O ESTUDO DAS FUNÇÕES INTRODUÇÃO
|
|
|
- Maria Vitória Carreira Candal
- 9 Há anos
- Visualizações:
Transcrição
1 O ESTUDO DAS FUNÇÕES INTRODUÇÃO
2
3
4
5
6
7
8 DEFINIÇÃO As funções explicitam relações matemáticas especiais entre duas grandezas. As grandezas envolvidas nessas relações são conhecidas como variável dependente (y) e variável independente (x). O estudo das funções foi motivado pela observação dos fenômenos naturais e a identificação de padrões e regularidades e promover generalizações. Em nosso curso o foco será a aplicação das funções matemáticas na modelagem de fenômenos e processos e suas aplicações.
9 Dados dois conjuntos A e B contendo números reais consideramos uma função f de A em B ao conjunto de pares ordenados (x,y), x A e y B de modo que: x A, y B tal que (x,y) f. Se (x,y) f e (x,y ) f, então y=y x A f B y Nota: O par ordenado (x,y) denota que y B é a imagem de x A pela função f. Domínio D(f) Contradomínio CD(f)
10 EXEMPLOS
11 DOMÍNIO E CONTRADOMÍNIO O conjunto A (partida) é chamado de domínio da função f e o conjunto B (chegada) é chamado de contradomínio da função f. A B x f y ou f(x) Nota: O par ordenado (x,y) denota que y B é a imagem de x A pela função f. Domínio D(f) Contradomínio CD(f)
12 IMAGEM Chamamos de imagem ao conjunto formado por todos os valores assumidos por y pela função f. f x 1 x 2 x 3 y 1 y 2 y 3 Nota: y 4 Im(f) e CD(f) Im(f) y 4 Domínio D(f)={x 1, x 2, x 3 } Contradomínio CD(f)={y 1, y 2, y 3, y 4 } Imagem Im(f)={y 1, y 2, y 3 }
13 FUNÇÃO INJETORA Uma função será injetora quando elementos distintos do domínio tiverem imagens distintas ou em linguagem matemática x 1 x 2 f(x 1 ) f(x 2 )
14 FUNÇÃO SOBREJETORA Uma função será sobrejetora quando o contradomínio e o conjunto imagem forem o mesmo conjunto ou CD(f) = Im(f)
15 FUNÇÃO BIJETORA Uma função será bijetora quando for injetora e sobrejetora.
16 GRÁFICO DE UMA FUNÇÃO Podemos construir o gráfico de uma função lançando os pares ordenados (x,y) no plano cartesiano ortogonal e traçando uma curva média. y y 4 Im(f)=[y 1,y 4 ] D(f)=[x 1,x 4 ] = y 2 y 3 y 1 x 1 x 2 x 3 x 4 x
17 ESTUDO DO SINAL DE UMA FUNÇÃO y y=f(x) + x 1 x 2 x 3 + x x 1, x 2 e x 3 são raízes ou zeros da função
18 CRESCIMENTO DE UMA FUNÇÃO Função crescente: x 1 <x 2 f(x 1 )<f(x 2 ) Função decrescente: x 1 <x 2 f(x 1 )>f(x 2 ) f(x 2 ) f(x 2 ) f(x 1 ) f(x 1 )
19 FUNÇÃO INVERSA A inversa da função f: A B, denotada f -1 existirá se, e somente se, a função f for bijetora. Assim, f -1 será a função de B em A tal que f -1 (y) =x.
20 OBSERVAÇÕES IMPORTANTES O domínio de f -1 é igual ao conjunto imagem de f. O o conjunto imagem de f -1 é igual ao domínio de f. Os gráficos de f e de f -1 são curvas simétricas em relação à reta y = x, ou seja, à bissetriz do primeiro quadrante.
21 EXEMPLOS 1. Com relação ao gráfico a seguir, determine a) D(f) [40,100] b) Im(f) [7,10] c) f(60) 10 d) x tal que f(x)=7 x=40 ou x=100 e) f(80) 9
22 2. Com relação ao gráfico abaixo, é correto afirmar: h g f Nota: f, g e h são imagens de e e a) Representa uma função f: [a, b] R. b) Não representa uma função de [a,b] em R porque existe y R que não é imagem de qualquer x [a,b]. c) Não representa uma função de [a,b] em R porque existe elemento x [a,b] com mais de uma imagem. d) Representa uma função f: [a,b] [c,d]. e) Representa uma função bijetora.
23 3. Somente uma afirmação feita sobre a função f: [-5,5] em R, representada abaixo, é verdadeira. Assinale-a. a) f(x) 0, para todo x [1,5; 4]. b) f é crescente no intervalo [0,5]. c) f(4) > f (1,5). d) f tem apenas duas raízes reais. e) f(x) > 0, para todo x [ 5;0]. 1,5 5 1,5 4 5
24 FUNÇÃO POLINOMIAL DO PRIMEIRO GRAU OU AFIM É toda função real do tipo y=a.x+b (a R*; b R) Gráfico característico: reta Coeficientes: a coeficiente angular (taxa de variação) b coeficiente linear Exemplos: y=2.x+3 (a=2; b=3) y= 5.x+1 (a= 5; b=1) y=x/2 (a=1/2; b=0)
25 TAXA DE VARIAÇÃO DA FUNÇÃO y DO PRIMEIRO GRAU y 2 y 1 y x x 1 x 2 x a y y y tan x x x Obs: é a inclinação da reta
26 CRESCIMENTO DA FUNÇÃO DO PRIMEIRO GRAU Se a>0 A função é crescente Se a<0 A função é decrescente y Se a=0 A função é constante x
27 ZERO OU RAIZ DA FUNÇÃO DO PRIMEIRO GRAU A raiz da função do primeiro grau é o valor de x que anula a função. Em outras palavras, se x é raiz de uma função, então f(x)=0. Para obter a raiz de uma função do primeiro grau devemos igualar a função a zero.
