios ) V F F F F V V V ) D a) Verdadeiro Zero é elemento do conjunto {,,, 3, } b) Falso Nesse caso temos {a} como subconjunto de {a, b}, logo a relação correta seria a} {a,

Leia mais

1 FUNÇÃO - DEFINIÇÃO. Chama-se função do 1. grau toda função definida de por f(x) = ax + b com a, b e a 0.

1 FUNÇÃO - DEFINIÇÃO. Chama-se função do 1. grau toda função definida de por f(x) = ax + b com a, b e a 0. MATEMÁTICA ENSINO MÉDIO FUNÇÃO - DEFINIÇÃO FUNÇÃO - DEFINIÇÃO Chama-se função do 1. grau toda função definida de por f(x) = ax + b com a, b e a 0. EXEMPLOS: f(x) = 5x 3, onde a = 5 e b = 3 (função afim)

Leia mais

Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil. 11 de Março de 2014

Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil. 11 de Março de 2014 Funções - Aula 06 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 11 de Março de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica O principal objetivo do

Leia mais

1) Sejam as funções f e g de R em R tais que f(x) = 2 x + 1 e f(g(x)) = 2 x - 9, o valor de g(- 2) é igual a:

1) Sejam as funções f e g de R em R tais que f(x) = 2 x + 1 e f(g(x)) = 2 x - 9, o valor de g(- 2) é igual a: COLÉGIO PEDRO II UNIDADE ESCOLAR SÃO CRISTÓVÃO III NOTA: PROFESSORES: Eduardo/ Vicente DATA: NOME: Nº: NOME: Nº: NOME: N : NOME: N : TURMA: GRUPO I: Alunos 1 ; 2 ; 3 ; 4. 1) Sejam as funções f e g de R

Leia mais

EXERCÍCIOS DE REVISÃO PROVA MENSAL - 1º TRIMESTRE - 3º ANO MATEMÁTICA E SUAS TECNOLOGIAS

EXERCÍCIOS DE REVISÃO PROVA MENSAL - 1º TRIMESTRE - 3º ANO MATEMÁTICA E SUAS TECNOLOGIAS EXERCÍCIOS DE REVISÃO PROVA MENSAL - 1º TRIMESTRE - 3º ANO MATEMÁTICA E SUAS TECNOLOGIAS 1) Assinale a alternativa INCORRETA: A) existe x, x, tal que B) para todo x, x, C) existe um único x, x, tal que

Leia mais

BANCO DE QUESTÕES TURMA PM-PE FUNÇÕES

BANCO DE QUESTÕES TURMA PM-PE FUNÇÕES 01. (ESPCEX-AMAN/016) Considere as funções reais f e g, tais que f(x) x 4 e f(g(x)) x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo conjunto contém todos os possíveis valores

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web . (Pucrj 015) Sejam as funções f(x) = x 6x e g(x) = x 1. O produto dos valores inteiros de x que satisfazem a desigualdade f(x) < g(x) é: a) 8 b) 1 c) 60 d) 7 e) 10 4. (Acafe 014) O vazamento ocorrido

Leia mais

Aula 1 Revendo Funções

Aula 1 Revendo Funções Tecnólogo em Análise e Desenvolvimentos de Sistemas _ TADS 1 Aula 1 Revendo Funções Professor Luciano Nóbrega 2 SONDAGEM 1 Calcule o valor das expressões abaixo. Dê as respostas de todas as formas possíveis

Leia mais

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Módulo I: Cálculo Diferencial e Integral Fundamentos e tópicos de revisão

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Módulo I: Cálculo Diferencial e Integral Fundamentos e tópicos de revisão Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo Módulo I: Cálculo Diferencial e Integral Fundamentos e tópicos de revisão Professora Renata Alcarde Sermarini Notas de aula do professor

Leia mais

Exercícios para a Prova 3 de Matemática 1 Trimestre. 3. Os números naturais a e b, com a > b, são tais que a² - b² = 7.

