Matemática. Professor Adriano Diniz 26/02/2013. Aluno (a): EXERCÍCIOS PROPOSTOS

Tamanho: px
Começar a partir da página:

Download "Matemática. Professor Adriano Diniz 26/02/2013. Aluno (a): EXERCÍCIOS PROPOSTOS"

Transcrição

1 Matemática Professor Adriano Diniz 0 Aluno (a): 6/0/01 EXERCÍCIOS PROPOSTOS 01. (MACKENZIE) Se, na figura abaixo, temos o esboço do gráfico da função y = f(x), o gráfico que melhor representa y = f(x 1) + 1 é Sejam g a função inversa de f e h a função definida por h g( x). Assinale a alternativa que corresponde ao gráfico da função h. a) b) c) d) 04. (UFU-MG) Seja f : [0,4] R a função cujo gráfico está ilustrado abaixo. 0. (FGV) Seja f(x) uma função definida no intervalo [ 4, + [, cujo gráfico está representado no plano cartesiano da figura abaixo. Considere a função g(x), tal que g 1 f (x + ). a) Construa o gráfico de g(x) no mesmo plano cartesiano onde está representada f(x). b) Determine o Domínio e a Imagem da função g(x). Sobre as afirmações seguintes I - o domínio da função f(x +) é o intervalo [-,] II - a imagem da função f(x +) é o intervalo [1,] III - a equação f(x + ) + = 0 não tem solução IV - a função f(x +), em seu domínio de definição, é injetora é correto afirmar que a) II e III são verdadeiras. b) I, II e III são verdadeiras. c) I e IV são verdadeiras. d) I e III são verdadeiras. 0. (UFU-MG) Seja f a função real de variável real cujo gráfico está representado na figura abaixo. 0. (FATEC SP) A figura apresenta parte do gráfico da função f : ] 1; + [ R. 1

2 Assinale a alternativa que melhor representa o gráfico da função g f(x 1) + 1 a) b) 08. (FGV-SP) Dada a função f x 4x +, definida de A em B, determine: a) o mais amplo conjunto B para que f seja uma função sobrejetora; b) os mais amplos conjuntos A para que f seja injetora. 09. (UEPB) O domínio da função real por: a) D(f) = R * b) D(f) = R + c) D(f ) = [1, ] d) D(f ) = ]1, [ e) D(f ) = ], 1] [, + [ f (x) = (x )( x), é dado c) d) 10. (UNIFOR CE) Neste plano cartesiano, estão representados os gráficos das funções y = f(x) e y = g(x), ambas definidas no intervalo 0,6 : aberto ] [ e) 06. (UNESP SP) Através dos gráficos das funções f(x) e g(x), os valores de f(g(0)) e g(f(1)) são, respectivamente: Seja S o subconjunto de números reais definido por S = {x R; f(x) g(x) < 0}, então, é correto afirmar que S é a) {x R; < x < } U {x R; < x < 6} b) {x R; 1< x < } U {x R; 4< x < } c) {x R; 0< x < } U {x R; < x < } d) {x R; 0< x < 1} U {x R; < x < 6} e) {x R; 0< x < } U {x R; < x < 4} 11. (UDESC SC) Sejam f, g e h as funções cujos gráficos estão ilustrados na Figura. a) e 0. b) e. c) 0 e 0. d) e. e) e (UEFS BA) Sabendo-se que todas as raízes do polinômio f(x), representadas graficamente na figura, são reais e que g 1 (x) é a função inversa de g x 1, pode-se concluir que o resto da divisão de f(x) por g 1 (x) é a) b) 0 c) 6 d) 8 e) 16 Figura : Gráficos das funções f, g e h. O intervalo que representa o conjunto (Im(ƒ) Im(g)) (D(ƒ) Im(h)) é: a) ],[ b) [, ] [0,] c) [,0[ d) [ 0,] e) [,+ [ 1. (UESPI) Seja f uma função injetora tendo domínio e contradomínio iguais ao conjunto {1,,, 4}. Sabendo que < f(1), f(1) < f() e que f () < f(4), assinale a alternativa correta sobre os valores assumidos por f. a) f(1) = 4 b) f() = c) f() = 4 d) f(4) = 1 e) f(1) =

3 1. (UFMG-MG) Seja f a função de IR em IR, dada pelo gráfico a seguir. É correto afirmar que: a) f é sobrejetora e não injetora. b) f é bijetora. c) f f(-x) para todo x real. d) f(x) > 0 para todo x real. e) o conjunto imagem de f é ] - ; ]. c) d) 14. (UFOP- MG/) Seja f:r R; f x y Então podemos afirmar que a) f é uma função par e crescente. b) f é uma função par e bijetora. c) f é uma função ímpar e decrescente. d) f é uma função ímpar e bijetora. e) f é uma função par e decrescente. 1. (UFT-TO) Cada um dos gráficos abaixo representa uma função y = f(x) tal que f : Df [, 4]; Df [, 4] Qual deles representa uma função bijetora no seu domínio? a) b) x 16. (Acafe-SC) Dadas as funções f: R R e g: R R definidas por f x + e g - x, qual alternativa tem afirmação CORRETA? a) f é uma função par e g é ímpar. b) f e g são funções pares. c) f e g são ímpares. d) f é uma função ímpar e g é par. e) f e g não são funções pares nem ímpares. 17. (UNIMONTES-MG) As tabelas a seguir representam algumas conjugações do verbo estar. Tabela 1 Tabela Tabela Tabela 4 A B A B A B A B eu estou eu estava eu estivesse eu estaria tu estás tu estavas tu estivesses tu estarias ele está ele estava ele estivesse ele estaria nós estamos nós estávamos nós estivéssemos nós estaríamos vós estais vós estáveis vós estivésseis vós estaríeis eles estão eles estavam eles estivessem eles estariam Das tabelas acima, a única que representa uma bijeção de A em B é a a) Tabela 1. b) Tabela. c) Tabela. d) Tabela (UFT TO) Seja a um número real e f : ], [ [a, [ uma função definida por f m x + 4mx + 1, com m 0. O valor de a para que a função f seja sobrejetora é: a) 4 b) c) d) 0 e) 19. (UFU- MG) A função definida por f -x x + 4, de domínio [ 1, ) e contradomínio R, em que R representa o conjunto dos 6 números reais, é tal que a) f é bijetora b) f é injetora e não sobrejetora c) f é sobrejetora e não injetora d) f não é injetora, nem sobrejetora