28 ESTUDO DO SINAL DA FUNÇÃO DO PRIMEIRO GRAU Função crescente (a>0) Função decrescente (a<0)
29 EQUAÇÕES DO PRIMEIRO GRAU São expressões do tipo a.x+b=0 A solução da equação do primeiro grau deve ser obtida isolando-se a incógnita respeitando-se os princípios aditivo/multiplicativo e da equivalência.
30 EXEMPLOS 1. O salário de um vendedor é composto de uma parte fixa no valor de R$ 800,00, mais uma parte variável de 12% sobre o valor de suas vendas no mês. Caso ele consiga vender R$ ,00, calcule o valor de seu salário. Seja y o salário do vendedor e x a receita com vendas. Então y=0,12.x+800 Para x=45.000, temos: y=0, y= y=6.200
31 2. Uma piscina de 30 mil litros, totalmente cheia, precisa ser esvaziada para limpeza e para isso uma bomba que retira água à razão de 100 litros por minuto foi acionada. Baseado nessas informações, pede-se: a) a expressão que fornece o volume (V) de água na piscina em função do tempo (t) que a bomba fica ligada. b) o tempo necessário para que a piscina seja esvaziada. c) quanto de água ainda terá na piscina após 3 horas de funcionamento da bomba? a) De acordo com o enunciado a partir de um volume inicial de L a bomba retira água da piscina a uma taxa constante de 100L/min. Desse modo, o volume de água na piscina varia em função do tempo de acordo com a função V= t b) A piscina vazia não possui água, logo fazendo V=0, temos: 0= t 100.t= t=30.000/100 t=300min ou t=5h
32 c) Note que 3h=180min, logo fazendo t=180, temos: V= V= V=12.000L
33 3. O gráfico representa a função y = f(x) = ax + b a) Calcule a e b. b) Determine as coordenadas dos pontos x e y, em que a reta corta os eixos coordenados. y 50 (70,50) x 20 (10,20) y x
34 a) O gráfico é uma reta,logo trata-se de uma função do tipo y=a.x+b. Os pontos (10,20) e (50,70) pertencem à função. 20=a.10+b 10.a+b=20 (1) 70=a.50+b 50.a+b=70 (2) Fazendo (2) (1), temos: 40.a=50 a=50/40 a=5/4 Substituindo a=5/4 em (1), temos: 10.5/4+b=20 50/4+b= b=80 4.b= b=30.4 b=30/4 b=15/2
35 b) Com os valores de a e b obtemos a função representada graficamente. y x 4 2 Note que os pontos x e y são pontos de interseção da reta com os eixos coordenados, logo são pontos do tipo (x,0) e (0,y) x,0 0. x x x 30 x x , y y y 2
36 INEQUAÇÕES DO PRIMEIRO GRAU Inequações do primeiro grau são expressões do tipo: a.x+b>0 a.x+b 0 a.x+b<0 a.x+b 0 Para obtermos a solução de uma inequação do primeiro grau devemos determinar o zero (ou raiz) e estudar o sinal da função. A solução da inequação do primeiro grau será o intervalo real que satisfaz a inequação.
37 EXEMPLOS 1. Sejam as funções f(x)=3.x 5 e g(x)= 2.x+5, determine os valores de x tais que f(x)>g(x). Se f(x)>g(x) 3.x 5> 2.x+5 5.x>10 5.x 10>0 Raiz: 5.x 10=0 x=2 Estudo do sinal: f(x)> Nota: os valores 0 e 5 foram escolhidos arbitrariamente f(0)=5.0 10= 10<0 f(5)=5.5 10= 25 10=15>0 Solução: V=]2,+ )
38 2. Resolva as inequações a) x 1 Note que o sinal da expressão depende apenas do denominador 3.x 1, pois 4>0. Assim, devemos estudar o sinal da função f(x)= 3.x 1. Raiz: 3.x 1=0 x=1/3 Estudo do sinal /3 f(0)=3.0 1= 1<0 f(1)=3.1 1= 2>0 Solução: V=]1/3, )
39 b) 3 x 2. x 1 0 Nesse caso, devemos analisar o sinal das duas funções. f(x)=3 x g(x)=2.x 1 Raiz: 3 x=0 x=3 Raiz: 2.x 1=0 x=1/2 Estudo do sinal Estudo do sinal /2 f(0)=3 0=3>0 f(4)=3 4= 1<0 f(0)=2.0 1= 1<0 f(1)=2.2 1=3>0
40 3 x O sinal da expressão 2. x 1 as funções f e g. será obtido a partir dos sinais f g /2 Lembrete: f/g 0 f/g + 1/2 3 Resposta: V= ]1/2,3]