Exercícios para a Prova 3 de Matemática 1 Trimestre. 3. Os números naturais a e b, com a > b, são tais que a² - b² = 7. Exercícios para a Prova 3 de Matemática 1 Trimestre 1. Sendo n um número natural, a expressão. é igual a a) 1 b) 3 n b) 2 n d) 6 n 2. Fatore a² + b² - c² + 2ab 3. Os números naturais a e b, com a > b,

Leia mais

Semana 1 Revendo as Funções

Semana 1 Revendo as Funções 1 CÁLCULO DIFERENCIAL E INTEGRAL I Semana 1 Revendo as Funções Professor Luciano Nóbrega UNIDADE 1 2 SONDAGEM Inicialmente, façamos uma revisão: 1 Calcule o valor das expressões abaixo. Dê as respostas

Leia mais

LISTA DE RECUPERAÇÃO ÁLGEBRA 3º ANO

LISTA DE RECUPERAÇÃO ÁLGEBRA 3º ANO LISTA DE RECUPERAÇÃO ÁLGEBRA º ANO. (Espce (Aman)) O domínio da função real f A), B), 6 C),6 D), E), 8 é. (Unicamp) Seja f() uma função tal que para todo número real temos que f( ) ( )f(). Então, f() é

Leia mais

MATEMÁTICA. Aula 04. Função Uma Ideia Fundamental Professor Luciano Nóbrega

MATEMÁTICA. Aula 04. Função Uma Ideia Fundamental Professor Luciano Nóbrega MATEMÁTICA 1 A Matemática apresenta invenções tão sutis que poderão servir não só para satisfazer os curiosos como, também para auxiliar as artes e poupar trabalho aos homens. (Renê Descartes Filósofo,

Leia mais

EXERCÍCIOS DE REVISÃO ASSUNTO : FUNÇÕES

EXERCÍCIOS DE REVISÃO ASSUNTO : FUNÇÕES EXERCÍCIOS DE REVISÃO ASSUNTO : FUNÇÕES 3 a SÉRIE ENSINO MÉDIO - 009 ==================================================================================== 1) Para um número real fixo α, a função f(x) =

Leia mais

LISTA DE EXERCÍCIOS RECUPERAÇÃO Goiânia, de de 2018 Aluno(a):

LISTA DE EXERCÍCIOS RECUPERAÇÃO Goiânia, de de 2018 Aluno(a): LIST DE EXERCÍCIOS RECUPERÇÃO Goiânia, de de 08 luno(: Série: ª Turma: Disciplina: Matemática Professor: Musgley Questão 0 - (UFPR) respeito da função representada no gráfico abaio, considere as seguintes

Leia mais

Capítulo 3. Fig Fig. 3.2

Capítulo 3. Fig Fig. 3.2 Capítulo 3 3.1. Definição No estudo científico e na engenharia muitas vezes precisamos descrever como uma quantidade varia ou depende de outra. O termo função foi primeiramente usado por Leibniz justamente

Leia mais

Mat.Semana 5. PC Sampaio Alex Amaral Gabriel Ritter (Roberta Teixeira)

Mat.Semana 5. PC Sampaio Alex Amaral Gabriel Ritter (Roberta Teixeira) Semana 5 PC Sampaio Alex Amaral Gabriel Ritter (Roberta Teixeira) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos

Leia mais

Uma Relação será função se:

Uma Relação será função se: Funções Uma Relação será função se: 1. Todo elemento do conjunto domínio (A) possui um elemento correspondente no conjunto contradomínio (B); 2. Qualquer que seja o elemento do domínio (A), so existe um

Leia mais

Propriedades das Funções Contínuas

Propriedades das Funções Contínuas Propriedades das Funções Contínuas Juliana Pimentel juliana.pimentel@ufabc.edu.br Propriedades das Funções Contínuas Seguem das propriedades do limite, as seguintes propriedades das funções contínuas.

Leia mais

GOVERNO DO ESTADO DE MATO GROSSO SECRETARIA DE ESTADO DE CIÊNCIA E TECNOLOGIA UNIVERSIDADE DO ESTADO DE MATO GROSSO

GOVERNO DO ESTADO DE MATO GROSSO SECRETARIA DE ESTADO DE CIÊNCIA E TECNOLOGIA UNIVERSIDADE DO ESTADO DE MATO GROSSO GOVERNO DO ESTADO DE MATO GROSSO SECRETARIA DE ESTADO DE CIÊNCIA E TECNOLOGIA UNIVERSIDADE DO ESTADO DE MATO GROSSO FACET Faculdade de Ciências Exatas e Tecnológicas Avaliação 30/03/016 RESOLUÇÃO 01. A