4 x (UEPG PR) Sobre as funções f e g x -, x assinale o que for correto. 01. O domínio da função f é {x R / x > 1} 1 0. A função f assume valores estritamente positivos para x < ou x > g(f()) = 10 x 08. A função inversa de g é definida por g f = f (x) x 1. (Unifor-CE) Sejam f e g funções de R em R tais que f x 1 e x + f (g(x)) =. Nessas condições, é verdade que. a) g(-) = b) g(-1) = 1 c) g (0) = d) g(1) = e) g () =. (UEPB- PB) Sejam as funções de R em R, dadas por f x + 1 e g(f(x)) = 4x + 1. Calculando o valor de g(0), teremos: a) b) 1 c) d) e). (FGV ) Considere as funções f(x) e g(x), definidas para todos os números reais, tais que: f x + 1 e g x +. Se h(x) é a função inversa de g(x), então o valor de F ( h( x 0 )) para x 0 = 7 é igual a: a) 4 b) c) 7 d) 17 e) 4. (ESPM SP) A figura abaixo representa o gráfico cartesiano da função f (x).. (UEPG-PR) O gráfico abaixo representa a função f(x), definida no intervalo [ 1, 4]. Considerando que g(x) = f (x ), assinale o que for correto. 01. g(1) + g(4) = 1 0. g() = f(g()) = g(f(0)) = 0 6. (UEL-PR) Com respeito à função f:r R, cujo gráfico está representado abaixo, é correto afirmar: a) (fof)(-) = 1 b) (fof)(-1) = c) (fof)(-) = -1 d) (fof)(-1) = 0 e) f(-) = 1-7. (PUC- MG) Na figura está o gráfico da função f. O total de elementos x tais que f ( f (x)) = 4 é: a) 1 b) c) d) 4 y 1-1 x 8. (Mackenzie-SP) As funções f 4x e g x + m são tais que f (g(x)) = g(f (x)), qualquer que seja x real. O valor de m é 9 a) 4 b) 4 Sabendo-se que f (1) =, o valor de f [f (π)] é igual a: a) 1 b) / c) /4 d) e) / 6 c) 9 d) e) 4

5 9. (Furg-RS) O domínio da função inversa f -1 x + 1 (x) de f é: x 1 a) {x R / x } b) x R / x e x 1 c) x R / x d) { x R / x -} 1 e) x R / x e x O número de soluções da equação f(f(x)) = 6 é a). b) 4. c). d) 6. e) (IBMEC RJ) Observem na figura os esboços dos gráficos das funções f(x) e g (x), sendo f a x. O valor de g(g( )) + f(g()) é: 0. (UEPB-PB) Dada a função dada por: a) f x + c) f x e) f x y = (x + ), a função inversa f(x) é b) f x d) f x + a) b) 1 c) d) / e) 1/ 1. (ITA-SP) Seja a função f: R {} R {} definida por x f ( x) = + 1. Sobre sua inversa podemos garantir que: x a) não está definida pois f não é injetora. b) não está definida pois f não é sobrejetora. y - c) está definida por f -1 ( y) = y, y. y d) está definida por f -1 + ( y) = 1 y, y. y - e) está definida por f -1 ( y) = y, y.. (Unifor-CE) Sejam f e g funções de R em R, tais que f x + e g (f (x)) = 4x. Nessas condições, a função inversa de g é dada por a) g 1 + b) g 1 c) g 1 + d) g x e) g x. (FGV -SP) A figura indica o gráfico da função f, de domínio [ 7,], no plano cartesiano ortogonal.. (UFT TO) Sabendo que u [f(x):g(x)] [g(x)+h(x)] e dados os seguintes polinômios: f x + x x; g x + x e h x +1. Pode-se afirmar que u(x) é: a) x +x x +1 b) x x + x 1 c) x x + x 1 d) x x + x 1 e) x x + x 1 1 A a) b) o domínio: [ 6; + [ e a imagem: ] ; ] D 4 D A 6 B 7 D 8 a) B={y R/ y -1} b) A={x R/ x } ou A={x R/ x } 9 C 10 A 11 C 1 C 1 A 14 D 1 D 16 A 17 A 18 B 19 B C C C 4 D 1 6 B 7 C 8 C 9 D 0 C 1 E B D 4 A B

02. No intervalo [0, 1], a variação de f é maior que a variação de h.

02. No intervalo [0, 1], a variação de f é maior que a variação de h. LISTA DE EXERCÍCIOS FUNÇÕES: CONCEITOS INICIAIS PROFESSOR: Claudio Saldan CONTATO: saldanmat@gmailcom 0 - (UEPG PR) Sobre o gráfico abaio, que representa uma função = f() definida em R, assinale o que

Leia mais

Exercícios de Matemática Funções Função Composta

Exercícios de Matemática Funções Função Composta Exercícios de Matemática Funções Função Composta TEXTO PARA A PRÓXIMA QUESTÃO (Ufba) Na(s) questão(ões) a seguir escreva nos parênteses a soma dos itens corretos. 1. Considerando-se as funções f(x) = x

Leia mais

Função. Definição formal: Considere dois conjuntos: o conjunto X com elementos x e o conjunto Y com elementos y. Isto é:

Função. Definição formal: Considere dois conjuntos: o conjunto X com elementos x e o conjunto Y com elementos y. Isto é: Função Toda vez que temos dois conjuntos e algum tipo de associação entre eles, que faça corresponder a todo elemento do primeiro conjunto um único elemento do segundo, ocorre uma função. Definição formal:

Leia mais

MATEMÁTICA - SEMI/NOITE PROF. FELIPE HEY 20/04/ Assinale V para as afirmativas verdadeiras e F para as falsas. a) ( ) -8 = 8 b) ( ) 5 = ±5

MATEMÁTICA - SEMI/NOITE PROF. FELIPE HEY 20/04/ Assinale V para as afirmativas verdadeiras e F para as falsas. a) ( ) -8 = 8 b) ( ) 5 = ±5 MATEMÁTICA - SEMI/NOITE PROF. FELIPE HEY 20/04/2016 Aula 04 FUNÇÃO MODULAR 01.01. Assinale V para as afirmativas verdadeiras e F para as falsas. a) ( ) -8 = 8 b) ( ) 5 = ±5 c) ( ) x² d) ( ) 3 ² 3 e) (

Leia mais

Só Matemática O seu portal matemático http://www.somatematica.com.br FUNÇÕES

Só Matemática O seu portal matemático http://www.somatematica.com.br FUNÇÕES FUNÇÕES O conceito de função é um dos mais importantes em toda a matemática. O conceito básico de função é o seguinte: toda vez que temos dois conjuntos e algum tipo de associação entre eles, que faça

Leia mais

. Determine os valores de P(1) e P(22).

