AXB = {(x, y) x A e y B}
|
|
|
- Júlio Camarinho de Carvalho
- 9 Há anos
- Visualizações:
Transcrição
1 CENTRO UNIVERSITÁRIO DO NORTE PAULISTA LÓGICA E MATEMÁTICA DISCRETA Produto Cartesiano Par ordenado: são dois elementos em uma ordem fixa, (x,y) Produto Cartesiano: Dados dois conjuntos A e B, não vazios, chamamos de produto cartesiano de A por B o conjunto indicado por A X B, formado por todos os pares ordenados,nos quais o primeiro elemento pertence ao conjunto A e o segundo elemento pertence ao conjunto B: AXB = {(x, y) x A e y B} Exemplo: Dados os conjuntos A = {5,6} e B = {2,3,4}, vamos determinar o produto cartesiano AXB; a) representação ou forma tabular: AXB = {(5,2), (5,3), (5,4), (6,2), (6,3), (6,4)} b) representação ou forma gráfica: Relação Binária Dados dois conjuntos, A e B, não vazios, chamamos de relação binária (R) de A em B qualquer subconjunto do produto cartesiano A X B, ou seja, R AXB. O conjunto A é chamado de domínio, isto é, origem ou conjunto de partida de R. O conjunto B é chamado de contradomínio, isto é, destino ou conjunto de chegada de R. Os elementos de A são chamados de x e os elementos de B são chamados de y. O conjunto formado por todos os y pertencentes à relação chamamos de imagem. Exemplo: Dados os conjuntos A = {1,2,3} e B = {4,5,6}, efetuando o produto cartesiano A X B, temos: A X B = {(1,4), (1,5), (1,6), (2,4), (2,5), (2,6), (3,4), (3,5), (3,6)} Vamos considerar uma relação binária do produto cartesiano A X B, em que, o y é o dobro de x. Na linguagem simbólica: xry R = {(x, y) AXB y = 2x}.
2 Ou seja, a relação pedida é: R = {(2,4), (3,6)} Esta relação pode ser representada por um diagrama de flechas e também por um gráfico cartesiano: Neste exemplo temos: Domínio: D (R) = {1,2,3} Contradomínio: CD (R) = (4,5,6} Imagem: Im (R) = {4,6} Relação Inversa Seja R uma relação de A em B. A relação inversa de R, denotada por R-1, é definida de B em A por: R 1 = {( y, x) BXA (x, y) R}. Exemplo: Sejam A = {a,b,c} e B = {d,e,f} e R uma relação em AXB, definida por: R = {(a,d), (a,e),(a,f), (b,d),(b,e),(b,f),(c,d),(c,e),(c,f)} Então: R-1 = {(d,a),(e,a),(f,a),(d,b),(e,b),(f,b),(d,c),(e,c),(f,c)} Propriedades das Relações No estudo das relações sobre um conjunto A, com A finito e tendo poucos elementos, é útil a representação através do esquema de flechas. Representamos o conjunto A com seus elementos e indicamos cada par (x,y) da relação através de uma flecha com origem x e extremidade y. Se (x,x) está na relação, usa-se um laço envolvendo a, conforme o exemplo: Exemplo: O esquema abaixo representa a relação: R = {(a,a),(b,b),(a,b),(b,c),(c,b)} sobre A = {a,b,c} 2
3 Propriedade Reflexiva Uma relação R é reflexiva se todo elemento de A está relacionado consigo mesmo, ou seja,para todo x A: (x, x) R, isto é, para todo x A: xrx. Exemplo: Uma relação reflexiva em A = {a,b,c}, é dada por: R = {(a,a), (b,b), (c,c), (a,c)} Contra-exemplo: A relação R = {(a,a),(b,b),(a,b),(a,c)} sobre A = {a,b,c} não é reflexiva pois c não se relaciona com c. Propriedade Simétrica Uma relação R é simétrica se o fato que x está relacionado com y, implicar necessariamente que y está relacionado com x, ou seja: quaisquer que sejam x A e y A tal que (x, y) R,segue que ( y, x) R Exemplo: Uma relação simétrica em A = {a,b,c}, é dada por: R = {(a,a), (a,b), (c,c), (b,a)} Contra-exemplo: A relação R = {(a,a),(b,b),(a,c)} sobre A = {a,b,c} não é simétrica pois a se relaciona