1 FUNÇÃO - DEFINIÇÃO. Chama-se função do 1. grau toda função definida de por f(x) = ax + b com a, b e a 0.
MATEMÁTICA ENSINO MÉDIO FUNÇÃO - DEFINIÇÃO FUNÇÃO - DEFINIÇÃO Chama-se função do 1. grau toda função definida de por f(x) = ax + b com a, b e a 0. EXEMPLOS: f(x) = 5x 3, onde a = 5 e b = 3 (função afim)
FUNÇÕES Disciplina: Lógica Aplicada Prof. Rafael Dias Ribeiro. Autoria: Prof. Denise Candal
FUNÇÕES Disciplina: Lógica Aplicada Prof. Rafael Dias Ribeiro Autoria: Prof. Denise Candal Plano Cartesiano Fixando em um plano dois eixos reais Ox e Oy, perpendiculares entre si no ponto O, podemos determinar
ALUNO(A): Prof.: André Luiz Acesse: 02/05/2012
1. FUNÇÃO 1.1. DEFINIÇÃO Uma função é um conjunto de pares ordenados de números (x,y) no qual duas duplas ordenadas distintas não podem ter o mesmo primeiro número, ou seja, garante que y seja único para
Capítulo 3. Fig Fig. 3.2
Capítulo 3 3.1. Definição No estudo científico e na engenharia muitas vezes precisamos descrever como uma quantidade varia ou depende de outra. O termo função foi primeiramente usado por Leibniz justamente
As funções do 1º grau estão presentes em
Postado em 01 / 04 / 13 FUNÇÃO DO 1º GRAU Aluno(: 1.1.2 TURMA: 1- FUNÇÃO DO PRIMEIRO GRAU As funções do 1º grau estão presentes em diversas situações do cotidiano. Vejamos um exemplo: Uma loja de eletrodomésticos
Revisão de Função. Inversa e Composta. Professor Gaspar. f : 1,,3, f(x) x 2x 2 e. g(x) x 2x 4. Para qual valor de x tem f(g(x)) g(f(x))? g(x) 2x.
Revisão de Função. (Espcex (Aman) 05) Considere a função bijetora f :,,, definida por f(x) x x e seja (a,b) o ponto de intersecção de f com sua inversa. O valor numérico da expressão a b é a). b) 4. c)
Plano Cartesiano. Relação Binária
Plano Cartesiano O plano cartesiano ortogonal é constituído por dois eixos x e y perpendiculares entre si que se cruzam na origem. O eixo horizontal é o eixo das abscissas (eixo OX) e o eixo vertical é
TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega
1 TECNÓLOGO EM CONSTRUÇÃO CIVIL Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega 2 FUNÇÃO POLINOMIAL DO 1º GRAU Uma função polinomial do 1º grau (ou simplesmente, função do 1º grau) é uma
Função Inversa. f(x) é invertível. Assim,
Função Inversa. (Eear 07) Sabe-se que a função a) b) 4 c) 6 d) x f(x) é invertível. Assim, 5 f () é. (Espm 07) O conjunto imagem de uma função inversível é igual ao domínio de sua x inversa. Sendo f :
E-books PCNA. Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 FUNÇÕES
E-books PCNA Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 FUNÇÕES 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 SUMÁRIO Apresentação -------------------------------------------------------2 Capítulo 3 ------------------------------------------------------
Aula 04 Funções. Professor Marcel Merlin dos Santos Página 1
PARIDADE Define-se como paridade o estudo das características do que é igual ou semelhante, ou seja, é uma comparação para provar que uma coisa pode ser igual ou semelhante à outra. Função Par Define-se
RESUMO - GRÁFICOS. O coeficiente de x, a, é chamado coeficiente angular da reta e está ligado à inclinação da reta
RESUMO - GRÁFICOS Função do Primeiro Grau - f(x) = ax + b O gráfico de uma função do 1 o grau, y = ax + b, é uma reta. O coeficiente de x, a, é chamado coeficiente angular da reta e está ligado à inclinação
FUNÇÕES. Prof.ª Adriana Massucci
FUNÇÕES Prof.ª Adriana Massucci Introdução: Muitas grandezas com as quais lidamos no nosso cotidiano dependem uma da outra, isto é, a variação de uma delas tem como consequência a variação da outra. Exemplo:
FUNÇÕES I- PRÉ-REQUISITOS PARA O ESTUDO DAS FUNÇÕES
FUNÇÕES I- PRÉ-REQUISITOS PARA O ESTUDO DAS FUNÇÕES 1- PRODUTO CARTESIANO 1.1- Par Ordenado - Ao par de números reais a e b, dispostos em uma certa ordem, denominamos par ordenado e indicamos por: (a,
LTDA APES PROF. RANILDO LOPES SITE:
Matemática Aplicada - https://ranildolopes.wordpress.com/ - Prof. Ranildo Lopes - FACET 1 Faculdade de Ciências e Tecnologia de Teresina Associação Piauiense de Ensino Superior LTDA APES PROF. RANILDO
Função Afim. Definição. Gráfico
Função Afim Definição Chama-se função polinomial do 1º grau, ou função afim, a qualquer função f de IR em IR dada por uma lei da forma f(x) = ax + b, onde a e b são números reais dados e a 0. Na função
Notas de Aula Disciplina Matemática Tópico 05 Licenciatura em Matemática Osasco -2010
1. Função Afim Uma função f: R R definida por uma expressão do tipo f x = a. x + b com a e b números reais constantes é denominada função afim ou função polinomial do primeiro grau. A função afim está
MATEMÁTICA. Conceito de Funções. Professor : Dêner Rocha
MATEMÁTICA Conceito de Funções Professor : Dêner Rocha Monster Concursos 1 Noção de Função 1º) Dados A = {-, -1, 0, 1, } e B = {-8, -6, -4, -3, 0, 3, 6, 7} e a correspondência entre A e B dada pela fórmula
Esboço de Plano de Aula. Conteúdo específico: O uso do software WXMaxima nas equações do 1º Grau.
