Lista de Função Inversa, Bijeção e Paridade Extensivo Alfa Professor: Leandro (Pinda)

Tamanho: px
Começar a partir da página:

Download "Lista de Função Inversa, Bijeção e Paridade Extensivo Alfa Professor: Leandro (Pinda)"

Transcrição

1 Lista de Função Inversa, Bijeção e Paridade Etensivo Alfa Professor: Leandro (Pinda). (Udesc 0) A função f definida por f() é uma função bijetora, se os conjuntos que representam o domínio (D(f)) e a imagem (Im(f)) são: a) D(f) e lm(f) [, [ b) D(f) ],0] e lm(f) c) D(f) e lm(f) d) D(f) [0, [ e lm(f) [0, [ e) D(f) [0, [ e lm(f) [, [. (Epcar (Afa) 0) Considere as funções reais f e g f e que eiste a composta de g com tal que f dada por gof. Sobre a função g, é incorreto afirmar que ela é a) par. b) sobrejetora. g 0 c) tal que d) crescente se,. (Uft 00) Seja a um número real e f :, a, uma função definida por f() = m + 4m +, com m 0. O valor de a para que a função f seja sobrejetora é: a) - 4 b) - c) d) 0 e) 4. (Uepb 0) Sejam I. II. f() f(), 0 III. f(), 0 III. f() ( ) ( ) Classificando cada uma das funções reais acima em par, ímpar ou nem par nem ímpar, temos, respectivamente: a) par, par, ímpar, ímpar b) nem par nem ímpar, par, ímpar, ímpar c) par, ímpar, par, ímpar d) ímpar, par, ímpar, ímpar e) par, par, ímpar, nem par nem ímpar 5. (Ita 00) Sejam f, g: R R tais que f é par e g é impar. Das seguintes afirmações: I. f. g e impar, II. f o g e par, III. g o f e impar, é (são) verdadeira(s) a) apenas I. b) apenas II. c) apenas III. d) apenas I e II. e) todas. 6. (Espm 07) O conjunto imagem de uma função inversível é igual ao domínio de sua inversa. Sendo f : A B tal que f() uma função real inversível, seu conjunto imagem é: a) {} b) { } c) { } d) {0} e) {} 7. (Mackenzie 07) Se a função f : {} é 5 definida por f() e f ( ) é igual a a) b) 9 9 c) d) e) 5 4 f 8. (Eear 07) Sabe-se que a função invertível. Assim, a) b) 4 c) 6 d) f () é a sua inversa, então f() é 5 9. (Uece 07) A função real de variável real definida por f(), para é invertível. Sua inversa 4 4 g pode ser epressa na forma a b g(), c d onde a, b, c e d são números inteiros. Nessas condições, a soma a b c d é um número inteiro múltiplo de a) 6. b) 5. c) 4. d).

2 0. (Unicamp 06) Considere o gráfico da função y f() eibido na figura a seguir. O gráfico da função inversa a) b) y f () é dado por. (Ifce 06) Se é o conjunto dos números reais, a função f: dada por f() possui inversa a) f (). b) f (). c) d) e) f (). f (). f ().. (Uern 05) Considerando as funções f() e g(), o valor de k, com k, tal que f(g(k)) é a). b). c). d) (Upf 05) Assinale a opção que apresenta o gráfico de duas funções reais inversas. a) c) b) d) c). (Uece 06) A função real de variável real definida por f() é invertível. Se f é sua inversa, então, o valor de [f(0) f (0) f ( )] é a). b) 4. c) 9. d) 6.

3 d) e) 5. (Espce (Aman) 05) Considere a função bijetora f() e f :,,, definida por seja (a,b) o ponto de intersecção de f com sua inversa. O valor numérico da epressão a b é a). b) 4. c) 6. d) 8. e) 0.

4 4 Gabarito Resposta da questão : [E] Lembrando que uma função está bem definida apenas quando se conhece o domínio, o contradomínio e a lei de formação, vamos supor que o contradomínio da função seja o conjunto, e que o enunciado pede o maior subconjunto dos números reais para o qual f está definida. Desse modo, como f é uma função quadrática bijetiva, segue-se que D(f) [0, [ e, sendo y v a ordenada do vértice do gráfico de f, Im(f) [y v, [ [, [. Resposta da questão : g(f()) (f()) f() portanto g() = g() não é sobrejetora, pois seu conjunto imagem é 0, e seu contradomínio é o conjunto dos números reais. Resposta da questão : a deverá ser o y do vértice. ((4m) 4. m.) m Portanto, s = 4a 4. m 4m Resposta da questão 4: [I] f não é par nem ímpar. De fato, como não é par nem ímpar. f( ), ( ) segue-se que f( ) f() e f( ) f(). Portanto, f [II] f é par. Com efeito, f( ) f(). ( ) Por conseguinte, f é par. [III] f é ímpar. De fato, f( ) f(). Portanto, f é ímpar. [IV] f é ímpar. De fato, f( ) ( ) f(). Por conseguinte, f é ímpar. Resposta da questão 5: I. f(-).g(-) = - f().g() (função ímpar) II.f(g(-)) = f(-g()) = f(g()) ( função par) III.g(f(-)) = g(f()) ( função par) Apenas I e II estão corretas.

5 5 Resposta da questão 6: [E] Lembrando que é possível definir tantas funções quanto queiramos por meio da lei seja o conjunto dos números reais, tal que { }. Assim, temos y y y (y ) (y ) y. y f(), vamos supor que o domínio de f Portanto, sendo f () a lei da inversa de f, podemos afirmar que a imagem de f é o conjunto dos números reais y tal que y {}. Resposta da questão 7: Impondo f(), temos Portanto, segue que 9 f ( ). Resposta da questão 8: Se f possui inversa, então queremos calcular tal que f(). Assim, vem. 5 Resposta da questão 9: [C] Se f(), então 4 y 4y y 4 (4y ) y y. 4y Portanto, temos g() e, assim, desde que 4 ( ) (4), podemos afirmar que a soma a b c d é um 4 número inteiro múltiplo de 4. Resposta da questão 0: [C] Lembrando que o gráfico de uma função e o de sua inversa são simétricos em relação à reta y, segue-se que o gráfico de y f () é o da alternativa [C].