com c mas c não se relaciona com a. Propriedade Transitiva Uma relação R é transitiva, se x está relacionado com y e y está relacionado com z, implicar que x deve estar relacionado com z, ou seja: quaisquer que sejam x A, y A e z A, se (x, y) R e ( y, z) R então (x, z) R. Exemplo: Uma relação transitiva em A = {a,b,c}, é dada por: R = {(a,a), (a,c), (c,b), (a,b)} Contra-exemplo: A relação R = {(a,a),(b,b),(a,b),(b,c)} sobre A = {a,b,c} não é transitiva pois arb e brc mas a não se relaciona com c. Propriedade Anti-simétrica Uma relação R é anti-simétrica se x e y são elementos distintos do conjunto A então x não tem relação com y ou (exclusivo) y não tem relação com x, o que significa que o par de elementos distintos (x,y) do conjunto A poderá estar na relação desde que o par (y,x) não esteja. Exemplo: Uma relação anti-simétrica em A = {a,b,c}, é dada por: R = {(a,a), (b,b), (c,b), (a,b)} Contra-exemplo: A relação R = {(a,a),(b,b),(a,b),(b,a)} sobre A = {a,b,c} não é antisimétrica pois sendo a b, arb e bra. Relação de Equivalência Uma relação R sobre um conjunto A não vazio é chamada relação de equivalência sobre A se, e somente se, R é reflexiva, simétrica e transitiva. Ordem Parcial Uma relação binária em um conjunto A que seja reflexiva, anti-simétrica e transitiva é chamada de uma ordem parcial em A. 3
4 Ordem Total Uma ordem parcial onde todo elemento do conjunto está relacionado a todos os outros elementos é chamada de ordem total ou cadeia. FUNÇÃO Definição: Dados dois conjuntos A e B (formados por números reais), não vazios, uma relação f de A em B recebe o nome de função definida em A com imagens em B se, e somente se, para todo x A existe um só y B tal que (x,y) f. A) Esquema de flechas É necessário que todo elemento x A participe de pelo menos um par (x,y) f, isto é, todo elemento de A deve servir como ponto de partida de flecha. É necessário que cada elemento x A participe de apenas um único par (x,y) f, isto é, cada elemento de A deve servir como ponto de partida de uma única flecha. Exemplos Contra-exemplos B) Gráfico cartesiano Podemos verificar pela representação cartesiana da relação f de A em B se f é ou não função; basta verificarmos se a reta paralela ao eixo y conduzida pelo ponto (x,0), em que x A, encontra sempre o gráfico em um só ponto. Exemplo A = { x 1 x 3} Contra-exemplo A = { x 2 x 2} 4
5 Notação das funções Toda função é uma relação binária de A em B; portanto, toda função é um conjunto de pares ordenados. Geralmente, existe uma sentença aberta y = f(x) que expressa a lei mediante a qual, dado x A, determina-se y B tal que (x,y) f, então f = {(x,y) x A, y B e y = f(x)} Exemplos: f: A B tal que y = 2x f: IR IR tal que y = x 2 Imagem de um elemento Se (a,b) f, o elemento b é chamado imagem de a pelo valor de f no elemento a, e indicamos f(a) = b. Exemplo: Seja a função f: IR IR tal que y = 2x + 1, então: a) a imagem de 0 pela função f é 1, isto é: f(0) = = 1 b) a imagem de -2 pela função f é -3, isto é: f ( 2) = 2 ( 2) + 1 = 3 Domínio e imagem Chamamos de domínio o conjunto D dos elementos x A para os quais existe y B tal que (x,y) f. Como, pela definição de função, todo elemento de A tem essa propriedade, temos nas funções: domínio = conjunto de partida, isto é, D = A. Chamamos de imagem o conjunto Im dos elementos y B para os quais existe x A tal que (x,y) f; portanto: imagem é subconjunto do contradomínio, isto é, Im B. Notemos, que, feita a representação cartesiana da função f, temos: 5