Esboço de Plano de Aula Bolsista: Rafael de Oliveira. Duração: 120 minutos. Conteúdo: Equações do 1º Grau. Conteúdo específico: O uso do software WXMaxima nas equações do 1º Grau. Objetivo geral: Permitir
Matemática Complementos de Funções. Professor Marcelo Gonsalez Badin
Matemática Complementos de Funções Professor Marcelo Gonsalez Badin Paridade Função PAR f (x) é chamada FUNÇÃO PAR se f ( x) = f (x) Exemplo: f (x) = x 4 f ( x) = ( x) 4 = x 4 = f (x) O gráfico de uma
Aula 06: Funções e seus Gráficos
GST1073 Fundamentos de Matemática Aula 06: Funções e seus Gráficos Fundamentos de Matemática Aula 6 Funções e seus Gráficos Objetivos Gerais: Modelar e solucionar vários tipos de problemas com o uso do
1. Considere os conjuntos A = {0; 2} e B = {1; 2; 3}. A respeito de produto cartesiano entre dois conjuntos, assinale a alternativa correta:
. Considere os conjuntos A = {0; 2} e B = {; 2; 3}. A respeito de produto cartesiano entre dois conjuntos, assinale a alternativa correta: a. AxB = {(0; ); (0; 2); (0; 3); (2; ); (2; 2); (2; 3)} b. BxA
ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI
ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA INTRODUÇÃO AO ESTUDO DAS FUNÇÕES NOME: N O : blog.portalpositivo.com.br/capitcar 1 FUNÇÃO IDÉIA INTUITIVA DE FUNÇÃO O conceito de função é um
Funções. Aula 9. Ricardo Ferreira Paraizo. e-tec Brasil Matemática Instrumental. Vince Petaccio. Fonte:
Funções Aula 9 Ricardo Ferreira Paraizo Vince Petaccio e-tec Brasil Matemática Instrumental Fonte: www.sxc.hu Meta Apresentar as funções dos 1º e 2º graus. Objetivos Após o estudo desta aula, você deverá
Universidade Federal de Pelotas. Instituto de Física e Matemática Pró-reitoria de Ensino. Módulo de Funções. Aula 01. Projeto GAMA
Universidade Federal de Pelotas Instituto de Física e Matemática Pró-reitoria de Ensino Atividades de Reforço em Cálculo Módulo de Funções Aula 0 08/ Projeto GAMA Grupo de Apoio em Matemática Definição
b) Para que valores reais de x, f(x) > 2x + 2? 2. (Ufscar 2002) Sejam as funções f(x) = x - 1 e g(x) = (x + 4x - 4).
1. (Fuvest 2000) a) Esboce, para x real, o gráfico da função f(x)= x-2 + 2x+1 -x-6. O símbolo a indica o valor absoluto de um número real a e é definido por a =a, se aµ0 e a =-a, se a
Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Cálculo Aula 1 Professor: Carlos Sérgio. Revisão de Funções
Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Cálculo - 01. Aula 1 Professor: Carlos Sérgio Revisão de Funções Sistema cartesiano ortogonal O Sistema de Coordenadas Cartesianas,
Gênesis S. Araújo Pré-Cálculo
Gênesis Soares Jaboatão, de de 2016. Estudante: PAR ORDENADO: Um par ordenado de números reais é o conjunto formado por dois números reais em determinada ordem. Os parênteses, em substituição às chaves,
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Função do 1 Grau. Patricia Figuereido de Sousa - Engenharia Civil
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2016.2 Função do 1 Grau Patricia Figuereido de Sousa - Engenharia Civil Equações do primeiro grau Equação é toda sentença matemática aberta que exprime
f(x) ax b definida para todo número real x, onde a e b são números reais. Sabendo que f(4) 2,
Ensino Aluno (: Nº: Turma: ª série Bimestre: º Disciplina: Espanhol Atividade Complementar Funções Compostas e Inversas Professor (: Cleber Costa Data: / /. (Eear 07) Sabe-se que a função invertível. Assim,
eixo das ordenadas y eixo das abscissas Origem 1º quadrante 2º quadrante O (0, 0) x 4º quadrante 3º quadrante
PLANO CARTESIANO eixo das ordenadas y 2º quadrante 1º quadrante eixo das abscissas O (0, 0) x Origem 3º quadrante 4º quadrante y ordenado do ponto P 4 P P(3, 4) O 3 x abscissa do ponto P No caso, 3 e 4
MATEMÁTICA. Aula 04. Função Uma Ideia Fundamental Professor Luciano Nóbrega
MATEMÁTICA 1 A Matemática apresenta invenções tão sutis que poderão servir não só para satisfazer os curiosos como, também para auxiliar as artes e poupar trabalho aos homens. (Renê Descartes Filósofo,
O gráfico da função constante é uma reta paralela ao eixo dos x passando pelo ponto (0, c). A imagem é o conjunto Im = {c}.