6 6 Resposta da questão : [C] Tem-se que y y y (y ) y y. y Portanto, sendo f : {} {}, a inversa de f é f : {} {}, com f (). Daí, como f(0), f (0) e f ( ) 0, vem [f(0) f (0) f ( )] ( ( ) 0) 9. Resposta da questão : Determinando a função inversa da função f(), temos: f f () f () Resposta da questão : Calculando f(g()), tem-se: f(g()) ( ) f(g()) 6 f(g()) 6 Calculando a inversa de f(g()), tem-se: 6y y f(g()) 6 6 Por fim, substituindo k e resolvendo a equação proposta no enunciado, tem-se: k f(g(k)) k 6 k 5 6 Resposta da questão 4: Sabendo que o gráfico de uma função e sua inversa são simétricos em relação à reta y, podemos concluir que a única possibilidade, dentre as apresentadas, é f() 0 e g() log. Resposta da questão 5: Os pontos comuns de uma função com a sua inversa são da forma (a, a), portanto, para determinar estes pontos devemos considerar f() na função dada. Daí, temos: 0 [, ) ou. Logo, o ponto (a, b) pedido é (, ) e 4.

f(x) ax b definida para todo número real x, onde a e b são números reais. Sabendo que f(4) 2,

f(x) ax b definida para todo número real x, onde a e b são números reais. Sabendo que f(4) 2, Ensino Aluno (: Nº: Turma: ª série Bimestre: º Disciplina: Espanhol Atividade Complementar Funções Compostas e Inversas Professor (: Cleber Costa Data: / /. (Eear 07) Sabe-se que a função invertível. Assim,

Leia mais

Função Inversa. f(x) é invertível. Assim,

Função Inversa. f(x) é invertível. Assim, Função Inversa. (Eear 07) Sabe-se que a função a) b) 4 c) 6 d) x f(x) é invertível. Assim, 5 f () é. (Espm 07) O conjunto imagem de uma função inversível é igual ao domínio de sua x inversa. Sendo f :

Leia mais

Revisão de Função. Inversa e Composta. Professor Gaspar. f : 1,,3, f(x) x 2x 2 e. g(x) x 2x 4. Para qual valor de x tem f(g(x)) g(f(x))? g(x) 2x.

Revisão de Função. Inversa e Composta. Professor Gaspar. f : 1,,3, f(x) x 2x 2 e. g(x) x 2x 4. Para qual valor de x tem f(g(x)) g(f(x))? g(x) 2x. Revisão de Função. (Espcex (Aman) 05) Considere a função bijetora f :,,, definida por f(x) x x e seja (a,b) o ponto de intersecção de f com sua inversa. O valor numérico da expressão a b é a). b) 4. c)

Leia mais

LISTA DE REVISÃO DE ÁLGEBRA 3ºANO

LISTA DE REVISÃO DE ÁLGEBRA 3ºANO LISTA DE REVISÃO DE ÁLGEBRA 3ºANO. (Espcex (Aman)) Considerando a função real definida por a) 8 b) 0 c) d) e) 4 x 3, se x, x x, se x o valor de f(0) f(4) é. (Enem) Após realizar uma pesquisa de mercado,

Leia mais

LISTA DE RECUPERAÇÃO ÁLGEBRA 3º ANO

LISTA DE RECUPERAÇÃO ÁLGEBRA 3º ANO LISTA DE RECUPERAÇÃO ÁLGEBRA º ANO. (Espce (Aman)) O domínio da função real f A), B), 6 C),6 D), E), 8 é. (Unicamp) Seja f() uma função tal que para todo número real temos que f( ) ( )f(). Então, f() é

Leia mais

LISTA DE RECUPERAÇÃO ÁLGEBRA 3º ANO

LISTA DE RECUPERAÇÃO ÁLGEBRA 3º ANO LISTA DE RECUPERAÇÃO ÁLGEBRA º ANO. (Espce (Aman)) O domínio da função real f A), B), 6 C),6 D), E), 8 é. (Unicamp) Seja f() uma função tal que para todo número real temos que f( ) ( )f(). Então, f() é

Leia mais

LISTA DE REVISÃO PROVA TRIMESTRAL ÁLGEBRA 3º ANO

LISTA DE REVISÃO PROVA TRIMESTRAL ÁLGEBRA 3º ANO LISTA DE REVISÃO PROVA TRIMESTRAL ÁLGEBRA º ANO. (Espce (Aman)) O domínio da função real f A),, 6 C),6 D),, 8 é. (Unicamp) Seja f() uma função tal que para todo número real temos que f( ) ( )f(). Então,

Leia mais

{ } { } { } { } { } Professor: Erivaldo. Função Composta SUPERSEMI. 01)(Aman 2013) Sejam as funções reais ( ) 2

{ } { } { } { } { } Professor: Erivaldo. Função Composta SUPERSEMI. 01)(Aman 2013) Sejam as funções reais ( ) 2 Centro de Estudos Matemáticos Florianópolis Professor: Erivaldo Santa Catarina Função Composta SUPERSEMI 01)(Aman 013) Sejam as funções reais ( ) f x = x + 4x e gx ( ) = x 1. O domínio da função f(g(x))

Leia mais

1º trimestre - Matemática Data:20/04/2017. Sala de Estudo. Resposta: Resposta: números reais positivos, tais que. 1. (Ufjf-pism ) Sejam a, b, c

1º trimestre - Matemática Data:20/04/2017. Sala de Estudo. Resposta: Resposta: números reais positivos, tais que. 1. (Ufjf-pism ) Sejam a, b, c º trimestre - Matemática Data:0/04/07 Ensino Médio 3º ano classe: Profº. Maurício Sala de Estudo. e. (Ufjf-pism 07) Sejam a, b, c logb d 3. O valor da epressão a) b) c) 3 d) 4 e) 0 e d log números reais

Leia mais

Função Modular. 1. (Eear 2017) Seja f(x) x 3 uma função. A soma dos valores de x para os quais a função assume o valor 2 é a) 3 b) 4 c) 6 d) 7

Função Modular. 1. (Eear 2017) Seja f(x) x 3 uma função. A soma dos valores de x para os quais a função assume o valor 2 é a) 3 b) 4 c) 6 d) 7 Função Modular 1. (Eear 2017) Seja f(x) x 3 uma função. A soma dos valores de x para os quais a função assume o valor 2 é a) 3 b) 4 c) 6 d) 7 2. (Pucrj 2016) Qual dos gráficos abaixo representa a função

Leia mais

Lista de Módulo Extensivo Alfa Professor: Leandro (Pinda)

Lista de Módulo Extensivo Alfa Professor: Leandro (Pinda) Lista de Módulo Etensivo Alfa Professor: Leandro (Pinda). (Pucpr 08) Considere os seguintes dados. Pode-se dizer que quando duas variáveis e y são tais que a cada valor de corresponde um único valor de