Produto Cartesiano. Exemplo: Dados os conjuntos A = {5,6} e B = {2,3,4}, vamos determinar o produto cartesiano AXB;
Produto Cartesiano Par ordenado: são dois elementos em uma ordem fixa, (x,y) Produto Cartesiano: Dados dois conjuntos A e B, não vazios, chamamos de produto cartesiano de A por B o conjunto indicado por
A ordem em que os elementos se apresentam em um conjunto não é levada em consideração. Há
1 Produto Cartesiano Par Ordenado A ordem em que os elementos se apresentam em um conjunto não é levada em consideração. Há casos entretanto em que a ordem é importante. Daí a necessidade de se introduzir
Introdução às Funções
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Introdução às Funções Prof.:
É um sistema formado por dois eixos, x e y, perpendiculares entre si. Origem. Continua
RELAÇÕES É um sistema formado por dois eixos, x e y, perpendiculares entre si. Origem Continua Continuação O eixo x é denominado eixo das abscissas e o eixo y é o eixo das ordenadas. Esses eixos dividem
n. 28 RELAÇÕES BINÁRIAS ENTRE CONJUNTOS
n. 28 RELAÇÕES BINÁRIAS ENTRE CONJUNTOS Uma relação é um conjunto de pares ordenados, ou seja, um subconjunto de A B. Utilizando pares ordenados podemos definir relações por meio da linguagem de conjuntos.
Matemática Discreta Parte 11
Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta Parte 11 Prof. Jorge Cavalcanti [email protected] - www.univasf.edu.br/~jorge.cavalcanti
Par ordenado [ordered pair]. É uma estrutura do tipo x, y. Se x y x,y y,x.
Matemática Discreta ESTiG\IPB Cap2. Relações. Funções pg 4 Par ordenado [ordered pair]. É uma estrutura do tipo x, y. Se x y x,y y,x. então Produto cartesiano do conjunto A pelo conjunto B [cartesian product].
FUNÇÕES I- PRÉ-REQUISITOS PARA O ESTUDO DAS FUNÇÕES
FUNÇÕES I- PRÉ-REQUISITOS PARA O ESTUDO DAS FUNÇÕES 1- PRODUTO CARTESIANO 1.1- Par Ordenado - Ao par de números reais a e b, dispostos em uma certa ordem, denominamos par ordenado e indicamos por: (a,
Relações binárias. Laura Goulart. 7 de Março de 2018 UESB. Laura Goulart (UESB) Relações binárias 7 de Março de / 1
Relações binárias Laura Goulart UESB 7 de Março de 2018 Laura Goulart (UESB) Relações binárias 7 de Março de 2018 1 / 1 Produto Cartesiano Dados E, F conjuntos quaisquer não vazios, denimos o produto cartesiano
Curso: Ciência da Computação Disciplina: Matemática Discreta RELAÇÕES. Prof.: Marcelo Maraschin de Souza
Curso: Ciência da Computação Disciplina: Matemática Discreta RELAÇÕES Prof.: Marcelo Maraschin de Souza [email protected] Considere o conjunto S={1,2,3}, descreva o conjunto dos pares ordenados
Notas de Aula Disciplina Matemática Tópico 03 Licenciatura em Matemática Osasco -2010
1. Funções : Definição Considere dois sub-conjuntos A e B do conjunto dos números reais. Uma função f: A B é uma regra que define uma relação entre os elementos de A e B, de tal forma que a cada elemento
1. Conceito de função. 1, existe um só elemento y B tal que (x, y) S. 1. Conceito de função. 1. Conceito de função
UNIVERSIDDE DO ESTDO DE MTO GROSSO CMPUS UNIVERSITÁRIO DE SINOP FCULDDE DE CIÊNCIS EXTS E TECNOLÓGICS CURSO DE ENGENHRI CIVIL DISCIPLIN: FUNDMENTOS DE MTEMÁTIC Introdução às Funções. Conceito de função
Sejam A e B conjuntos não vazios. Chama-se produto cartesiano de A por B o conjunto