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Funções do 1 o Grau Prof.:
A idéia de função. O conceito de função é um dos mais importantes em toda a Matemática. https://ueedgartito.wordpress.com.
Matemática Básica Unidade 5 Estudo de Funções RANILDO LOPES Slides disponíveis no nosso SITE: O conceito de função é um dos mais importantes em toda a Matemática. https://ueedgartito.wordpress.com A idéia
3º Bimestre. Álgebra. Autor: Leonardo Werneck
3º Bimestre Autor: Leonardo Werneck SUMÁRIO CAPÍTULO 01 RELAÇÕES E FUNÇÕES... 6 1. O Plano Cartesiano... 6 2. Produto Cartesiano... 7 2.1. Gráfico de um Produto Cartesiano... 8 2.2. O produto ℝ ℝ ou ℝ𝟐...
Exercícios de Matemática Funções Função Modular
Exercícios de Matemática Funções Função Modular TEXTO PARA A PRÓXIMA QUESTÃO (Ufsc) Na(s) questão(ões) a seguir escreva nos parênteses a soma dos itens corretos. 1. Considere a função f : IRë IR dada por
2. (Ufpe 96) Seja A um conjunto com 3 elementos e B um conjunto com 5 elementos. Quantas funções injetoras de A em B existem?
1. (Unirio 99) Sejam as funções f : IR ë IR x ë y= I x I e g : IR ë IR x ë y = x - 2x - 8 Faça um esboço gráfico da função fog. 2. (Ufpe 96) Seja A um conjunto com 3 elementos e B um conjunto com 5 elementos.
Material Didático. Matemática Elementar. Maio Universidade Federal do Pará. Equipe de Matemática: José Benício da Cruz Costa (Coordenação)
Matemática Elementar Material Didático Equipe de Matemática: (PCNA - Maio de 016) José Benício da Cruz Costa (Coordenação) Maio 016 Universidade Federal do Pará Monitores: Daniel de Souza Avelar da Costa
Relação de Conjuntos. Produto cartesiano A = 1,2 e o conjunto B = 2,3,4 queremos o produto cartesiano A x B
Relação de Conjuntos Produto cartesiano A = 1,2 e o conjunto B = 2,3,4 queremos o produto cartesiano A x B A x B = { 1,2, 1,3, 1,4, 2,2, 2,3, 2,4 } A B 1 2 2 3 4 Funções Uma Relação será função se: 1.
CURSO ALCANCE UFPR Matemática 13/08/2016 Página 1 de 6
CURSO ALCANCE UFPR Matemática 13/08/2016 Página 1 de 6 Introdução à funções Uma função é determinada por dois conjuntos e uma regra de associação entre os elementos destes conjuntos. Os conjuntos são chamados
{ } { } { } { } { } Professor: Erivaldo. Função Composta SUPERSEMI. 01)(Aman 2013) Sejam as funções reais ( ) 2
Centro de Estudos Matemáticos Florianópolis Professor: Erivaldo Santa Catarina Função Composta SUPERSEMI 01)(Aman 013) Sejam as funções reais ( ) f x = x + 4x e gx ( ) = x 1. O domínio da função f(g(x))
ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI
ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA INTRODUÇÃO AO ESTUDO DAS FUNÇÕES NOME: N O : blog.portalpositivo.com.br/capitcar 1 FUNÇÃO IDÉIA INTUITIVA DE FUNÇÃO O conceito de função é um
Funções Reais a uma Variável Real
Funções Reais a uma Variável Real 1 Introdução As funções são utilizadas para descrever o mundo real em termos matemáticos, é o que se chama de modelagem matemática para as diversas situações. Podem, por
Matemática para Biomedicina
Matemática para Biomedicina Funções: lista de exercícios Prof. Luís Rodrigo de O. Gonçalves Copyright c 2019 Luís Rodrigo de O. Gonçalves Licenciado sob a licença Atribuição-NãoComercial 4.0 Internacional.