. Determine os valores de P(1) e P(22). Resolução das atividades complementares Matemática M Polinômios p. 68 Considere o polinômio P(x) x x. Determine os valores de P() e P(). x x P() 0; P() P(x) (x x)? x (x ) x x x P()? 0 P() ()? () () 8 Seja

Leia mais

2.1A Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1

2.1A Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1 2.1 Domínio e Imagem 2.1A Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = (d) f (x) = 1 3 x + 5 1 3 (e) g (x) 2x (f) g (x) = jj 8 8 < x, se x 2

Leia mais

Representação no Plano Cartesiano INTRODUÇÃO A FUNÇÃO

Representação no Plano Cartesiano INTRODUÇÃO A FUNÇÃO INTRODUÇÃO A FUNÇÃO Def: Dado dois conjuntos que tenham uma relação, chama-se função quando todo elemento do primeiro tiver associado um único elemento do segundo conjunto. Ou seja, f é função de A em

Leia mais

Exercícios - Funções Injetora, sobrejetora e bijetora. h) f: [1;8] [2;10]

Exercícios - Funções Injetora, sobrejetora e bijetora. h) f: [1;8] [2;10] Exercícios - Funções Injetora, sobrejetora e bijetora. h) f: [1;8] [;10] 1) Verifique se as funções são injetoras, sobrejetoras ou bijetoras: a) f: A B A 0 f 1 B 4 5 6 7 b) f: A B A 0 4 6 c) f: R R + definida

Leia mais

Colégio Adventista Portão EIEFM MATEMÁTICA Funções Composta e Inversa APROFUNDAMENTO/REFORÇO 1º Ano. Aluno(a): Número: Turma:

Colégio Adventista Portão EIEFM MATEMÁTICA Funções Composta e Inversa APROFUNDAMENTO/REFORÇO 1º Ano. Aluno(a): Número: Turma: Colégio Adventista Portão EIEFM MATEMÁTICA Funções Composta e Inversa APROFUNDAMENTO/REFORÇO º Ano Professor: Hermes Jardim Disciplina: Matemática Lista º Bimestre/0 Aluno(a): Número: Turma: ) Sendo f()

Leia mais

1. Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1.

1. Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1. 2.1 Domínio e Imagem EXERCÍCIOS & COMPLEMENTOS 1.1 1. Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1 3 (e) g (x) 2x

Leia mais

POLINÔMIOS. x 2x 5x 6 por x 1 x 2. 10 seja x x 3

POLINÔMIOS. x 2x 5x 6 por x 1 x 2. 10 seja x x 3 POLINÔMIOS 1. (Ueg 01) A divisão do polinômio a) x b) x + c) x 6 d) x + 6 x x 5x 6 por x 1 x é igual a:. (Espcex (Aman) 01) Os polinômios A(x) e B(x) são tais que A x B x x x x 1. Sabendo-se que 1 é raiz

Leia mais

www.cursoavancos.com.br

www.cursoavancos.com.br LISTA DE EXERCÍCIOS DE FIXAÇÃO - PROF.: ARI 0) (ANGLO) Sendo FUNÇÕES INVERSAS f a função inversa de f() = +, então f (4) é igual a : 2 a) 4 b) /4 c) 4 d) 3 e) 6 02) (ANGLO) Sejam f : R R uma função bijetora

Leia mais

Revisão de Função. Inversa e Composta. Professor Gaspar. f : 1,,3, f(x) x 2x 2 e. g(x) x 2x 4. Para qual valor de x tem f(g(x)) g(f(x))? g(x) 2x.

Revisão de Função. Inversa e Composta. Professor Gaspar. f : 1,,3, f(x) x 2x 2 e. g(x) x 2x 4. Para qual valor de x tem f(g(x)) g(f(x))? g(x) 2x. Revisão de Função. (Espcex (Aman) 05) Considere a função bijetora f :,,, definida por f(x) x x e seja (a,b) o ponto de intersecção de f com sua inversa. O valor numérico da expressão a b é a). b) 4. c)

Leia mais

12. FUNÇÕES INJETORAS. FUNÇÕES SOBREJETORAS 12.1 FUNÇÕES INJETORAS. Definição

12. FUNÇÕES INJETORAS. FUNÇÕES SOBREJETORAS 12.1 FUNÇÕES INJETORAS. Definição 90 1. FUNÇÕES INJETORAS. FUNÇÕES SOBREJETORAS 1.1 FUNÇÕES INJETORAS Definição Dizemos que uma função f: A B é injetora quando para quaisquer elementos x 1 e x de A, f(x 1 ) = f(x ) implica x 1 = x. Em

Leia mais

Capítulo 1. x > y ou x < y ou x = y

Capítulo 1. x > y ou x < y ou x = y Capítulo Funções, Plano Cartesiano e Gráfico de Função Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos

Leia mais

f(x) ax b definida para todo número real x, onde a e b são números reais. Sabendo que f(4) 2,

f(x) ax b definida para todo número real x, onde a e b são números reais. Sabendo que f(4) 2, Ensino Aluno (: Nº: Turma: ª série Bimestre: º Disciplina: Espanhol Atividade Complementar Funções Compostas e Inversas Professor (: Cleber Costa Data: / /. (Eear 07) Sabe-se que a função invertível. Assim,

Leia mais

FUNÇÃO. Exemplo: Dado os conjuntos A = { -2, -1, 0, 1, 2} e B = {0, 1, 2, 3, 4, 5} São funções de A em B as relações a) R 1 = {(x,y) AXB/ y = x + 2}

FUNÇÃO. Exemplo: Dado os conjuntos A = { -2, -1, 0, 1, 2} e B = {0, 1, 2, 3, 4, 5} São funções de A em B as relações a) R 1 = {(x,y) AXB/ y = x + 2} Sistemas de Informação e Tecnologia em Proc. de Dados Matemática Ms. Carlos Roberto da Silva/ Ms. Lourival Pereira Martins FUNÇÃO Definição: Dados dois conjuntos e define-se como função de em a toda relação

Leia mais

2. (Ufpe 96) Seja A um conjunto com 3 elementos e B um conjunto com 5 elementos. Quantas funções injetoras de A em B existem?

2. (Ufpe 96) Seja A um conjunto com 3 elementos e B um conjunto com 5 elementos. Quantas funções injetoras de A em B existem? 1. (Unirio 99) Sejam as funções f : IR ë IR x ë y= I x I e g : IR ë IR x ë y = x - 2x - 8 Faça um esboço gráfico da função fog. 2. (Ufpe 96) Seja A um conjunto com 3 elementos e B um conjunto com 5 elementos.

Leia mais

Módulo de Geometria Anaĺıtica 1. Paralelismo e Perpendicularismo. 3 a série E.M.