RELAÇÕES 1. PRODUTO CARTESIANO Sejam A e conjuntos não vazios. Chama-se produto cartesiano de A por o conjunto xy com x A e y. Notação: de todo os pares ordenados (, ) A ( x, y) x A e y Exemplo 1: Sejam
Função Inversa. 1.Função sobrejetora 2.Função injetora 3.Função bijetora 4.Função inversa
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Função Inversa Prof.: Rogério
eixo das ordenadas y eixo das abscissas Origem 1º quadrante 2º quadrante O (0, 0) x 4º quadrante 3º quadrante
PLANO CARTESIANO eixo das ordenadas y 2º quadrante 1º quadrante eixo das abscissas O (0, 0) x Origem 3º quadrante 4º quadrante y ordenado do ponto P 4 P P(3, 4) O 3 x abscissa do ponto P No caso, 3 e 4
Conjunto Quociente e Classe de Equivalência (Alguns Exemplos e Definições)
Exemplos Definições Conjunto Quociente e Classe de Equivalência (Alguns Exemplos e Definições) Matemática Elementar - EAD Departamento de Matemática Universidade Federal da Paraíba 4 de setembro de 2014
Relações Binárias, Aplicações e Operações
Relações Binárias, Aplicações e Operações MAT 131-2018 II Pouya Mehdipour 6 de dezembro de 2018 Pouya Mehdipour 6 de dezembro de 2018 1 / 24 Referências ALENCAR FILHO, E. Teoria Elementar dos Conjuntos,
FUNÇÕES Disciplina: Lógica Aplicada Prof. Rafael Dias Ribeiro. Autoria: Prof. Denise Candal
FUNÇÕES Disciplina: Lógica Aplicada Prof. Rafael Dias Ribeiro Autoria: Prof. Denise Candal Plano Cartesiano Fixando em um plano dois eixos reais Ox e Oy, perpendiculares entre si no ponto O, podemos determinar
Em Matemática existem situações em que há necessidade de distinguir dois pares pela ordem dos elementos. Por exemplo, no sistema de equações
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Relações Prof.: Rogério Dias
FUNÇÕES. Prof.ª Adriana Massucci
FUNÇÕES Prof.ª Adriana Massucci Introdução: Muitas grandezas com as quais lidamos no nosso cotidiano dependem uma da outra, isto é, a variação de uma delas tem como consequência a variação da outra. Exemplo:
INE Fundamentos de Matemática Discreta para a Computação
INE5403 - Fundamentos de Matemática Discreta para a Computação 5) Relações 5.1) Relações e Dígrafos 5.2) Propriedades de Relações 5.3) Relações de Equivalência 5.4) Manipulação de Relações 5.5) Fecho de
CONJUNTO DOS NÚMEROS INTEIROS
Fundamentos de Álgebra Moderna Profª Ana Paula CONJUNTO DOS NÚMEROS INTEIROS Os números inteiros formam um conjunto, que notaremos por, no qual estão definidas duas operações, que chamaremos de adição
Gênesis S. Araújo Pré-Cálculo
Gênesis Soares Jaboatão, de de 2016. Estudante: PAR ORDENADO: Um par ordenado de números reais é o conjunto formado por dois números reais em determinada ordem. Os parênteses, em substituição às chaves,
O ESTUDO DAS FUNÇÕES INTRODUÇÃO
O ESTUDO DAS FUNÇÕES INTRODUÇÃO DEFINIÇÃO As funções explicitam relações matemáticas especiais entre duas grandezas. As grandezas envolvidas nessas relações são conhecidas como variável dependente
Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática MAT Introdução à Álgebra 2015/I
1 Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática MAT 131 - Introdução à Álgebra 2015/I Tópico: Produto Cartesiano 1. Dados os conjuntos M = {1, 3, 5} e N = {2, 4},
4.1 Preliminares. No exemplo acima: Dom(R 1 ) = e Im(R 1 ) = Dom(R 2 ) = e Im(R 2 ) = Dom(R 3 ) = e Im(R 3 ) = Diagrama de Venn
4 Relações 4.1 Preliminares Definição 4.1. Sejam A e B conjuntos. Uma relação binária, R, de A em B é um subconjunto de A B. (R A B) Dizemos que a A está relacionado com b B sss (a, b) R. Notação: arb.