Matemática I Capítulo 06 Propriedades das Funções
Nome: Nº Curso: Mineração Integrado Disciplina: Matemática I 1 Ano Prof. Leonardo Data: / /016 Matemática I Capítulo 06 Propriedades das Funções 6.1 Paridade das Funções 6.1.1 - Função par Dada uma função
Matemática. FUNÇÃO de 1 GRAU. Professor Dudan
Matemática FUNÇÃO de 1 GRAU Professor Dudan Função de 1 Grau Chama-se função polinomial do 1º grau, ou função afim, a qualquer função f de IR em IR dada por uma lei da forma : onde a e b são números reais
2 a Edição do Curso de Difusão Pré-Cálculo aos alunos de. Patricia Araripe e Pollyane Vieira. 15 de fevereiro de 2019
Função do 2 o grau: Equação e Inequação 2 a Edição do Curso de Difusão Pré-Cálculo aos alunos de graduação da ESALQ Patricia Araripe e Pollyane Vieira 15 de fevereiro de 2019 Definição (1) (Função) Dados
Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES. FUNÇÕES Parte A
Universidade Federal do Rio Grande FURG Instituto de Matemática, Estatística e Física IMEF Edital 5 CAPES FUNÇÕES Parte A Prof. Antônio Maurício Medeiros Alves Profª Denise Maria Varella Martinez UNIDADE
UNIDADE IV FUNÇÃO AFIM OU POLINOMIAL do 1 o. GRAU
UNIDADE IV FUNÇÃO AFIM OU POLINOMIAL do 1 o. GRAU 1. MOTIVAÇÃO/INTRODUÇÃO. FUNÇÃO AFIM DO DE PRIMEIRO GRAU 3. GRÁFICO DE UMA FUNÇÃO AFIM 4. RAIZ DA FUNÇÃO AFIM 5. INTERSECÇÃO DO GRÁFICO DE UMA FUNÇÃO AFIM
Equação de 2 grau. Assim: Øx² - 5x + 6 = 0 é um equação do 2º grau com a = 1, b = -5 e c = 6.
Rumo ao EQUAÇÃO DE 2 GRAU Equação de 2 grau A equação de 2 grau é a equação na forma ax² + bx + c = 0, onde a, b e c são números reais e x é a variável (incógnita). O valor da incógnita x é determinado
Matemática A Intensivo V. 1
Matemática A Intensivo V Eercícios ) V F F F F V V V ) D a) Verdadeiro Zero é elemento do conjunto {,,, 3, } b) Falso Nesse caso temos {a} como subconjunto de {a, b}, logo a relação correta seria a} {a,
MATEMÁTICA. ENSINO MÉDIO - 1º ANO Função Polinomial do 1º Grau (FUNÇÃO AFIM) PROFESSOR: ALEXSANDRO DE SOUSA
E.E. Dona Antônia Valadares MATEMÁTICA ENSINO MÉDIO - 1º ANO Função Polinomial do 1º Grau (FUNÇÃO AFIM) PROFESSOR: ALEXSANDRO DE SOUSA http://donaantoniavaladares.comunidades.net Definição: Uma função
SERVIÇO PÚBLICO FEDERAL Ministério da Educação
SERVIÇO PÚBLICO FEDERAL Ministério da Educação Universidade Federal do Rio Grande Universidade Aberta do Brasil Administração Bacharelado Matemática para Ciências Sociais Aplicadas I Rodrigo Barbosa Soares
Matemática Básica Relações / Funções
Matemática Básica Relações / Funções 04 1. Relações (a) Produto cartesiano Dados dois conjuntos A e B, não vazios, denomina-se produto cartesiano de A por B ao conjunto A B cujos elementos são todos os
Capítulo 1. Funções e grácos
Capítulo 1 Funções e grácos Denição 1. Sejam X e Y dois subconjuntos não vazios do conjunto dos números reais. Uma função de X em Y ou simplesmente uma função é uma regra, lei ou convenção que associa
Observamos então que as aplicações de plano cartesiano, produto cartesiano, relações e funções estão presentes no nosso cotidiano.
Relações e Funções Ao lermos um jornal ou uma revista, diariamente nos deparamos com gráficos, tabelas e ilustrações. Estes, são instrumentos muito utilizados nos meios de comunicação. Um texto com ilustrações,
Matemática I Capítulo 11 Função Modular
Nome: Nº Curso: Mecânica Integrado Disciplina: Matemática I 1 Ano Prof. Leonardo Data: / /016 Matemática I Capítulo 11 Função Modular 11.1 - Módulo O módulo, ou valor absoluto, de um número real x representado
É usual representar uma função f de uma variável real a valores reais e com domínio A, simplesmente por y=f(x), x A
4. Função O objeto fundamental do cálculo são as funções. Assim, num curso de Pré-Cálculo é importante estudar as idéias básicas concernentes às funções e seus gráficos, bem como as formas de combiná-los
Matemática Básica Função polinomial do primeiro grau
Matemática Básica Função polinomial do primeiro grau 05 1. Função polinomial do primeiro grau (a) Função constante Toda função f :R R definida como f ()=c, com c R é denominada função constante. Por eemplo:
Função de Proporcionalidade Direta
Função de Proporcionalidade Direta Recorda Dadas duas grandezas x e y, diz-se que y é diretamente proporcional a x: y se x 0 e y 0 e o quociente entre dois quaisquer valores correspondentes for constante.
Notas de aula: Cálculo e Matemática Aplicados à Notas de aula: Gestão Ambiental
Notas de aula: Cálculo e Matemática Aplicados à Notas de aula: Gestão Ambiental 1 Funções Definição: Sejam A e B, dois conjuntos, A /0, B /0. Uma função definida em A com valores em B é uma lei que associa
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Função do 1 Grau. Rafael Carvalho - Engenharia Civil
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 06. Função do Grau Rafael Carvalho - Engenharia Civil Equações do primeiro grau Equação é toda sentença matemática aberta que exprime uma relação de igualdade.
UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1
UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1 PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR - 16/10/2016 CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES: 1.