Módulo de Geometria Anaĺıtica 1. Paralelismo e Perpendicularismo. 3 a série E.M. Módulo de Geometria Anaĺıtica 1 Paralelismo e Perpendicularismo 3 a série EM Geometria Analítica 1 Paralelismo e Perpendicularismo 1 Exercícios Introdutórios Exercício 1 Determine se as retas de equações

Leia mais

LISTA DE EXERCÍCIOS RECUPERAÇÃO Goiânia, de de 2018 Aluno(a):

LISTA DE EXERCÍCIOS RECUPERAÇÃO Goiânia, de de 2018 Aluno(a): LIST DE EXERCÍCIOS RECUPERÇÃO Goiânia, de de 08 luno(: Série: ª Turma: Disciplina: Matemática Professor: Musgley Questão 0 - (UFPR) respeito da função representada no gráfico abaio, considere as seguintes

Leia mais

{ } { } { } { } { } Professor: Erivaldo. Função Composta SUPERSEMI. 01)(Aman 2013) Sejam as funções reais ( ) 2

{ } { } { } { } { } Professor: Erivaldo. Função Composta SUPERSEMI. 01)(Aman 2013) Sejam as funções reais ( ) 2 Centro de Estudos Matemáticos Florianópolis Professor: Erivaldo Santa Catarina Função Composta SUPERSEMI 01)(Aman 013) Sejam as funções reais ( ) f x = x + 4x e gx ( ) = x 1. O domínio da função f(g(x))

Leia mais

Lista de Exercícios 03

Lista de Exercícios 03 Lista de Exercícios 03 Aplicações das relações e funções no cotidiano Ao lermos um jornal ou uma revista, diariamente nos deparamos com gráficos, tabelas e ilustrações. Estes, são instrumentos muito utilizados

Leia mais

COLÉGIO MARISTA - PATOS DE MINAS 1º ANO DO ENSINO MÉDIO Professor (a): Daniel Bento Fideles 1ª RECUPERAÇÃO AUTÔNOMA

COLÉGIO MARISTA - PATOS DE MINAS 1º ANO DO ENSINO MÉDIO Professor (a): Daniel Bento Fideles 1ª RECUPERAÇÃO AUTÔNOMA COLÉGIO MARISTA - PATOS DE MINAS 1º ANO DO ENSINO MÉDIO - 013 Professor (a): Daniel Bento Fideles 1ª RECUPERAÇÃO AUTÔNOMA ROTEIRO DE ESTUDO - QUESTÕES Estudante: Turma: Data: / / Questão 01 - (UNITAU SP)

Leia mais

A. PAR ORDENADO 01. Determine a e b de modo que: (a) (a + 3, b + 1) = (3a 5, 4) (b) (a 2, 3b + 4) = (2a + 3, b + 2) (c) ( a 2 5 a,b 2 ) = ( 6, 2b 1) (d) (a, 2a) = (b + 4, 7 b) 02. Represente num mesmo

Leia mais

1) Sejam as funções f e g de R em R tais que f(x) = 2 x + 1 e f(g(x)) = 2 x - 9, o valor de g(- 2) é igual a:

1) Sejam as funções f e g de R em R tais que f(x) = 2 x + 1 e f(g(x)) = 2 x - 9, o valor de g(- 2) é igual a: COLÉGIO PEDRO II UNIDADE ESCOLAR SÃO CRISTÓVÃO III NOTA: PROFESSORES: Eduardo/ Vicente DATA: NOME: Nº: NOME: Nº: NOME: N : NOME: N : TURMA: GRUPO I: Alunos 1 ; 2 ; 3 ; 4. 1) Sejam as funções f e g de R

Leia mais

Aula 9 Aula 10. Ana Carolina Boero. Página:

Aula 9 Aula 10. Ana Carolina Boero.   Página: E-mail: ana.boero@ufabc.edu.br Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Funções Sejam A e B conjuntos. Uma função f : A B (leia f de A em B ) é uma regra

Leia mais

Funções algébricas do 1º grau. Maurício Bezerra Bandeira Junior

Funções algébricas do 1º grau. Maurício Bezerra Bandeira Junior Maurício Bezerra Bandeira Junior Definição Chama-se função polinomial do 1º grau, ou função afim, a qualquer função f de IR em IR dada por uma lei da forma f(x) = ax + b, onde a e b são números reais dados

Leia mais

APLICAÇÕES IMAGEM DIRETA - IMAGEM INVERSA. Professora: Elisandra Bär de Figueiredo

APLICAÇÕES IMAGEM DIRETA - IMAGEM INVERSA. Professora: Elisandra Bär de Figueiredo Professora: Elisandra Bär de Figueiredo APLICAÇÕES DEFINIÇÃO 1 Seja f uma relação de E em F. Dizemos que f é uma aplicação de E em F se (i) D(f) = E; (ii) dado a D(f), existe um único b F tal que (a, b)

Leia mais

Uma função f de domínio A e contradomínio B é usualmente indicada por f : A B (leia: f de A em B).

Uma função f de domínio A e contradomínio B é usualmente indicada por f : A B (leia: f de A em B). Instituto de Ciências Exatas - Departamento de Matemática Cálculo I Profª Maria Julieta Ventura Carvalho de Araujo Capítulo : Funções.- Definições Sejam A e B dois conjuntos não vazios. Uma função f de

Leia mais

p: João Alvaro w: e: Lista de exercícios de Matemática Função composta. Função inversa.

p: João Alvaro w:  e: Lista de exercícios de Matemática Função composta. Função inversa. p: João Alvaro w: www.matemaniacos.com.br e: joao.baptista@iff.edu.br Lista de exercícios de Matemática Função composta. Função inversa. EXERCÍCIOS DE EMBASAMENTO 1. Dados A = { 1, 1, 0, 1, 2}, B = { 3,

Leia mais

b) Para que valores reais de x, f(x) > 2x + 2? 2. (Ufscar 2002) Sejam as funções f(x) = x - 1 e g(x) = (x + 4x - 4).

b) Para que valores reais de x, f(x) > 2x + 2? 2. (Ufscar 2002) Sejam as funções f(x) = x - 1 e g(x) = (x + 4x - 4). 1. (Fuvest 2000) a) Esboce, para x real, o gráfico da função f(x)= x-2 + 2x+1 -x-6. O símbolo a indica o valor absoluto de um número real a e é definido por a =a, se aµ0 e a =-a, se a

Leia mais

FUNÇÃO COMO CONJUNTO R 1. (*)= ou, seja, * possui duas imagens. b) não é uma função de A em B, pois não satisfaz a segunda condição da

FUNÇÃO COMO CONJUNTO R 1. (*)= ou, seja, * possui duas imagens. b) não é uma função de A em B, pois não satisfaz a segunda condição da FUNÇÃO COMO CONJUNTO Definição 4.4 Seja f uma relação de A em B, dizemos que f é uma função de A em B se as duas condições a seguir forem satisfeitas: i) D(f) = A, ou seja, o domínio de f é o conjunto

Leia mais

Lista de Função Inversa, Bijeção e Paridade Extensivo Alfa Professor: Leandro (Pinda)

Lista de Função Inversa, Bijeção e Paridade Extensivo Alfa Professor: Leandro (Pinda) Lista de Função Inversa, Bijeção e Paridade Etensivo Alfa Professor: Leandro (Pinda). (Udesc 0) A função f definida por f() é uma função bijetora, se os conjuntos que representam o domínio (D(f)) e a imagem