Leia mais

Matemática A Intensivo V. 1

Matemática A Intensivo V. 1 Intensivo V Eercícios ) V F F F F V V V ) D a) Verdadeiro Zero é elemento do conjunto {,,, 3, } b) Falso Neste caso temos {a} como subconjunto de {a, b} logo a relação correta seria a} {a, b} c) Falso

Leia mais

MATEMÁTICA CADERNO 1 CURSO D FRENTE 1 ÁLGEBRA. n Módulo 2 Equação do 2 ọ Grau

MATEMÁTICA CADERNO 1 CURSO D FRENTE 1 ÁLGEBRA. n Módulo 2 Equação do 2 ọ Grau CADERNO CURSO D FRENTE ÁLGEBRA n Módulo Equação do ọ Grau n Módulo Equação do ọ Grau ) Na equação 6x x = 0, tem-se a = 6, b = e c =, então: I) = b ac = + = b ± ± II) x = = x = ou x = a Resposta: V = ;

Leia mais

E-books PCNA. Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 FUNÇÕES

E-books PCNA. Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 FUNÇÕES E-books PCNA Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 FUNÇÕES 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 SUMÁRIO Apresentação -------------------------------------------------------2 Capítulo 3 ------------------------------------------------------

Leia mais

a k. x a k. : conjunto dos números complexos i: unidade imaginária; i 2 = 1 z : módulo do número z z: conjugado do número z M m n

a k. x a k. : conjunto dos números complexos i: unidade imaginária; i 2 = 1 z : módulo do número z z: conjugado do número z M m n ITA MATEMÁTICA NOTAÇÕES = {,,,...} : conjunto dos números reais [a, b] = {x ; a x b} [a, b[ = {x ; a x < b} ]a, b[ = {x ; a < x < b} A\B = {x; x A e x B} k a n = a + a +... + a k, k n = k a n x n = a 0

Leia mais

Chamamos de funções numéricas aquelas cujas variáveis envolvidas são números reais. Isso é funções denidas sobre R ou uma parte de R e a valor em R.

Chamamos de funções numéricas aquelas cujas variáveis envolvidas são números reais. Isso é funções denidas sobre R ou uma parte de R e a valor em R. Capítulo 2 Funções e grácos 2.1 Funções númericas Chamamos de funções numéricas aquelas cujas variáveis envolvidas são números reais. Isso é funções denidas sobre R ou uma parte de R e a valor em R. Denição

Leia mais

Exercícios de Matemática Funções Função Modular

Exercícios de Matemática Funções Função Modular Exercícios de Matemática Funções Função Modular TEXTO PARA A PRÓXIMA QUESTÃO (Ufsc) Na(s) questão(ões) a seguir escreva nos parênteses a soma dos itens corretos. 1. Considere a função f : IRë IR dada por

Leia mais

Matemática A Superintensivo

Matemática A Superintensivo Matemática A Superintensivo Eercícios 0) a) é elemento de A A. b) não é elemento de B B. c) 0 não é elemento de C 0 C. d) Todo elemento de B é elemento de A B A. e) B e C B C. f) O conjunto A contém os

Leia mais

EXERCÍCIOS 2006 APOSTILA MATEMÁTICA

EXERCÍCIOS 2006 APOSTILA MATEMÁTICA EXERCÍCIOS 2006 APOSTILA MATEMÁTICA Professor: LUIZ ANTÔNIO 1 >>>>>>>>>> PROGRESSÃO ARITMÉTICA P. A.

Leia mais

Matemática. Professor Adriano Diniz 26/02/2013. Aluno (a): EXERCÍCIOS PROPOSTOS

Matemática. Professor Adriano Diniz 26/02/2013. Aluno (a): EXERCÍCIOS PROPOSTOS Matemática Professor Adriano Diniz 0 Aluno (a): 6/0/01 EXERCÍCIOS PROPOSTOS 01. (MACKENZIE) Se, na figura abaixo, temos o esboço do gráfico da função y = f(x), o gráfico que melhor representa y = f(x 1)

Leia mais

LISTA DE RECUPERAÇÃO ÁLGEBRA 3º ANO

LISTA DE RECUPERAÇÃO ÁLGEBRA 3º ANO LISTA DE RECUPERAÇÃO ÁLGEBRA º ANO. (Espce (Aman)) O domínio da função real f A), B), 6 C),6 D), E), 8 é. (Unicamp) Seja f() uma função tal que para todo número real temos que f( ) ( )f(). Então, f() é

Leia mais

1º ANO 4º. 2. (Espcex (Aman) 2013) Na figura abaixo está representado o gráfico de uma função real do 1º grau f(x).