Leia mais

MATEMÁTICA - SEMI/NOITE PROF. FELIPE HEY 20/04/ Assinale V para as afirmativas verdadeiras e F para as falsas. a) ( ) -8 = 8 b) ( ) 5 = ±5

MATEMÁTICA - SEMI/NOITE PROF. FELIPE HEY 20/04/ Assinale V para as afirmativas verdadeiras e F para as falsas. a) ( ) -8 = 8 b) ( ) 5 = ±5 MATEMÁTICA - SEMI/NOITE PROF. FELIPE HEY 20/04/2016 Aula 04 FUNÇÃO MODULAR 01.01. Assinale V para as afirmativas verdadeiras e F para as falsas. a) ( ) -8 = 8 b) ( ) 5 = ±5 c) ( ) x² d) ( ) 3 ² 3 e) (

Leia mais

Lista Função - Ita Carlos Peixoto

Lista Função - Ita Carlos Peixoto Lista Função - Ita Carlos Peixoto. (Ita 07) Sejam X e Y dois conjuntos finitos com X Y e X Y. Considere as seguintes afirmações: I. Existe uma bijeção f : X Y. II. Existe uma função injetora g: Y X. III.

Leia mais

Função Inversa SUPERSEMI. 01)(Aman 2013) Na figura abaixo está representado o gráfico de uma função real do 1º grau f(x).

Função Inversa SUPERSEMI. 01)(Aman 2013) Na figura abaixo está representado o gráfico de uma função real do 1º grau f(x). Centro de Estudos Matemáticos Florianópolis Professor: Erivaldo Santa Catarina Função Inversa SUPERSEMI 0)(Aman 0) Na figura abaio está representado o gráfico de uma função real do º grau f(). A epressão

Leia mais

Matemática I Capítulo 06 Propriedades das Funções

Matemática I Capítulo 06 Propriedades das Funções Nome: Nº Curso: Mineração Integrado Disciplina: Matemática I 1 Ano Prof. Leonardo Data: / /016 Matemática I Capítulo 06 Propriedades das Funções 6.1 Paridade das Funções 6.1.1 - Função par Dada uma função

Leia mais

a) 10 b) 7 c) 0 d) 3 e) 4 6. (G1 - cftmg 2013) A soma das raízes da equação a) 7. b) 4. c) 3. d) 5.

a) 10 b) 7 c) 0 d) 3 e) 4 6. (G1 - cftmg 2013) A soma das raízes da equação a) 7. b) 4. c) 3. d) 5. Equações Modulares 1. (Espcex (Aman) 015) O número de soluções da equação 1 x x = x, no conjunto, é a) 1. b). c). d) 4. e) 5.. (Ufsc 014) Assinale a(s) proposição(ões) CORRETA(S). x 1 01) O domínio da

Leia mais

POLINÕMIOS E EQUAÇÕES POLINOMIAIS 2016

POLINÕMIOS E EQUAÇÕES POLINOMIAIS 2016 POLINÕMIOS E EQUAÇÕES POLINOMIAIS 06. (Unicamp 06) Considere o polinômio cúbico p() a, onde a é um número real. a) No caso em que p() 0, determine os valores de para os quais a matriz A abaio não é invertível.

Leia mais

LISTA DE EXERCÍCIOS RECUPERAÇÃO Goiânia, de de 2018 Aluno(a):

LISTA DE EXERCÍCIOS RECUPERAÇÃO Goiânia, de de 2018 Aluno(a): LIST DE EXERCÍCIOS RECUPERÇÃO Goiânia, de de 08 luno(: Série: ª Turma: Disciplina: Matemática Professor: Musgley Questão 0 - (UFPR) respeito da função representada no gráfico abaio, considere as seguintes

Leia mais

Matemática A Extensivo v. 5

Matemática A Extensivo v. 5 Matemática A Etensivo v. Eercícios ) D f() ( ) f(). Portanto, f() é ímpar. Demonstrar que a função f() é bijetora, isto é, injetora e sobrejetora. Pode ser um tanto "difícil". Para resolução da questão,

Leia mais

1. (Unicamp) Considere as funções f e g, cujos gráficos estão representados na figura abaixo.

1. (Unicamp) Considere as funções f e g, cujos gráficos estão representados na figura abaixo. 1. (Unicamp) Considere as funções f e g, cujos gráficos estão representados na figura abaixo. O valor de f(g(1)) g(f(1)) é igual a a) 0. b) 1. c) 2. d) 1. 2. (G1 - ifce) Seja f : 1, uma função dada por

Leia mais

GRÁFICO 1 GRÁFICO 2 GRÁFICO 3 GRÁFICO4

GRÁFICO 1 GRÁFICO 2 GRÁFICO 3 GRÁFICO4 AUTOAVALIAÇÃO 0. Sobre a função f amplamente definida cuja lei de formação é f() = - 4 foram feitas as afirmações: 0 0 É uma função estritamente negativa. É uma função não-par e não-ímpar. É uma função

Leia mais

LISTA DE REVISÃO DE GEOMETRIA 2ºANO PROF. JADIEL

LISTA DE REVISÃO DE GEOMETRIA 2ºANO PROF. JADIEL LISTA DE REVISÃO DE GEOMETRIA ºANO PROF. JADIEL 1. (Eear) Sejam A(, ), B(, 1), C(5, ) e D( 1, ) vértices de um quadrilátero conveo. A medida de uma de suas diagonais é a) 15 b) 1 c) 1 d) 10. (Upe-ssa )

Leia mais

Matemática A Intensivo V. 1

Matemática A Intensivo V. 1 Matemática A Intensivo V Eercícios ) V F F F F V V V ) D a) Verdadeiro Zero é elemento do conjunto {,,, 3, } b) Falso Nesse caso temos {a} como subconjunto de {a, b}, logo a relação correta seria a} {a,

Leia mais

Matemática A Semi-Extensivo V. 3

Matemática A Semi-Extensivo V. 3 Matemática A Semi-Etensivo V. Eercícios 0) 0 f: R R f() = c) f: R R f() = 0. Falsa alsa. CD = R, mas Im(f) = [, ). 0. Falsa alsa. Im(f) = [, ). 0. Falsa alsa. Já não é sobrejetora. 08. Verdadeira f( 5

Leia mais

Lista de Exercícios de Funções

Lista de Exercícios de Funções Lista de Eercícios de Funções ) Seja a R, 0< a < e f a função real de variável real definida por : f() = ( a a ) cos( π) + 4cos( π) + 3 Sobre o domínio A desta função podemos afirmar que : a) (], [ Z)

Leia mais

POLINÔMIOS. Nível Básico

POLINÔMIOS. Nível Básico POLINÔMIOS Nível Básico. (Eear 07) Considere P(x) x bx cx, tal que P() e P() 6. Assim, os valores de b e c são, respectivamente, a) e b) e c) e d) e. (Epcar (Afa) 05) Considere o polinômio a) x 0 não é

Leia mais

Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA RESOLUÇÃO: f(x) = f(x) = x f(x) = x ) a 2. 2) a função g: * 1.

Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA RESOLUÇÃO: f(x) = f(x) = x f(x) = x ) a 2. 2) a função g: * 1. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA MÓDULO 4 Funções II. (OPM) Seja f uma função de domínio dada por + f() =. Determine o conjunto-imagem + + da função. O conjunto-imagem da

Leia mais

Matemática A Intensivo V. 1

Matemática A Intensivo V. 1 Intensivo V Eercícios ) V F F F F V V V ) D a) Verdadeiro Zero é elemento do conjunto {,,, 3, } b) Falso Neste caso temos {a} como subconjunto de {a, b} logo a relação correta seria a} {a, b} c) Falso

Leia mais

Resposta: f(g(x)) = x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo 5, 5 5, 5 3, 3. f(g(x) = x 5.

Resposta: f(g(x)) = x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo 5, 5 5, 5 3, 3. f(g(x) = x 5. 1. (Espcex (Aman) 016) Considere as funções reais f e g, tais que f(x) = x + 4 e f(g(x)) = x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo conjunto contém todos os possíveis

Leia mais

Funções monótonas. Pré-Cálculo. Atividade. Funções crescentes. Parte 3. Definição

Funções monótonas. Pré-Cálculo. Atividade. Funções crescentes. Parte 3. Definição Pré-Cálculo Departamento de Matemática Aplicada Universidade Federal Fluminense Funções monótonas Parte 3 Funções crescentes Pré-Cálculo 1 Atividade Pré-Cálculo 2 Dizemos que uma função f : D C é crescente

Leia mais

Matemática E Extensivo V. 6

Matemática E Extensivo V. 6 Etensivo V. 6 Eercícios ) a) P() é sempre igual à soma dos coeficientes de P(). b) P() é sempre igual ao termo independente de P(). c) P() é a raiz de P(), pois P() =. ) D a) P() = ³ + 7. ² 7. P() = +

Leia mais

MÓDULO 41. Funções II. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA

MÓDULO 41. Funções II. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA MÓDULO 41 Funções II 1. (OPM) Seja f uma função de domínio dada por x x + 1 f(x) =. Determine o conjunto-imagem x + x + 1 da função.. Considere

Leia mais

1 FUNÇÃO - DEFINIÇÃO. Chama-se função do 1. grau toda função definida de por f(x) = ax + b com a, b e a 0.

1 FUNÇÃO - DEFINIÇÃO. Chama-se função do 1. grau toda função definida de por f(x) = ax + b com a, b e a 0. MATEMÁTICA ENSINO MÉDIO FUNÇÃO - DEFINIÇÃO FUNÇÃO - DEFINIÇÃO Chama-se função do 1. grau toda função definida de por f(x) = ax + b com a, b e a 0. EXEMPLOS: f(x) = 5x 3, onde a = 5 e b = 3 (função afim)

Leia mais

1. (Espcex 2013) A figura geométrica formada pelos afixos das raízes complexas da equação a) 7 3 b) 6 3 c) 5 3 d) 4 3 e) 3 3

1. (Espcex 2013) A figura geométrica formada pelos afixos das raízes complexas da equação a) 7 3 b) 6 3 c) 5 3 d) 4 3 e) 3 3 Complexos 06. (Espcex 0) A figura geométrica formada pelos afixos das raízes complexas da equação a) 7 b) 6 c) 5 d) e) x 8 0 tem área igual a. (Unicamp 0) Chamamos de unidade imaginária e denotamos por

Leia mais

DETERMINANTE Calcule o determinante da matriz obtida pelo produto de A B. sen(x) sec(x) cot g(x)

DETERMINANTE Calcule o determinante da matriz obtida pelo produto de A B. sen(x) sec(x) cot g(x) DETERMINANTE 2016 1. (Uerj 2016) Considere uma matriz A com 3 linhas e 1 coluna, na qual foram escritos os valores 1, 2 e 13, nesta ordem, de cima para baixo. Considere, também, uma matriz B com 1 linha

Leia mais

1º) Esboce o gráfico das funções, calcule e marque os interceptos: a) f(x) = x b) f(x) = - 3x + 2

1º) Esboce o gráfico das funções, calcule e marque os interceptos: a) f(x) = x b) f(x) = - 3x + 2 1º) Esboce o gráfico das funções, calcule e marque os interceptos: a) f() = b) f() = - 3 + 2 (0,0) (0,2) no eio (,0) no eio c) f() = + 3 d) f() = 2-3 (0,3) no (0,-3) no (-3,0) no (1,5;0) no 2º) Determine

Leia mais

Inequação Logarítmica

Inequação Logarítmica Inequação Logarítmica. (Fuvest 05) Resolva as inequações: 3 a) 6 0; 3 b) log 6.. (Uerj 05) Ao digitar corretamente a epressão log 0( ) em uma calculadora, o retorno obtido no visor corresponde a uma mensagem

Leia mais

2. Tipos de funções. Funções pares e ímpares Uma função f é par se é simétrica em relação ao eixo y, isto é, f( x) = f(x).

2. Tipos de funções. Funções pares e ímpares Uma função f é par se é simétrica em relação ao eixo y, isto é, f( x) = f(x). 1. Algumas funções básicas 2. Tipos de funções Funções pares e ímpares Uma função f é par se é simétrica em relação ao eio y, isto é, f( ) = f(). Eemplos: A função f() = n onde n inteiro positivo é par?