Leia mais

Lista 6 - Bases Matemáticas

Lista 6 - Bases Matemáticas Lista 6 - Bases Matemáticas Funções - Parte 1 Conceitos Básicos e Generalidades 1 Sejam dados A e B conjuntos não vazios. a) Defina rigorosamente o conceito de função de A em B. b) Defina rigorosamente

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web . (Pucrj 015) Sejam as funções f(x) = x 6x e g(x) = x 1. O produto dos valores inteiros de x que satisfazem a desigualdade f(x) < g(x) é: a) 8 b) 1 c) 60 d) 7 e) 10 4. (Acafe 014) O vazamento ocorrido

Leia mais

2) Se z = (2 + i).(1 + i).i, então a) 3 i b) 1 3i c) 3 i d) 3 + i e) 3 + i. ,será dado por: quando x = i é:

2) Se z = (2 + i).(1 + i).i, então a) 3 i b) 1 3i c) 3 i d) 3 + i e) 3 + i. ,será dado por: quando x = i é: Aluno(a) Nº. Ano: º do Ensino Médio Exercícios para a Recuperação de MATEMÁTICA - Professores: Escossi e Luciano NÚMEROS COMPLEXOS 1) Calculando-se corretamente as raízes da função f(x) = x + 4x + 5, encontram-se

Leia mais

Chamamos de funções numéricas aquelas cujas variáveis envolvidas são números reais. Isso é funções denidas sobre R ou uma parte de R e a valor em R.

Chamamos de funções numéricas aquelas cujas variáveis envolvidas são números reais. Isso é funções denidas sobre R ou uma parte de R e a valor em R. Capítulo 2 Funções e grácos 2.1 Funções númericas Chamamos de funções numéricas aquelas cujas variáveis envolvidas são números reais. Isso é funções denidas sobre R ou uma parte de R e a valor em R. Denição

Leia mais

Matemática Complementos de Funções. Professor Marcelo Gonsalez Badin

Matemática Complementos de Funções. Professor Marcelo Gonsalez Badin Matemática Complementos de Funções Professor Marcelo Gonsalez Badin Paridade Função PAR f (x) é chamada FUNÇÃO PAR se f ( x) = f (x) Exemplo: f (x) = x 4 f ( x) = ( x) 4 = x 4 = f (x) O gráfico de uma

Leia mais

Inequação do Primeiro Grau

Inequação do Primeiro Grau Inequação do Primeiro Grau 1. (Unicamp 015) Seja a um número real positivo e considere as funções afins f(x) ax 3a e g(x) 9 x, definidas para todo número real x. a) Encontre o número de soluções inteiras

Leia mais

FUNÇÕES. Prof.ª Adriana Massucci

FUNÇÕES. Prof.ª Adriana Massucci FUNÇÕES Prof.ª Adriana Massucci Introdução: Muitas grandezas com as quais lidamos no nosso cotidiano dependem uma da outra, isto é, a variação de uma delas tem como consequência a variação da outra. Exemplo:

Leia mais

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%)

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Distribuição das 1.048 Questões do I T A 94 (8,97%) 104 (9,92%) 69 (6,58%) Equações Irracionais 09 (0,86%) Equações Exponenciais 23 (2, 101 (9,64%) Geo. Espacial Geo. Analítica Funções Conjuntos 31 (2,96%)

Leia mais

Ensino Médio - 3ª série Estudos de Recuperação para o EXAME - 2011 MATEMÁTICA Luiz Antonio Escossi Números Complexos 01 - (MACK SP) Gab 02 - (FGV )

Ensino Médio - 3ª série Estudos de Recuperação para o EXAME - 2011 MATEMÁTICA Luiz Antonio Escossi Números Complexos 01 - (MACK SP) Gab 02 - (FGV ) Ensino Médio - ª série Estudos de Recuperação para o EXAME - 011 Disciplina: MATEMÁTICA Professor: Luiz Antonio Escossi Números Complexos 01 - (MACK SP) Se y = x, sendo 1 i x 1 i e i 1, o valor de (x +

Leia mais

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional. n=1

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional. n=1 Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional MA Números e Funções Reais Avaliação - GABARITO 3 de abril de 203. Determine se as afirmações a seguir são verdadeiras

Leia mais

QUESTÕES DE VESTIBULARES

QUESTÕES DE VESTIBULARES QUESTÕES DE VESTIBULARES 01- (ACAFE) Dados os polinômios: p(x) = 5-2x + 3x 2, q(x) = 7 + x + x 2 - x 3 e r(x) = 1-3x + x 4. O valor de p(x) + r (x) - q(x) para x = 2 é: A) 5 B) 13 C) 11 D) 24 E) 19 02-

Leia mais

Capítulo 3. Fig Fig. 3.2

Capítulo 3. Fig Fig. 3.2 Capítulo 3 3.1. Definição No estudo científico e na engenharia muitas vezes precisamos descrever como uma quantidade varia ou depende de outra. O termo função foi primeiramente usado por Leibniz justamente

Leia mais

REVISÃO DE. Vamos em Frente. O sucesso nos espera.

REVISÃO DE. Vamos em Frente. O sucesso nos espera. REVISÃO DE Esta Lista de Revisão reúne questões de vestibulares de todo o país. Sobre os assuntos dados no º Semestre. As questões foram selecionadas e classificadas cuidadosamente por assunto, com o objetivo

Leia mais

Lista Função - Ita Carlos Peixoto

Lista Função - Ita Carlos Peixoto Lista Função - Ita Carlos Peixoto. (Ita 07) Sejam X e Y dois conjuntos finitos com X Y e X Y. Considere as seguintes afirmações: I. Existe uma bijeção f : X Y. II. Existe uma função injetora g: Y X. III.

Leia mais

RESOLUÇÃO: RESPOSTA: Alternativa 01. Questão 03. (UEFS BA)

RESOLUÇÃO: RESPOSTA: Alternativa 01. Questão 03. (UEFS BA) RESOLUÇÃO DA a AVALIAÇÃO DE MATEMÁTICA COLÉGIO ANCHIETA-BA - UNIDADE II-013 ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. PROFA, MARIA ANTÔNIA C. GOUVEIA Questão 01. (UEPB) Dados os conjuntos A = {1,

Leia mais

A x B = {(2;1), (2;3), (2;5), (4;1), (4;3), (4; 5)}

A x B = {(2;1), (2;3), (2;5), (4;1), (4;3), (4; 5)} PROFESSOR: EUDES A x B = {(2;1), (2;3), (2;5), (4;1), (4;3), (4; 5)} b) A relação binária h = {(x;y) y < x} A 2 1 3 4 5 B y x h: {(2;1), (4;1), (4,3)} c) A relação binária g = {(x;y) y= x + 3} A 2 1 3