1º ANO 4º. 2. (Espcex (Aman) 2013) Na figura abaixo está representado o gráfico de uma função real do 1º grau f(x). DISCIPLINA PROFESSOR DATA TURMA/TURNO MATEMÁTICA THIAGO PINHEIRO / 11 / 01 SÉRIE NÍVEL TOTAL ESC. ESC. OBT. NOTA BIM. MÉDIO 1º ANO 4º ALUNO 1. (Pucrj 01) Sejam f e g funções reais dadas por f(x) = x +

Leia mais

Lista de Exercícios 01

Lista de Exercícios 01 OBS: O exercícios marcados com "*" devem ser entregues na aula seguinte Conjunto: representa uma coleção de objetos. Elemento: é um dos componentes de um conjunto. Lista de Exercícios 01 Pertinência: é

Leia mais

MATEMÁTICA. Função Composta e Função Inversa. Professor : Dêner Rocha. Monster Concursos 1

MATEMÁTICA. Função Composta e Função Inversa. Professor : Dêner Rocha. Monster Concursos 1 MATEMÁTICA Função Composta e Função Inversa Professor : Dêner Rocha Monster Concursos 1 Função Composta A função composta pode ser entendida pela determinação de uma terceira função C, formada pela junção

Leia mais

CURSO ALCANCE UFPR Matemática 13/08/2016 Página 1 de 6

CURSO ALCANCE UFPR Matemática 13/08/2016 Página 1 de 6 CURSO ALCANCE UFPR Matemática 13/08/2016 Página 1 de 6 Introdução à funções Uma função é determinada por dois conjuntos e uma regra de associação entre os elementos destes conjuntos. Os conjuntos são chamados

Leia mais

SE18 - Matemática. LMAT 6B2-1- Polinômios (Operações com polinômios) Questão 1

SE18 - Matemática. LMAT 6B2-1- Polinômios (Operações com polinômios) Questão 1 SE18 - Matemática LMAT 6B2-1- Polinômios (Operações com polinômios) Questão 1 (Eear 2017) Considere P(x) = 2x 3 + bx 2 + cx, tal que P(1) = -2 e P(2) = 6. Assim, os valores de b e c são, respectivamente,

Leia mais

LISTA DE REVISÃO PROVA TRIMESTRAL ÁLGEBRA 3º ANO

LISTA DE REVISÃO PROVA TRIMESTRAL ÁLGEBRA 3º ANO LISTA DE REVISÃO PROVA TRIMESTRAL ÁLGEBRA º ANO. (Espce (Aman)) O domínio da função real f A),, 6 C),6 D),, 8 é. (Unicamp) Seja f() uma função tal que para todo número real temos que f( ) ( )f(). Então,

Leia mais

CÁLCULO I. Efetuar transformações no gráco de uma função. Aplicando esse teste às seguintes funções, notamos que

CÁLCULO I. Efetuar transformações no gráco de uma função. Aplicando esse teste às seguintes funções, notamos que CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 03: Funções Inversas e Compostas.Transformações no Gráco de uma Função. Objetivos da Aula Denir função bijetora e função

Leia mais

FUNÇÃO. Exemplo: Dado os conjuntos A = { -2, -1, 0, 1, 2} e B = {0, 1, 2, 3, 4, 5} São funções de A em B as relações a) R 1 = {(x,y) AXB/ y = x + 2}

FUNÇÃO. Exemplo: Dado os conjuntos A = { -2, -1, 0, 1, 2} e B = {0, 1, 2, 3, 4, 5} São funções de A em B as relações a) R 1 = {(x,y) AXB/ y = x + 2} Sistemas de Informação e Tecnologia em Proc. de Dados Matemática Ms. Carlos Roberto da Silva/ Ms. Lourival Pereira Martins FUNÇÃO Definição: Dados dois conjuntos e define-se como função de em a toda relação