PLANO DE AULA IDENTIFICAÇÃO
PLANO DE AULA IDENTIFICAÇÃO Disciplina: Matemática Nível: Ensino Médio Tempo estimado: 5 aulas de 45 min Tema: Função do 1º Grau Subtema: Definição, Gráficos, Zero da Função, Equação do 1º Grau, Sinal
AXB = {(x, y) x A e y B}
CENTRO UNIVERSITÁRIO DO NORTE PAULISTA LÓGICA E MATEMÁTICA DISCRETA 2010 1 Produto Cartesiano Par ordenado: são dois elementos em uma ordem fixa, (x,y) Produto Cartesiano: Dados dois conjuntos A e B, não
MATEMÁTICA. Função Composta e Função Inversa. Professor : Dêner Rocha. Monster Concursos 1
MATEMÁTICA Função Composta e Função Inversa Professor : Dêner Rocha Monster Concursos 1 Função Composta A função composta pode ser entendida pela determinação de uma terceira função C, formada pela junção
BANCO DE EXERCÍCIOS - 24 HORAS
BANCO DE EXERCÍCIOS - HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº GABARITO COMENTADO ) A função será y,5x +, onde y (preço a ser pago) está em função de x (número de quilômetros
FUNÇÃO DO 1º GRAU. Vamos iniciar o estudo da função do 1º grau, lembrando o que é uma correspondência:
FUNÇÃO DO 1º GRAU Vamos iniciar o estudo da função do 1º grau, lembrando o que é uma correspondência: Correspondência: é qualquer conjunto de pares ordenados onde o primeiro elemento pertence ao primeiro
RaizDoito 1. Considere f uma função ímpar de domínio IR. Indique, das seguintes afirmações, aquela que é necessariamente verdadeira.
1. Considere f uma função ímpar de domínio IR. Indique, das seguintes afirmações, aquela que é necessariamente verdadeira. f é não injetiva; (B) f é descontínua em x=0; (C) f(0) = 0; (D) f é injetiva;.
MÓDULO 41. Funções II. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA
Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA MÓDULO 41 Funções II 1. (OPM) Seja f uma função de domínio dada por x x + 1 f(x) =. Determine o conjunto-imagem x + x + 1 da função.. Considere
1. Construir o gráfico da função Resposta: 2. Construir o gráfico da função y = 2x Resposta: 3. Construir o gráfico da função Y = -2x Resposta:
ENGENHARIA CIVIL MATEMÁTICA BÁSICA / VALE VT TDE Lista - VT 05 09/04/2015 (Turma NOITE) - QUESTÕES OBJETIVAS CONJUNTOS TRABALHO DE PESQUISA - VALE VT ENTREGAR AO PROFESSOR em 22/04/2015 (4ª feira) Aluno:
Notas de aula: Cálculo e Matemática Aplicados às Notas de aula: Ciências dos Alimentos
Notas de aula: Cálculo e Matemática Aplicados às Notas de aula: Ciências dos Alimentos 1 Conjuntos Um conjunto está bem caracterizado quando podemos estabelecer com certeza se um elemento pertence ou não
ADA 1º BIMESTRE CICLO I MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO 2018
ADA 1º BIMESTRE CICLO I MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO 2018 ITEM 1 DA ADA No desenho, a seguir, estão representados os pontos M e N que correspondem à localização de dois animais. Atividades relacionadas
ÁLGEBRA. Aula 4 _ Classificação das Funções Professor Luciano Nóbrega. Maria Auxiliadora
1 ÁLGEBRA Aula 4 _ Classificação das Funções Professor Luciano Nóbrega Maria Auxiliadora 2 FUNÇÃO INJETORA É quando quaisquer dois elementos diferentes do conjunto A têm imagens diferentes no conjunto
EXERCÍCIOS REVISIONAIS SOBRE FUNÇÕES - 1ª PARTE
QUESTÃO 1: Sabendo-se que o diagrama a seguir representa uma função f de A em B, responda: A) Qual é o domínio da função f?? B) Qual é o contradomínio da função f? C) Qual é o conjunto imagem da função
INSTITUTO GEREMÁRIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA I EXERCÍCIOS DE RECUPERAÇÃO FINAL 2016
INSTITUTO GEREMÁRIO DANTAS Educação Infantil, Ensino Fundamental e Médio Fone: (21) 21087900 Rio de Janeiro RJ www.igd.com.br Aluno(a): 9º Ano: Nº Professora: Maria das Graças COMPONENTE CURRICULAR: MATEMÁTICA
Notas de Aula Disciplina Matemática Tópico 09 Licenciatura em Matemática Osasco -2010
. Logaritmos Definição: O logaritmo de um número real x na base n, denotado por log n x, é definido como o expoente ao qual devemos elevar o número n para obtermos como resultado o número x, ou seja log
COLÉGIOMARQUES RODRIGUES- SIMULADO
COLÉGIOMARQUES RODRIGUES- SIMULADO PROF(A) MARILEIDE DISCIPLINA MATEMÁTICA SIMULADO: P Estrada da Água Branca, Realengo RJ Tel: () 46-70 wwwcolegiomrcombr ALUNO TURMA 90 Questão atraves do diagrama abaixo,
CÁLCULO FUNÇÕES DE UMA E VÁRIAS VARIÁVEIS Pedro A. Morettin, Samuel Hazzan, Wilton de O. Bussab.