Leia mais

Matemática. Resolução das atividades complementares. M4 Funções

Matemática. Resolução das atividades complementares. M4 Funções Resolução das atividades complementares Matemática M Funções p. Responda às questões e, tomando por base o teto abaio: (Unama-PA) O ATAQUE DOS ALIENS Caramujos africanos, medindo centímetros de comprimento

Leia mais

LISTA DE REVISÃO DE ÁLGEBRA 3ºANO

LISTA DE REVISÃO DE ÁLGEBRA 3ºANO LISTA DE REVISÃO DE ÁLGEBRA 3ºANO. (Espcex (Aman)) Considerando a função real definida por a) 8 b) 0 c) d) e) 4 x 3, se x, x x, se x o valor de f(0) f(4) é. (Enem) Após realizar uma pesquisa de mercado,

Leia mais

Prova de Admissão para o Mestrado em Matemática IME-USP - 23.11.2007

Prova de Admissão para o Mestrado em Matemática IME-USP - 23.11.2007 Prova de Admissão para o Mestrado em Matemática IME-USP - 23.11.2007 A Nome: RG: Assinatura: Instruções A duração da prova é de duas horas. Assinale as alternativas corretas na folha de respostas que está

Leia mais

EXERCÍCIOS REVISIONAIS SOBRE FUNÇÕES - 1ª PARTE

EXERCÍCIOS REVISIONAIS SOBRE FUNÇÕES - 1ª PARTE QUESTÃO 1: Sabendo-se que o diagrama a seguir representa uma função f de A em B, responda: A) Qual é o domínio da função f?? B) Qual é o contradomínio da função f? C) Qual é o conjunto imagem da função

Leia mais

Questão 01. Questão 02

Questão 01. Questão 02 PROVA DE MATEMÁTICA - TURMAS DO 3 O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - MARÇO DE 011. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Questão 01 Sabendo

Leia mais

Maia Vest. Denominamos o fator de base e de expoente; é a n-ésima potência de. Portanto, potência é um produto de fatores iguais.

Maia Vest. Denominamos o fator de base e de expoente; é a n-ésima potência de. Portanto, potência é um produto de fatores iguais. Maia Vest Disciplina: Matemática Professor: Adriano Mariano FUNÇÃO EXPONENCIAL Revisão sobre potenciação Potência de expoente natural Sendo a um número real e n um número natural maior ou igual a 2, definimos

Leia mais

PROF. LUIZ CARLOS MOREIRA SANTOS. Questão 01) O conjunto A = {1, 2, 3, 4, 5} foi representado duas vezes, na forma de diagrama, na figura abaixo.

PROF. LUIZ CARLOS MOREIRA SANTOS. Questão 01) O conjunto A = {1, 2, 3, 4, 5} foi representado duas vezes, na forma de diagrama, na figura abaixo. Questão 0) O conjunto = {,, 3, 4, 5} foi representado duas vezes, na forma de diagrama, na figura abaio. Para definir uma função sobrejetora f :, uma pessoa ligou cada mento do diagrama com um único mento

Leia mais

MÓDULO 41. Funções II. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA

MÓDULO 41. Funções II. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA MÓDULO 41 Funções II 1. (OPM) Seja f uma função de domínio dada por x x + 1 f(x) =. Determine o conjunto-imagem x + x + 1 da função.. Considere

Leia mais

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2011 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2011 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFBA VESTIBULAR a Fase Profa. Maria Antônia Gouveia. Questão. Considerando-se as funções f: R R e g: R R definidas por f(x) = x e g(x) = log(x² + ), é correto afirmar: () A função

Leia mais

1. (Unicamp) Considere as funções f e g, cujos gráficos estão representados na figura abaixo.

1. (Unicamp) Considere as funções f e g, cujos gráficos estão representados na figura abaixo. 1. (Unicamp) Considere as funções f e g, cujos gráficos estão representados na figura abaixo. O valor de f(g(1)) g(f(1)) é igual a a) 0. b) 1. c) 2. d) 1. 2. (G1 - ifce) Seja f : 1, uma função dada por

Leia mais

1º) Esboce o gráfico das funções, calcule e marque os interceptos: a) f(x) = x b) f(x) = - 3x + 2

1º) Esboce o gráfico das funções, calcule e marque os interceptos: a) f(x) = x b) f(x) = - 3x + 2 1º) Esboce o gráfico das funções, calcule e marque os interceptos: a) f() = b) f() = - 3 + 2 (0,0) (0,2) no eio (,0) no eio c) f() = + 3 d) f() = 2-3 (0,3) no (0,-3) no (-3,0) no (1,5;0) no 2º) Determine

Leia mais

Uma Relação será função se:

Uma Relação será função se: Funções Uma Relação será função se: 1. Todo elemento do conjunto domínio (A) possui um elemento correspondente no conjunto contradomínio (B); 2. Qualquer que seja o elemento do domínio (A), so existe um

Leia mais

LISTA DE FUNÇÃO POLINOMIAL DO 1º GRAU - 2012. ax b, sabendo que:

LISTA DE FUNÇÃO POLINOMIAL DO 1º GRAU - 2012. ax b, sabendo que: 1) Dada a função f(x) = 2x + 3, determine f(1). LISTA DE FUNÇÃO POLINOMIAL DO 1º GRAU - 2012 2) Dada a função f(x) = 4x + 5, determine x tal que f(x) = 7. 3) Escreva a função afim f ( x) ax b, sabendo

Leia mais

O ESTUDO DAS FUNÇÕES INTRODUÇÃO

O ESTUDO DAS FUNÇÕES INTRODUÇÃO O ESTUDO DAS FUNÇÕES INTRODUÇÃO DEFINIÇÃO As funções explicitam relações matemáticas especiais entre duas grandezas. As grandezas envolvidas nessas relações são conhecidas como variável dependente

Leia mais

Seqüências, Limite e Continuidade

Seqüências, Limite e Continuidade Módulo Seqüências, Limite e Continuidade A partir deste momento, passaremos a estudar seqüência, ites e continuidade de uma função real. Leia com atenção, caso tenha dúvidas busque indicadas e também junto

Leia mais

Aula 2 Função_Uma Ideia Fundamental

Aula 2 Função_Uma Ideia Fundamental 1 Tecnólogo em Construção de Edifícios Aula 2 Função_Uma Ideia Fundamental Professor Luciano Nóbrega 2 NOÇÃO FUNDAMENTAL DE FUNÇÃO A função é como uma máquina onde entram elementos que são transformados

Leia mais

Questão 02 (UFJF MG/2012) Considere as afirmativas abaixo envolvendo as funções f (x) = sen(x), g(x) = x 2 3x + 2 e h(x) = e x.