Leia mais

GRÁFICO 1 GRÁFICO 2 GRÁFICO 3 GRÁFICO4

GRÁFICO 1 GRÁFICO 2 GRÁFICO 3 GRÁFICO4 AUTOAVALIAÇÃO 0. Sobre a função f amplamente definida cuja lei de formação é f() = - 4 foram feitas as afirmações: 0 0 É uma função estritamente negativa. É uma função não-par e não-ímpar. É uma função

Leia mais

CÁLCULO I. 1 Funções. Objetivos da Aula. Aula n o 01: Funções. Denir função e conhecer os seus elementos; Reconhecer o gráco de uma função;

CÁLCULO I. 1 Funções. Objetivos da Aula. Aula n o 01: Funções. Denir função e conhecer os seus elementos; Reconhecer o gráco de uma função; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 01: Funções. Objetivos da Aula Denir função e conhecer os seus elementos; Reconhecer o gráco de uma função; Denir funções compostas e inversas.

Leia mais

Matemática A Semi-Extensivo V. 3

Matemática A Semi-Extensivo V. 3 Matemática A Semi-Etensivo V. Eercícios 0) 0 f: R R f() = c) f: R R f() = 0. Falsa alsa. CD = R, mas Im(f) = [, ). 0. Falsa alsa. Im(f) = [, ). 0. Falsa alsa. Já não é sobrejetora. 08. Verdadeira f( 5

Leia mais

PROFª: ROSA G. S. DE GODOY BOAS FÉRIAS E APROVEITE PARA ESTUDAR UM POUQUINHO!! BJS

PROFª: ROSA G. S. DE GODOY BOAS FÉRIAS E APROVEITE PARA ESTUDAR UM POUQUINHO!! BJS ATIVIDADE DE MATEMÁTICA Nome: nº SÉRIE: ª E.M. Data: / / 207 PROFª: ROSA G. S. DE GODOY FICHA DE SISTEMATIZAÇÃO PARA A 3ª AVAL. DO 2º TRIMESTRE BOAS FÉRIAS E APROVEITE PARA ESTUDAR UM POUQUINHO!! BJS.

Leia mais

Matemática Básica. Sistema de numeração. Decimal (Indo-Arábico): abc = a b c abc = 100a + 10b + c. Binário:

Matemática Básica. Sistema de numeração. Decimal (Indo-Arábico): abc = a b c abc = 100a + 10b + c. Binário: Erivaldo ACAFE Matemática Básica Sistema de numeração Decimal (Indo-Arábico): abc = a.10 2 + b.10 1 + c.10 0 abc = 100a + 10b + c Binário: 4 (10101) 2 = 1.2 + 0.2 + 1.2 + 0.2 + 1.2 0 3 = 16 + 0 + 4 + 0

Leia mais

EXERCICIOS DE APROFUNDAMENTO MATEMATICA FUNÇÕES NUMEROS COMPLEXOS

EXERCICIOS DE APROFUNDAMENTO MATEMATICA FUNÇÕES NUMEROS COMPLEXOS 1. (Unicamp 01) Seja r a reta de equação cartesiana x y 4. Para cada número real t tal que 0 t 4, considere o triângulo T de vértices em (0, 0), (t, 0) e no ponto P de abscissa x t pertencente à reta r,

Leia mais

Funções. Para começarmos, precisamos de algumas definições: Dessa forma, já temos conteúdo suficiente para definirmos o assunto principal:

Funções. Para começarmos, precisamos de algumas definições: Dessa forma, já temos conteúdo suficiente para definirmos o assunto principal: Funções 1 Introdução Para começarmos, precisamos de algumas definições: Par ordenado: conjunto de dois números reais em que a ordem dos elementos importa, ou seja, (1, 2) (2, 1). Utilizaremos essa definição

Leia mais

Capítulo 1. Funções e grácos

Capítulo 1. Funções e grácos Capítulo 1 Funções e grácos Denição 1. Sejam X e Y dois subconjuntos não vazios do conjunto dos números reais. Uma função de X em Y ou simplesmente uma função é uma regra, lei ou convenção que associa