Leia mais

Lista de Revisão para Substitutiva e A.P.E. Matrizes Determinantes Sistemas Lineares Números Complexos Polinômios

Lista de Revisão para Substitutiva e A.P.E. Matrizes Determinantes Sistemas Lineares Números Complexos Polinômios Nome: nº Data: / _ / 017 Professor: Gustavo Bueno Silva - Ensino Médio - 3º ano Lista de Revisão para Substitutiva e A.P.E. Matrizes Determinantes Sistemas Lineares Números Complexos Polinômios 3 3 a a

Leia mais

Exercícios de Aprofundamento Matemática Equações e Inequações Modulares e Quadráticas 1

Exercícios de Aprofundamento Matemática Equações e Inequações Modulares e Quadráticas 1 Eercícios de Aprofundamento Matemática Equações e Inequações 1. (Mackenzie 013) A função f() a) S / 3 ou 1 3 b) S / 3 ou 1 3 c) S / 3 ou 1 3 d) S / 1 ou 1 3 e) S / 1 ou 1 3 9 tem como domínio o conjunto

Leia mais

INSTITUTO FEDERAL DE BRASILIA 2ª Lista de exercícios ALUNO(A): TURMA: 1_2016 DATA: 18/03/2016

INSTITUTO FEDERAL DE BRASILIA 2ª Lista de exercícios ALUNO(A): TURMA: 1_2016 DATA: 18/03/2016 INSTITUTO FEDERAL DE BRASILIA ª Lista de eercícios MATEMÁTICA ALUNO(A): TURMA: _06 DATA: 8/0/06. Duas plantas crescem de uma forma tal que, t dias após serem plantadas, a planta tem h (t) t centímetros

Leia mais

Gráficos de Funções. Matemática Prof. Piloto. d 2. d d 2 2. d 2

Gráficos de Funções. Matemática Prof. Piloto. d 2. d d 2 2. d 2 Matemática Prof. Piloto Gráficos de Funções 1. Função Uma forma simples de dizer o que é uma função é: Uma função é uma variável (y) que depende de outra () Nosso esquema mental é: y é a função ou variável

Leia mais

Números Complexos. é igual a a) 2 3 b) 3. d) 2 2 2

Números Complexos. é igual a a) 2 3 b) 3. d) 2 2 2 Números Complexos 1. (Epcar (Afa) 01) Considerando os números complexos z 1 e z, tais que: z 1 é a raiz cúbica de 8i que tem afixo no segundo quadrante z é raiz da equação x x 1 0 Pode-se afirmar que z1

Leia mais

FUNÇÕES(1) FUNÇÃO POLINOMIAL DO 2º GRAU

FUNÇÕES(1) FUNÇÃO POLINOMIAL DO 2º GRAU FUNÇÕES(1) FUNÇÃO POLINOMIAL DO º GRAU 1. (Uece 015) Se a função real de variável real, definida por f(1) =, f() = 5 e f(3) =, então o valor de f() é a). b) 1. c) 1. d). f(x) = ax + bx + c, é tal que.

Leia mais

LISTA DE RECUPERAÇÃO ÁLGEBRA 1º ANO 2º TRIMESTRE

LISTA DE RECUPERAÇÃO ÁLGEBRA 1º ANO 2º TRIMESTRE FUNÇÕES CONCEITOS INICIAIS LISTA DE RECUPERAÇÃO ÁLGEBRA 1º ANO º TRIMESTRE 1) (Espm) Numa população de 5000 alevinos de tambacu, estima-se que o número de elementos com comprimento maior ou igual a x cm

Leia mais

Determinante x x x. x x (Ime 2013) Seja o determinante da matriz. O número de possíveis valores

Determinante x x x. x x (Ime 2013) Seja o determinante da matriz. O número de possíveis valores Determinante. (Ime 0) Seja o determinante da matriz de x reais que anulam é a) 0 b) c) d) e) x x x. x x O número de possíveis valores. (Uepg 0) Sobre a matriz cos 0 sen 0 0) A sen 0 cos 0 0) det A. t cos

Leia mais

EXPRESSÕES E FUNÇÕES EXPONENCIAIS E LOGARITMICAS

EXPRESSÕES E FUNÇÕES EXPONENCIAIS E LOGARITMICAS EXPRESSÕES E FUNÇÕES EXPONENCIAIS E LOGARITMICAS - 06. (Unicamp 06) Considere a função f() 5, definida para todo número real. a) Esboce o gráfico de y f() no plano cartesiano para. b) Determine os valores

Leia mais

Funções, Seqüências, Cardinalidade

Funções, Seqüências, Cardinalidade Funções, Seqüências, Cardinalidade Prof.: Rossini Monteiro Noções Básicas Definição (Função) Sejam A e B conjuntos. Uma função de A em B é um mapeamento de exatamente um elemento de B para cada elemento

Leia mais

Teste de Matemática 2017/I

Teste de Matemática 2017/I Universidade Federal de Viçosa Departamento de Matemática Teste de Matemática 017/I 1. Os ovos de galinha são mais baratos do que os de perua. Não tenho dinheiro suficiente para comprar duas dúzias de

Leia mais

( ) Assim, de 2013 a 2015 (2 anos) houve um aumento de 40 casos de dengue. Ou seja: = 600 casos em 2015.

( ) Assim, de 2013 a 2015 (2 anos) houve um aumento de 40 casos de dengue. Ou seja: = 600 casos em 2015. Resposta da questão : [B] É fácil ver que a equação da reta s é = 3. Desse modo, a abscissa do ponto de interseção das retas p e s é tal 8 que 3 = + 3 =. 7 8 7 8 7 Portanto, temos = 3 = e a resposta é,.

Leia mais

Uma Relação será função se:

Uma Relação será função se: Funções Uma Relação será função se: 1. Todo elemento do conjunto domínio (A) possui um elemento correspondente no conjunto contradomínio (B); 2. Qualquer que seja o elemento do domínio (A), so existe um

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web 1 (Ita 018) Uma progressão aritmética (a 1, a,, a n) satisfaz a propriedade: para cada n, a soma da progressão é igual a n 5n Nessas condições, o determinante da matriz a1 a a a4 a5 a 6 a a a 7 8 9 a)

Leia mais

Retas Tangentes à Circunferência

Retas Tangentes à Circunferência Retas Tangentes à Circunferência 1. (Fuvest 01) São dados, no plano cartesiano, o ponto P de coordenadas (,6) e a circunferência C de equação um ponto Q. Então a distância de P a Q é a) 15 b) 17 c) 18

Leia mais

Aula 9 Aula 10. Ana Carolina Boero. Página:

Aula 9 Aula 10. Ana Carolina Boero.   Página: E-mail: ana.boero@ufabc.edu.br Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Funções Sejam A e B conjuntos. Uma função f : A B (leia f de A em B ) é uma regra

Leia mais

PROF. LUIZ CARLOS MOREIRA SANTOS. Questão 01) O conjunto A = {1, 2, 3, 4, 5} foi representado duas vezes, na forma de diagrama, na figura abaixo.