Questão 02 (UFJF MG/2012) Considere as afirmativas abaixo envolvendo as funções f (x) = sen(x), g(x) = x 2 3x + 2 e h(x) = e x. SECRETARIA DE SEGURANÇA PÚBLICA/SECRETARIA DE EDUCAÇÃO POLÍCIA MILITAR DO ESTADO DE GOIÁS COMANDO DE ENSINO POLICIAL MILITAR COLÉGIO DA POLÍCIA MILITAR SARGENTO NADER ALVES DOS SANTOS SÉRIE/ANO: ª Série

Leia mais

Lógica Matemática e Computacional 5 FUNÇÃO

Lógica Matemática e Computacional 5 FUNÇÃO 5 FUNÇÃO 5.1 Introdução O conceito de função fundamenta o tratamento científico de problemas porque descreve e formaliza a relação estabelecida entre as grandezas que o integram. O rigor da linguagem e

Leia mais

FUNÇÃO DO 1º GRAU. Vamos iniciar o estudo da função do 1º grau, lembrando o que é uma correspondência:

FUNÇÃO DO 1º GRAU. Vamos iniciar o estudo da função do 1º grau, lembrando o que é uma correspondência: FUNÇÃO DO 1º GRAU Vamos iniciar o estudo da função do 1º grau, lembrando o que é uma correspondência: Correspondência: é qualquer conjunto de pares ordenados onde o primeiro elemento pertence ao primeiro

Leia mais

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O :

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O : ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA INTRODUÇÃO AO ESTUDO DAS FUNÇÕES PROF. CARLINHOS NOME: N O : 1 FUNÇÃO IDÉIA INTUITIVA DE FUNÇÃO O conceito de função é um dos mais importantes da matemática.

Leia mais

1 FUNÇÃO - DEFINIÇÃO. Chama-se função do 1. grau toda função definida de por f(x) = ax + b com a, b e a 0.

1 FUNÇÃO - DEFINIÇÃO. Chama-se função do 1. grau toda função definida de por f(x) = ax + b com a, b e a 0. MATEMÁTICA ENSINO MÉDIO FUNÇÃO - DEFINIÇÃO FUNÇÃO - DEFINIÇÃO Chama-se função do 1. grau toda função definida de por f(x) = ax + b com a, b e a 0. EXEMPLOS: f(x) = 5x 3, onde a = 5 e b = 3 (função afim)

Leia mais

MATEMÁTICA NÚMEROS COMPLEXOS. d) 2 e) 3

MATEMÁTICA NÚMEROS COMPLEXOS. d) 2 e) 3 MATEMÁTICA NÚMEROS COMPLEXOS 1. U. Católica Dom Bosco-MS O valor do número real x para que o conjugado do número complexo (x + i)(1 + xi) seja igual a i é: a) b) 1 c) 1 d) e) 1. UFCE Considere o número

Leia mais

Função Quadrática Função do 2º Grau

Função Quadrática Função do 2º Grau Colégio Adventista Portão EIEFM MATEMÁTICA Função Quadrática 1º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 5 º Bimestre/13 Aluno(a): Número: Turma: Função Quadrática

Leia mais

EXERCÍCIOS FUNÇÃO AFIM

EXERCÍCIOS FUNÇÃO AFIM Primeiramente Bom dia! EXERCÍCIOS FUNÇÃO AFIM Questão 0 - (UNIRIO RJ/00) Um automóvel bicombustível (álcool/gasolin traz as seguintes informações sobre consumo (em quilômetros por litro) em seu manual:

Leia mais

Atividades de Funções do Primeiro Grau

Atividades de Funções do Primeiro Grau Atividades de Funções do Primeiro Grau 1) Numa loja, o salário fio mensal de um vendedor é 500 reais. Além disso, ele recebe de comissão 50 reais por produto vendido. a) Escreva uma equação que epresse

Leia mais

QUESTÕES de 01 a 08 INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas.

QUESTÕES de 01 a 08 INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas. Resolução por Maria Antônia Conceição Gouveia da Prova de Matemática _ Vestibular 5 da Ufba _ 1ª fase QUESTÕES de 1 a 8 INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados

Leia mais

Equação do Segundo Grau

Equação do Segundo Grau Equação do Segundo Grau 1. (G1 - ifsp 014) A soma das soluções inteiras da equação x 1 x 5 x 5x 6 0 é a) 1. b). c) 5. d) 7. e) 11.. (G1 - utfpr 014) O valor da maior das raízes da equação x + x + 1 = 0,

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO PARANÁ CURSO DE ENGENHARIA CIVIL DISCIPLINA DE CÁLCULO DIFERENCIAL E INTEGRAL I

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO PARANÁ CURSO DE ENGENHARIA CIVIL DISCIPLINA DE CÁLCULO DIFERENCIAL E INTEGRAL I 1) Considerações gerais sobre os conjuntos numéricos. Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos

Leia mais

LISTA DE EXERCÍCIOS DE PRISMAS PROF.: ARI

LISTA DE EXERCÍCIOS DE PRISMAS PROF.: ARI 01.: (Acafe SC) Num paralelepípedo reto, as arestas da base medem 8 dm e 6dm, e a altura mede 4dm. Calcule a área da figura determinada pela diagonal do paralelepípedo com a diagonal da base e a aresta

Leia mais

E-books PCNA. Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 FUNÇÕES

E-books PCNA. Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 FUNÇÕES E-books PCNA Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 FUNÇÕES 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 SUMÁRIO Apresentação -------------------------------------------------------2 Capítulo 3 ------------------------------------------------------

Leia mais

EXERCÍCIOS DE REVISÃO PROVA MENSAL - 1º TRIMESTRE - 3º ANO MATEMÁTICA E SUAS TECNOLOGIAS

EXERCÍCIOS DE REVISÃO PROVA MENSAL - 1º TRIMESTRE - 3º ANO MATEMÁTICA E SUAS TECNOLOGIAS EXERCÍCIOS DE REVISÃO PROVA MENSAL - 1º TRIMESTRE - 3º ANO MATEMÁTICA E SUAS TECNOLOGIAS 1) Assinale a alternativa INCORRETA: A) existe x, x, tal que B) para todo x, x, C) existe um único x, x, tal que

Leia mais

ÁLGEBRA. Aula 4 _ Classificação das Funções Professor Luciano Nóbrega. Maria Auxiliadora

ÁLGEBRA. Aula 4 _ Classificação das Funções Professor Luciano Nóbrega. Maria Auxiliadora 1 ÁLGEBRA Aula 4 _ Classificação das Funções Professor Luciano Nóbrega Maria Auxiliadora 2 FUNÇÃO INJETORA É quando quaisquer dois elementos diferentes do conjunto A têm imagens diferentes no conjunto

Leia mais

GRÁFICO 1 GRÁFICO 2 GRÁFICO 3 GRÁFICO4

GRÁFICO 1 GRÁFICO 2 GRÁFICO 3 GRÁFICO4 AUTOAVALIAÇÃO 0. Sobre a função f amplamente definida cuja lei de formação é f() = - 4 foram feitas as afirmações: 0 0 É uma função estritamente negativa. É uma função não-par e não-ímpar. É uma função

Leia mais

É usual representar uma função f de uma variável real a valores reais e com domínio A, simplesmente por y=f(x), x A

É usual representar uma função f de uma variável real a valores reais e com domínio A, simplesmente por y=f(x), x A 4. Função O objeto fundamental do cálculo são as funções. Assim, num curso de Pré-Cálculo é importante estudar as idéias básicas concernentes às funções e seus gráficos, bem como as formas de combiná-los

Leia mais

Capítulo 2. f : A B. 3. A regra em (3) não define uma função de A em B porque 4 A está associado a mais de um. elemento de B.