Introdução Função é uma forma de estabelecer uma ligação entre dois conjuntos, sujeita a algumas condições. Antes, porém, será exposta uma forma de correspondência mais geral, chamada relação. Sejam dois
Chamamos de funções numéricas aquelas cujas variáveis envolvidas são números reais. Isso é funções denidas sobre R ou uma parte de R e a valor em R.
Capítulo 2 Funções e grácos 2.1 Funções númericas Chamamos de funções numéricas aquelas cujas variáveis envolvidas são números reais. Isso é funções denidas sobre R ou uma parte de R e a valor em R. Denição
EXERCÍCIOS REVISIONAIS SOBRE FUNÇÃO INVERSA - FUNÇÃO AFIM FUNÇÃO QUADRÁTICA - INEQUAÇÕES - 1ª PARTE 1 ANO
QUESTÃO 1: Marcelo é vendedor de um tipo de notebook, mas ele não tem um salário mensal fixo. Sua renda provém da comissão de 20% sobre o preço de venda de cada notebook. Se x é o total (em reais) de vendas
1) Sejam as funções f e g de R em R tais que f(x) = 2 x + 1 e f(g(x)) = 2 x - 9, o valor de g(- 2) é igual a:
COLÉGIO PEDRO II UNIDADE ESCOLAR SÃO CRISTÓVÃO III NOTA: PROFESSORES: Eduardo/ Vicente DATA: NOME: Nº: NOME: Nº: NOME: N : NOME: N : TURMA: GRUPO I: Alunos 1 ; 2 ; 3 ; 4. 1) Sejam as funções f e g de R
Unidade II MATEMÁTICA APLICADA. Prof. Luiz Felix
Unidade II MATEMÁTICA APLICADA Prof. Luiz Felix Equações do 1º grau Resolver uma equação do 1º grau significa achar valores que estejam em seus domínios e que satisfaçam à sentença do problema, ou seja,
1º) Esboce o gráfico das funções, calcule e marque os interceptos: a) f(x) = x b) f(x) = - 3x + 2
1º) Esboce o gráfico das funções, calcule e marque os interceptos: a) f() = b) f() = - 3 + 2 (0,0) (0,2) no eio (,0) no eio c) f() = + 3 d) f() = 2-3 (0,3) no (0,-3) no (-3,0) no (1,5;0) no 2º) Determine
Notas de Aula Disciplina Matemática Tópico 03 Licenciatura em Matemática Osasco -2010
1. Funções : Definição Considere dois sub-conjuntos A e B do conjunto dos números reais. Uma função f: A B é uma regra que define uma relação entre os elementos de A e B, de tal forma que a cada elemento
ÁLGEBRA. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega. Maria Auxiliadora
1 ÁLGEBRA Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega Maria Auxiliadora 2 FUNÇÃO POLINOMIAL DO 1º GRAU Uma função polinomial do 1º grau (ou simplesmente, função do 1º grau) é uma relação
Acadêmico(a) Turma: Capítulo 6: Funções
1 Acadêmico(a) Turma: Capítulo 6: Funções Toda função envolve uma relação de dependência entre elementos, números e/ou incógnitas. Em toda função existe um elemento que pode variar livremente, chamado
DEFINIÇÃO DE FUNÇÃO y = x²
DEFINIÇÃO DE FUNÇÃO Definimos função como a relação entre dois ou mais conjuntos, estabelecida por uma lei de formação, isto é, uma regra geral. Os elementos de um grupo devem ser relacionados com os elementos
Faculdade Tecnológica de Carapicuíba Tecnologia em Logística Ênfase em Transportes Notas da Disciplina de Matemática (versão 2.1)
Faculdade Tecnológica de Carapicuíba Tecnologia em Logística Ênfase em Transportes Notas da Disciplina de Matemática (versão 2.1) A Matemática apresenta invenções tão sutis que poderão servir não só para
CÁLCULO I. 1 Funções. Objetivos da Aula. Aula n o 01: Funções. Denir função e conhecer os seus elementos; Reconhecer o gráco de uma função;
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 01: Funções. Objetivos da Aula Denir função e conhecer os seus elementos; Reconhecer o gráco de uma função; Denir funções compostas e inversas.
Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Módulo I: Cálculo Diferencial e Integral Fundamentos e tópicos de revisão
Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo Módulo I: Cálculo Diferencial e Integral Fundamentos e tópicos de revisão Professora Renata Alcarde Sermarini Notas de aula do professor
Noção de conjuntos Representação de um conjunto Relações de Pertinência Conjunto universo, unitário e vazio Conjunto universo Igualdade de conjuntos
Módulo 1 Conjuntos Noção de conjuntos A noção de conjuntos em matemática, é a mesma que a noção de conjunto que se tem no dia a dia, ou seja, conjunto, em matemática, é um agrupamento de coisas que possuem
MATEMÁTICA Prof.: Alexsandro de Sousa
E. E. DONA ANTÔNIA VALADARES MATEMÁTICA Prof.: Alexsandro de Sousa Introdução ao conceito de funções FERNANDO FAVORETTO/CID A ideia de função no cotidiano Relação entre duas grandezas Quantidade de pães