PROF. LUIZ CARLOS MOREIRA SANTOS. Questão 01) O conjunto A = {1, 2, 3, 4, 5} foi representado duas vezes, na forma de diagrama, na figura abaixo. Questão 0) O conjunto = {,, 3, 4, 5} foi representado duas vezes, na forma de diagrama, na figura abaio. Para definir uma função sobrejetora f :, uma pessoa ligou cada mento do diagrama com um único mento

Leia mais

Geometria Analítica retas equações e inclinações, distância entre dois pontos, área de triângulo e alinhamento de 3 pontos.

Geometria Analítica retas equações e inclinações, distância entre dois pontos, área de triângulo e alinhamento de 3 pontos. Geometria Analítica retas equações e inclinações, distância entre dois pontos, área de triângulo e alinhamento de pontos. 1. (Ufpr 014) A figura abaixo apresenta o gráfico da reta r: y x + = 0 no plano

Leia mais

Exercícios de Aprofundamento 2015 Mat - Polinômios

Exercícios de Aprofundamento 2015 Mat - Polinômios Exercícios de Aprofundamento 05 Mat - Polinômios. (Espcex (Aman) 05) O polinômio (x) x x deixa resto r(x). Sabendo disso, o valor numérico de r( ) é a) 0. b) 4. c) 0. d) 4. e) 0. 5 f(x) x x x, uando dividido

Leia mais

Gabarito. Sistemas numéricos. 1. Números naturais. 2. N. 3. Infinito. 4. Infinito. 5. Não. Contra-exemplo: número 7.

Gabarito. Sistemas numéricos. 1. Números naturais. 2. N. 3. Infinito. 4. Infinito. 5. Não. Contra-exemplo: número 7. Gabarito Sistemas numéricos. Números naturais.. N. Infinito.. Infinito. 5. Não. Contra-eemplo: número 7. 6. Não, pois sempre é possível encontrar um número maior, bastando somar mais uma unidade. 7. 0

Leia mais

UFJF ICE Departamento de Matemática Cálculo I Primeira Avaliação Primeiro Semestre Letivo de /04/2014 FILA A Aluno (a): Matrícula: Turma:

UFJF ICE Departamento de Matemática Cálculo I Primeira Avaliação Primeiro Semestre Letivo de /04/2014 FILA A Aluno (a): Matrícula: Turma: UFJF ICE Departamento de Matemática Cálculo I Primeira Avaliação Primeiro Semestre Letivo de 014 6/04/014 FILA A Aluno (a): Matrícula: Turma: Instruções Gerais: 1- A prova pode ser feita a lápis, exceto

Leia mais

KmaraDikas da P2. 1) Determine o domínio das funções abaixo:

KmaraDikas da P2. 1) Determine o domínio das funções abaixo: KmaraDikas da P. ) Determine o domínio das funções abaio: f ( ) A) B) f ( ) 4 + f ( ) C) ) Determine a soma da(s) proposição(ões) Verdadeira(s). 0 A, tal que a ij i jentão 3 ( A t ) t 0 Se ( a ij ) 0 -

Leia mais

O ESTUDO DAS FUNÇÕES INTRODUÇÃO

O ESTUDO DAS FUNÇÕES INTRODUÇÃO O ESTUDO DAS FUNÇÕES INTRODUÇÃO DEFINIÇÃO As funções explicitam relações matemáticas especiais entre duas grandezas. As grandezas envolvidas nessas relações são conhecidas como variável dependente

Leia mais

Circunferências. λ : x y 4x 10y λ : x y 4x 5y 12 0

Circunferências. λ : x y 4x 10y λ : x y 4x 5y 12 0 Circunferências 1. (Espcex (Aman) 014) Sejam dados a circunferência λ : x y 4x 10y 5 0 e o ponto P, que é simétrico de ( 1, 1) em relação ao eixo das abscissas. Determine a equação da circunferência concêntrica

Leia mais

2.1A Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1

2.1A Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1 2.1 Domínio e Imagem 2.1A Dê o domínio e esboce o grá co de cada uma das funções abaio. (a) f () = 3 (b) g () = (c) h () = (d) f () = 1 3 + 5 1 3 (e) g () 2 (f) g () = jj 8 8

Leia mais

MATRIZ FORMAÇÃO E IGUALDADE

MATRIZ FORMAÇÃO E IGUALDADE MATRIZ FORMAÇÃO E IGUALDADE 1. Seja X = (x ij ) uma matriz quadrada de ordem 2, onde i + j para i = j ;1 - j para i > j e 1 se i < j. A soma dos seus elementos é igual a: a. -1 b. 1 c. 6 d. 7 e. 8 2. Se

Leia mais

Matemática B Semi-Extensivo V. 3

Matemática B Semi-Extensivo V. 3 GRITO Matemática Semi-Etensivo V. (, e (, M, Então: M = M = M = M = Eercícios D Substituindo em I, temos: = =. = = Então, = ( = 8 M(, (, (, M = M = 8 M = M = D Sabendo que o eio é o da abcissa e que o

Leia mais

Matemática. Professor Adriano Diniz 26/02/2013. Aluno (a): EXERCÍCIOS PROPOSTOS

Matemática. Professor Adriano Diniz 26/02/2013. Aluno (a): EXERCÍCIOS PROPOSTOS Matemática Professor Adriano Diniz 0 Aluno (a): 6/0/01 EXERCÍCIOS PROPOSTOS 01. (MACKENZIE) Se, na figura abaixo, temos o esboço do gráfico da função y = f(x), o gráfico que melhor representa y = f(x 1)

Leia mais

9 ano E.F. Professores Cleber Assis e Tiago Miranda

9 ano E.F. Professores Cleber Assis e Tiago Miranda Módulo Funções - Noções Básicas Resolução de Exercícios 9 ano E.F. Professores Cleber Assis e Tiago Miranda Funções - Noções Básicas Resolução de Exercícios 1 Exercícios Introdutórios Exercício 1. Três

Leia mais

UFJF ICE Departamento de Matemática CÁLCULO I - LISTA DE EXERCÍCIOS Nº 2

UFJF ICE Departamento de Matemática CÁLCULO I - LISTA DE EXERCÍCIOS Nº 2 UFJF ICE Departamento de Matemática CÁLCULO I - LISTA DE EXERCÍCIOS Nº 1- Resolva a inequação 4 3 Resp: 1,4 - Dizemos que uma relação entre dois conjuntos não vazios A e B é uma função de A em B quando:

Leia mais

Atividades de Funções do Primeiro Grau

Atividades de Funções do Primeiro Grau Atividades de Funções do Primeiro Grau 1) Numa loja, o salário fio mensal de um vendedor é 500 reais. Além disso, ele recebe de comissão 50 reais por produto vendido. a) Escreva uma equação que epresse

Leia mais

a k. x a k. : conjunto dos números complexos i: unidade imaginária; i 2 = 1 z : módulo do número z z: conjugado do número z M m n

a k. x a k. : conjunto dos números complexos i: unidade imaginária; i 2 = 1 z : módulo do número z z: conjugado do número z M m n ITA MATEMÁTICA NOTAÇÕES = {,,,...} : conjunto dos números reais [a, b] = {x ; a x b} [a, b[ = {x ; a x < b} ]a, b[ = {x ; a < x < b} A\B = {x; x A e x B} k a n = a + a +... + a k, k n = k a n x n = a 0

Leia mais

Matemática Complementos de Funções. Professor Marcelo Gonsalez Badin

Matemática Complementos de Funções. Professor Marcelo Gonsalez Badin Matemática Complementos de Funções Professor Marcelo Gonsalez Badin Paridade Função PAR f (x) é chamada FUNÇÃO PAR se f ( x) = f (x) Exemplo: f (x) = x 4 f ( x) = ( x) 4 = x 4 = f (x) O gráfico de uma

Leia mais

Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática. MTM Pré-cálculo

Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática. MTM Pré-cálculo Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática MTM3 - Pré-cálculo a lista complementar de eercícios (6//7 a 7//7) Diga quais dos conjuntos abaio

Leia mais

EXERCÍCIOS REVISIONAIS SOBRE FUNÇÕES - 1ª PARTE

EXERCÍCIOS REVISIONAIS SOBRE FUNÇÕES - 1ª PARTE QUESTÃO 1: Sabendo-se que o diagrama a seguir representa uma função f de A em B, responda: A) Qual é o domínio da função f?? B) Qual é o contradomínio da função f? C) Qual é o conjunto imagem da função

Leia mais

EXERCÍCIOS DE REVISÃO PROVA MENSAL - 1º TRIMESTRE - 3º ANO MATEMÁTICA E SUAS TECNOLOGIAS

EXERCÍCIOS DE REVISÃO PROVA MENSAL - 1º TRIMESTRE - 3º ANO MATEMÁTICA E SUAS TECNOLOGIAS EXERCÍCIOS DE REVISÃO PROVA MENSAL - 1º TRIMESTRE - 3º ANO MATEMÁTICA E SUAS TECNOLOGIAS 1) Assinale a alternativa INCORRETA: A) existe x, x, tal que B) para todo x, x, C) existe um único x, x, tal que

Leia mais

Função Logarítmica. 1. (Fuvest 2013) Seja f uma função a valores reais, com domínio D, tal que. f(x) log (log (x x 1)),

Função Logarítmica. 1. (Fuvest 2013) Seja f uma função a valores reais, com domínio D, tal que. f(x) log (log (x x 1)), Função Logarítmica 1. (Fuvest 01) Seja f uma função a valores reais, com domínio D, tal que 10 1 para todo x D. f(x) log (log (x x 1)), O conjunto que pode ser o domínio D é x ; 0 x 1 a) b) x ; x 0 ou

Leia mais

BANCO DE QUESTÕES TURMA PM-PE FUNÇÕES

BANCO DE QUESTÕES TURMA PM-PE FUNÇÕES 01. (ESPCEX-AMAN/016) Considere as funções reais f e g, tais que f(x) x 4 e f(g(x)) x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo conjunto contém todos os possíveis valores

Leia mais

Exercícios de Aprofundamento 2015 Mat Log/Exp/Teo. Num.

Exercícios de Aprofundamento 2015 Mat Log/Exp/Teo. Num. Eercícios de Aprofundamento 05 Mat Log/Ep/Teo. Num.. (Ita 05) Considere as seguintes afirmações sobre números reais: I. Se a epansão decimal de é infinita e periódica, então é um número racional. II..

Leia mais

x é igual a: 07. (Colégio Naval) No conjunto R dos números reais, qual será o 01. (PUC) O valor de m, de modo que a equação

x é igual a: 07. (Colégio Naval) No conjunto R dos números reais, qual será o 01. (PUC) O valor de m, de modo que a equação 0. (PUC) O valor de m, de modo que a equação 5 m m 0 b) c) d) 0. Quantos valores de satisfazem a equação a) b) c) d) 5 e) 0 Prof. Paulo Cesar Costa tenha uma das raízes igual a, é: ( ). 07. (Colégio Naval)

Leia mais

RETA E CIRCUNFERÊNCIA

RETA E CIRCUNFERÊNCIA RETA E CIRCUNFERÊNCIA - 016 1. (Unifesp 016) Na figura, as retas r, s e t estão em um mesmo plano cartesiano. Sabe-se que r e t passam pela origem desse sistema, e que PQRS é um trapézio. a) Determine

Leia mais

CURSO ALCANCE UFPR Matemática 13/08/2016 Página 1 de 6

CURSO ALCANCE UFPR Matemática 13/08/2016 Página 1 de 6 CURSO ALCANCE UFPR Matemática 13/08/2016 Página 1 de 6 Introdução à funções Uma função é determinada por dois conjuntos e uma regra de associação entre os elementos destes conjuntos. Os conjuntos são chamados

Leia mais

Mat.Semana 5. PC Sampaio Alex Amaral Gabriel Ritter (Roberta Teixeira)

Mat.Semana 5. PC Sampaio Alex Amaral Gabriel Ritter (Roberta Teixeira) Semana 5 PC Sampaio Alex Amaral Gabriel Ritter (Roberta Teixeira) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos

Leia mais

FUNÇÕES. Prof.ª Adriana Massucci

FUNÇÕES. Prof.ª Adriana Massucci FUNÇÕES Prof.ª Adriana Massucci Introdução: Muitas grandezas com as quais lidamos no nosso cotidiano dependem uma da outra, isto é, a variação de uma delas tem como consequência a variação da outra. Exemplo:

Leia mais

Matemática A Superintensivo

Matemática A Superintensivo Matemática A Superintensivo Eercícios 0) a) é elemento de A A. b) não é elemento de B B. c) 0 não é elemento de C 0 C. d) Todo elemento de B é elemento de A B A. e) B e C B C. f) O conjunto A contém os