Leia mais

1º) Esboce o gráfico das funções, calcule e marque os interceptos: a) f(x) = x b) f(x) = - 3x + 2

1º) Esboce o gráfico das funções, calcule e marque os interceptos: a) f(x) = x b) f(x) = - 3x + 2 1º) Esboce o gráfico das funções, calcule e marque os interceptos: a) f() = b) f() = - 3 + 2 (0,0) (0,2) no eio (,0) no eio c) f() = + 3 d) f() = 2-3 (0,3) no (0,-3) no (-3,0) no (1,5;0) no 2º) Determine

Leia mais

ADA 1º BIMESTRE CICLO I MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO 2018

ADA 1º BIMESTRE CICLO I MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO 2018 ADA 1º BIMESTRE CICLO I MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO 2018 ITEM 1 DA ADA No desenho, a seguir, estão representados os pontos M e N que correspondem à localização de dois animais. Atividades relacionadas

Leia mais

DISCIPLINA: Matemática III PROFESSORA: Juliana Schivani ALUNO(a): Data: / /.

DISCIPLINA: Matemática III PROFESSORA: Juliana Schivani ALUNO(a): Data: / /. DISCIPLINA: Matemática III PROFESSORA: Juliana Schivani ALUNO(a): Data: / /. 1. (Ufjf-pism 017) Qual é o polinômio que ao ser multiplicado por g(x) 3 x 2x 5x 4 tem como resultado o polinômio 6 5 4 h(x)

Leia mais

Gênesis S. Araújo Pré-Cálculo

Gênesis S. Araújo Pré-Cálculo Gênesis Soares Jaboatão, de de 2016. Estudante: PAR ORDENADO: Um par ordenado de números reais é o conjunto formado por dois números reais em determinada ordem. Os parênteses, em substituição às chaves,

Leia mais

x 5 Df (( x))= ]0; 5[ ]5; + [

x 5 Df (( x))= ]0; 5[ ]5; + [ Resoluções das atividades adicionais Capítulo Grupo A x. a) f( x) x + 7 x + 7 0 x 7 Df (( x)) R { 7} x b) f( x) x x 0 e x 0 x 0e x. Df (( x)) ]0; [ ]; + [. a) O ponto onde o gráfico de f corta o eixo O

Leia mais

Universidade Federal de Pelotas. Instituto de Física e Matemática Pró-reitoria de Ensino. Módulo de Funções. Aula 01. Projeto GAMA

Universidade Federal de Pelotas. Instituto de Física e Matemática Pró-reitoria de Ensino. Módulo de Funções. Aula 01. Projeto GAMA Universidade Federal de Pelotas Instituto de Física e Matemática Pró-reitoria de Ensino Atividades de Reforço em Cálculo Módulo de Funções Aula 0 08/ Projeto GAMA Grupo de Apoio em Matemática Definição

Leia mais

Representação no Plano Cartesiano INTRODUÇÃO A FUNÇÃO

Representação no Plano Cartesiano INTRODUÇÃO A FUNÇÃO INTRODUÇÃO A FUNÇÃO Def: Dado dois conjuntos que tenham uma relação, chama-se função quando todo elemento do primeiro tiver associado um único elemento do segundo conjunto. Ou seja, f é função de A em

Leia mais

Matemática: Funções Vestibulares UNICAMP

Matemática: Funções Vestibulares UNICAMP Matemática: Funções Vestibulares 015-011 - UNICAMP 1. (Unicamp 015) Seja r a reta de equação cartesiana x y 4. Para cada número real t tal que 0 t 4, considere o triângulo T de vértices em (0, 0), (t,

Leia mais

COLÉGIO MARISTA - PATOS DE MINAS 1º ANO DO ENSINO MÉDIO Professor (a): Daniel Bento Fideles 1ª RECUPERAÇÃO AUTÔNOMA

COLÉGIO MARISTA - PATOS DE MINAS 1º ANO DO ENSINO MÉDIO Professor (a): Daniel Bento Fideles 1ª RECUPERAÇÃO AUTÔNOMA COLÉGIO MARISTA - PATOS DE MINAS 1º ANO DO ENSINO MÉDIO - 013 Professor (a): Daniel Bento Fideles 1ª RECUPERAÇÃO AUTÔNOMA ROTEIRO DE ESTUDO - QUESTÕES Estudante: Turma: Data: / / Questão 01 - (UNITAU SP)