Capítulo 2. f : A B. 3. A regra em (3) não define uma função de A em B porque 4 A está associado a mais de um. elemento de B. Departamento de Matemática Disciplina MAT154 - Cálculo 1 Capítulo 2 Funções 2.1 Definição Sejam A e B conjuntos não vazios. Uma função com domínio A e contradomínio B é uma regra f que a cada elemento

Leia mais

Funções e Aplicações. Ministrado por Bruno Tenório da S Lopes Coordenado por Profa Dra Edna Maura Zuffi

Funções e Aplicações. Ministrado por Bruno Tenório da S Lopes Coordenado por Profa Dra Edna Maura Zuffi Funções e Aplicações Ministrado por Bruno Tenório da S Lopes Coordenado por Profa Dra Edna Maura Zuffi Maio de 2011 Índice 1 - Conjuntos Numéricos... 4 Intervalos... 5 Intervalos finitos... 5 Intervalos

Leia mais

- Cálculo 1: Lista de exercícios 1 -

- Cálculo 1: Lista de exercícios 1 - - Cálculo : Lista de exercícios - UFOP - Professora Jussara Moreira. Resolver as inequações: (a) x(x ) > 0 {x R/x < 0 ou x > }; (b) (x )(x + ) < 0 {x R/ < x < }; (c) x x {x R/x ou x }; x (x ) 0 {x R/x

Leia mais

Capítulo 2. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas.

Capítulo 2. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas. Capítulo 2 Funções Sejam A e B conjuntos não vazios. Uma função com domínio A e contradomínio B é uma regra f que a cada elemento em A associa um único elemento em B. A notação usual para uma função f

Leia mais

α rad, assinale a alternativa falsa.

α rad, assinale a alternativa falsa. Nome: ºANO / CURSO TURMA: DATA: 0 / 09 / 0 Professor: Paulo (G - ifce 0) Considere um relógio analógico de doze horas O ângulo obtuso formado entre os ponteiros que indicam a hora e o minuto, quando o

Leia mais

A idéia de função. O conceito de função é um dos mais importantes em toda a Matemática. https://ueedgartito.wordpress.com.

A idéia de função. O conceito de função é um dos mais importantes em toda a Matemática. https://ueedgartito.wordpress.com. Matemática Básica Unidade 5 Estudo de Funções RANILDO LOPES Slides disponíveis no nosso SITE: O conceito de função é um dos mais importantes em toda a Matemática. https://ueedgartito.wordpress.com A idéia

Leia mais

Notas de aulas. André Arbex Hallack

Notas de aulas. André Arbex Hallack Cálculo I Notas de aulas André Arbex Hallack Julho/007 Índice 0 Preliminares 0. Números reais.................................... 0. Relação de ordem em IR.............................. 3 0.3 Valor absoluto....................................

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 3. alternativa D. alternativa A. alternativa D. alternativa C

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 3. alternativa D. alternativa A. alternativa D. alternativa C Questão TIPO DE PROVA: A Se a circunferência de um círculo tiver o seu comprimento aumentado de 00%, a área do círculo ficará aumentada de: a) 00% d) 00% b) 400% e) 00% c) 50% Aumentando o comprimento

Leia mais

Capítulo 1. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas.

Capítulo 1. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas. Capítulo 1 Funções Sejam A e B conjuntos não vazios. Uma função com domínio A e contradomínio B é uma regra f que a cada elemento em A associa um único elemento em B. A notação usual para uma função f

Leia mais

Matemática I Capítulo 06 Propriedades das Funções

Matemática I Capítulo 06 Propriedades das Funções Nome: Nº Curso: Mineração Integrado Disciplina: Matemática I 1 Ano Prof. Leonardo Data: / /016 Matemática I Capítulo 06 Propriedades das Funções 6.1 Paridade das Funções 6.1.1 - Função par Dada uma função

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.1. Função do 1 Grau. Isabelle Araujo 5º período de Engenharia de Produção

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.1. Função do 1 Grau. Isabelle Araujo 5º período de Engenharia de Produção CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.1 Função do 1 Grau Isabelle Araujo 5º período de Engenharia de Produção Funções Na linguagem do dia a dia é comum ouvirmos frases como: Uma coisa depende

Leia mais

Lista de Exercícios de Funções

Lista de Exercícios de Funções Lista de Eercícios de Funções ) Seja a R, 0< a < e f a função real de variável real definida por : f() = ( a a ) cos( π) + 4cos( π) + 3 Sobre o domínio A desta função podemos afirmar que : a) (], [ Z)

Leia mais

Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil. 11 de Março de 2014

Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil. 11 de Março de 2014 Funções - Aula 06 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 11 de Março de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica O principal objetivo do

Leia mais

Obs.: São cartesianos ortogonais os sistemas de coordenadas

Obs.: São cartesianos ortogonais os sistemas de coordenadas MATEMÁTICA NOTAÇÕES : conjunto dos números complexos : conjunto dos números racionais : conjunto dos números reais : conjunto dos números inteiros = {0,,, 3,...} * = {,, 3,...} Ø: conjunto vazio A\B =

Leia mais

Universidade Federal do Rio Grande do Norte. Centro De Ciências Exatas e da Terra. Departamento de Física Teórica e Experimental

Universidade Federal do Rio Grande do Norte. Centro De Ciências Exatas e da Terra. Departamento de Física Teórica e Experimental Universidade Federal do Rio Grande do Norte Centro De Ciências Exatas e da Terra Departamento de Física Teórica e Experimental Programa de Educação Tutorial Curso de Nivelamento: Pré-Cálculo PET DE FÍSICA:

Leia mais

Podemos concluir: Todas as funções desse tipo passam pelos pontos: (0,0),(-1,-1) e (1,1). Todas as funções desse tipo são exemplos de funções ímpares.

Podemos concluir: Todas as funções desse tipo passam pelos pontos: (0,0),(-1,-1) e (1,1). Todas as funções desse tipo são exemplos de funções ímpares. 4.3 Funções potência Uma função da forma f(x)=x n, onde n é uma constante, é chamada função potência. Os gráficos de f(x)=x n para n=1,2,3,4 e 5 são dados a seguir. A forma geral do gráfico de f(x)=x n

Leia mais