Leia mais

CEM Centro De Estudos Matemáticos

CEM Centro De Estudos Matemáticos 1. (Udesc ) Sejam A = (a ij ) e B = (b ij ) matrizes quadradas de ordem 3 de tal forma que: a ij = i + j b ij = j e os elementos de cada coluna, de cima para baixo, formam uma progressão geométrica de

Leia mais

Matemática C Semiextensivo v. 4

Matemática C Semiextensivo v. 4 Semietensivo v Eercícios ), aplicando o teorema de Laplace na ª coluna, temos que: A + A + A + A + + ( ) + ( ) ( + + + + ) + ( + + + 9 + ) + ) para qualquer valor de A + A + A + A + ( ) ( ) + ( ), ou seja,

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 20 DE JULHO 2018 CADERNO 1

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 20 DE JULHO 2018 CADERNO 1 PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) ª FASE 0 DE JULHO 08 CADERNO... P00/00 Como se trata de uma distribuição normal temos que: ( ) 0,9545. P µ σ

Leia mais

Teste de Matemática Elementar 2017/II

Teste de Matemática Elementar 2017/II Universidade Federal de Viçosa Departamento de Matemática Teste de Matemática Elementar 07/II. A frase: Se João joga futebol, então Maria toca violão é equivalente a: João joga futebol se, e somente se,

Leia mais

Unidade 3. Funções de uma variável

Unidade 3. Funções de uma variável Unidade 3 Funções de uma variável Funções Um dos conceitos mais importantes da matemática é o conceito de unção. Em muitas situações práticas, o valor de uma quantidade pode depender do valor de uma segunda.

Leia mais

EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA

EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA - 015 1. (Unicamp 015) Seja r a reta de equação cartesiana x y 4. Para cada número real t tal que 0 t 4, considere o triângulo T de vértices em (0, 0),

Leia mais

MATEMÁTICA. Função Composta e Função Inversa. Professor : Dêner Rocha. Monster Concursos 1

MATEMÁTICA. Função Composta e Função Inversa. Professor : Dêner Rocha. Monster Concursos 1 MATEMÁTICA Função Composta e Função Inversa Professor : Dêner Rocha Monster Concursos 1 Função Composta A função composta pode ser entendida pela determinação de uma terceira função C, formada pela junção

Leia mais

Matemática Matrizes e Determinantes

Matemática Matrizes e Determinantes . (Unesp) Um ponto P, de coordenadas (x, y) do a plano cartesiano ortogonal, é representado pela matriz 5. (Unicamp) Considere a matriz M b a, onde coluna assim como a matriz coluna b a e b são números

Leia mais

(j) f(x) = (w) h(x) = x. (y) f(x) = sin(2x) (z) h(x) = 2 sin x. > 0 x 2 4x (g) x + 4 2x 6 (h)

(j) f(x) = (w) h(x) = x. (y) f(x) = sin(2x) (z) h(x) = 2 sin x. > 0 x 2 4x (g) x + 4 2x 6 (h) Professora: Elisandra Bär de Figueiredo Lista : Funções - Cálculo Diferencial e Integral I. Determine o domínio e construa o gráco das seguintes funções. A seguir identique como estão relacionados os grácos

Leia mais

Exercícios de Matemática Funções Função Bijetora

Exercícios de Matemática Funções Função Bijetora Exercícios de Matemática Funções Função Bijetora 1. (Ufpe) Sejam A e B conjuntos com m e n elementos respectivamente. Analise as seguintes afirmativas: ( ) Se f:aëb é uma função injetora então m n. ( )

Leia mais

Caderno 2. Concurso Público Conteúdo. - Coletânea de Exercícios Gerais

Caderno 2. Concurso Público Conteúdo. - Coletânea de Exercícios Gerais Concurso Público 2016 Caderno 2 Conteúdo - Funções de Primeiro e Segundo Grau - Noções de Probabilidade e Estatística Descritiva - Matemática Financeira - Aplicações e Operações com Inequações - Sequências

Leia mais

MÓDULO 33. Funções I. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA

MÓDULO 33. Funções I. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA C9_ITA_Mod_33_36_prof /0/0 09:5 Page I Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA MÓDULO 33 Funções I. (OPM Seja f uma função dada por: f( = 7 e n f(n =, para n natural, maior que.

Leia mais

p: João Alvaro w: e: Lista de exercícios de Matemática Função composta. Função inversa.

p: João Alvaro w:  e: Lista de exercícios de Matemática Função composta. Função inversa. p: João Alvaro w: www.matemaniacos.com.br e: joao.baptista@iff.edu.br Lista de exercícios de Matemática Função composta. Função inversa. EXERCÍCIOS DE EMBASAMENTO 1. Dados A = { 1, 1, 0, 1, 2}, B = { 3,

Leia mais

Exercícios de Aprofundamento Matemática Equações e Inequações Modulares e Quadráticas 2

Exercícios de Aprofundamento Matemática Equações e Inequações Modulares e Quadráticas 2 1. (Mackenzie 1996) A soma dos valores inteiros pertencentes ao domínio da função real definida por f(x) = x / x 3x a) 1. b). c) 3. d) - 1. e) -. é:. (Mackenzie 1996) Na desigualdade ser: (x 1) + x > k,

Leia mais

INTRODUÇÃO AO ESTUDO DA ÁLGEBRA LINERAR Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 7 ISOMORFISMO

INTRODUÇÃO AO ESTUDO DA ÁLGEBRA LINERAR Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 7 ISOMORFISMO INRODUÇÃO AO ESUDO DA ÁLGEBRA LINERAR CAPÍULO 7 ISOMORFISMO A pergunta inicial que se faz neste capítulo e que o motiva é: dada uma transformação linear : V W é possível definir uma transformação linear

Leia mais

A. PAR ORDENADO 01. Determine a e b de modo que: (a) (a + 3, b + 1) = (3a 5, 4) (b) (a 2, 3b + 4) = (2a + 3, b + 2) (c) ( a 2 5 a,b 2 ) = ( 6, 2b 1) (d) (a, 2a) = (b + 4, 7 b) 02. Represente num mesmo

Leia mais

LTDA APES PROF. RANILDO LOPES SITE:

LTDA APES PROF. RANILDO LOPES SITE: Matemática Aplicada - https://ranildolopes.wordpress.com/ - Prof. Ranildo Lopes - FACET 1 Faculdade de Ciências e Tecnologia de Teresina Associação Piauiense de Ensino Superior LTDA APES PROF. RANILDO

Leia mais