Leia mais

FUNÇÕES I Exercícios de Revisão 3 a SÉRIE - ENSINO MÉDIO

FUNÇÕES I Exercícios de Revisão 3 a SÉRIE - ENSINO MÉDIO MATEMÁTICA I FUNÇÕES I Exercícios de Revisão a SÉRIE - ENSINO MÉDIO NOME :... NÚMERO :... TURMA :... 1) (PUC MG) - A soma dos números naturais que pertencem ao domínio de f(x) = igual a 1 5 - x é a) 5

Leia mais

Relação de Conjuntos. Produto cartesiano A = 1,2 e o conjunto B = 2,3,4 queremos o produto cartesiano A x B

Relação de Conjuntos. Produto cartesiano A = 1,2 e o conjunto B = 2,3,4 queremos o produto cartesiano A x B Relação de Conjuntos Produto cartesiano A = 1,2 e o conjunto B = 2,3,4 queremos o produto cartesiano A x B A x B = { 1,2, 1,3, 1,4, 2,2, 2,3, 2,4 } A B 1 2 2 3 4 Funções Uma Relação será função se: 1.

Leia mais

Aulas particulares. Conteúdo

Aulas particulares. Conteúdo Conteúdo Capítulo 3...2 Funções...2 Função de 1º grau...2 Exercícios...6 Gabarito... 13 Função quadrática ou função do 2º grau... 15 Exercícios... 22 Gabarito... 29 Capítulo 3 Funções Função de 1º grau

Leia mais

FUNÇAO DO 2 GRAU. é igual a:

FUNÇAO DO 2 GRAU. é igual a: 1. (Epcar (Afa)) O gráfico de uma função polinomial do segundo grau y f x, que tem como coordenadas do vértice (5, 2) e passa pelo ponto (4, 3), também passará pelo ponto de coordenadas a) (1, 18) b) (0,

Leia mais

LISTA DE REVISÃO PROVA MENSAL MATEMÁTICA E SUAS TECNOLOGIAS 2º TRIMESTRE

LISTA DE REVISÃO PROVA MENSAL MATEMÁTICA E SUAS TECNOLOGIAS 2º TRIMESTRE LISTA DE REVISÃO PROVA MENSAL MATEMÁTICA E SUAS TECNOLOGIAS º TRIMESTRE ÁLGEBRA 1) O valor de z sabendo que 64 z é: z A) 64 B) 64 C) 8 + i D) 8 i E) 8 ) Considere as raízes complexas w 0, w, 1 w, w 3 e

Leia mais

Acadêmico(a) Turma: Capítulo 6: Funções

Acadêmico(a) Turma: Capítulo 6: Funções 1 Acadêmico(a) Turma: Capítulo 6: Funções Toda função envolve uma relação de dependência entre elementos, números e/ou incógnitas. Em toda função existe um elemento que pode variar livremente, chamado

Leia mais

LISTA DE REVISÃO PROVA TRIMESTRAL DE ÁLGEBRA AULAS 30 a 38 FUNÇÕES DE 1ºGRAU

LISTA DE REVISÃO PROVA TRIMESTRAL DE ÁLGEBRA AULAS 30 a 38 FUNÇÕES DE 1ºGRAU LISTA DE REVISÃO PROVA TRIMESTRAL DE ÁLGEBRA AULAS 30 a 38 FUNÇÕES DE 1ºGRAU 1. (G1-014) O gráfico representa a função real definida por f(x) = a x + b. O valor de a + b é igual a A) 0,5. B) 1,0. C) 1,5.

Leia mais

MATEMÁTICA E RACIOCÍNIO LÓGICO

MATEMÁTICA E RACIOCÍNIO LÓGICO FUNÇÕES VALOR NUMÉRICO 1 01) Dada a função f(x) 1 x, o valor f(1,5) é x + 1 igual a a) 1,7 b) 1,8 c) 1,9 d),0 e),1 0) Na função f:r R, com f(x) x² 3x + 1, o 1 valor de f a) b) 11/4 c) 3/3 d) 15/4 FUNÇÕES

Leia mais