Matemática Complementos de Funções. Professor Marcelo Gonsalez Badin
Matemática Complementos de Funções Professor Marcelo Gonsalez Badin Paridade Função PAR f (x) é chamada FUNÇÃO PAR se f ( x) = f (x) Exemplo: f (x) = x 4 f ( x) = ( x) 4 = x 4 = f (x) O gráfico de uma
Todos os exercícios sugeridos nesta apostila se referem ao volume 1.
CONCEITO DE FUNÇÃO... 2 IMAGEM DE UMA FUNÇÃO... 8 IMAGEM A PARTIR DE UM GRÁFICO... 12 DOMÍNIO DE UMA FUNÇÃO... 15 DETERMIAÇÃO DO DOMÍNIO... 15 DOMÍNIO A PARTIR DE UM GRÁFICO... 17 GRÁFICO DE UMA FUNÇÃO...
MATEMÁTICA AULA 4 ÁLGEBRA CONJUNTOS. Conjunto é um conceito primitivo, e portanto, não tem definição.
1 - Conceito de Conjunto MATEMÁTICA AULA 4 ÁLGEBRA CONJUNTOS Conjunto é um conceito primitivo, e portanto, não tem definição. Representação O conjunto pode ser representado de três maneiras diferentes:
Relações binárias. Relações binárias. Discrete Mathematics with Graph Theory Edgar Goodaire e Michael Parmenter, 3rd ed 2006.
Relações binárias Relações binárias. Referência: Capítulo: 2 Discrete Mathematics with Graph Theory Edgar Goodaire e Michael Parmenter, 3rd ed 2006 1 RELAÇÕES BINÁRIAS Conjuntos-2 Combinar conjuntos C
Observamos então que as aplicações de plano cartesiano, produto cartesiano, relações e funções estão presentes no nosso cotidiano.
Relações e Funções Ao lermos um jornal ou uma revista, diariamente nos deparamos com gráficos, tabelas e ilustrações. Estes, são instrumentos muito utilizados nos meios de comunicação. Um texto com ilustrações,
Universidade Federal de Viçosa Departamento de Matemática III LISTA DE MAT INTRODUÇÃO À ÁLGEBRA
Universidade Federal de Viçosa Departamento de Matemática III LISTA DE MAT 131 - INTRODUÇÃO À ÁLGEBRA 1. Seja A = {1, 3, 5, 7, 11}. Verifique quais das seguintes proposições são verdadeiras ou falsas.
Notas de aula: Cálculo e Matemática Aplicados às Notas de aula: Ciências dos Alimentos
Notas de aula: Cálculo e Matemática Aplicados às Notas de aula: Ciências dos Alimentos 1 Conjuntos Um conjunto está bem caracterizado quando podemos estabelecer com certeza se um elemento pertence ou não
Matemática Básica Relações / Funções
Matemática Básica Relações / Funções 04 1. Relações (a) Produto cartesiano Dados dois conjuntos A e B, não vazios, denomina-se produto cartesiano de A por B ao conjunto A B cujos elementos são todos os
Funções. Funções. Cardinalidade de conjuntos. Discrete Mathematics with Graph Theory Edgar Goodaire e Michael Parmenter, 3rd ed 2006.
Funções Funções. Cardinalidade de conjuntos. Referência: Capítulo: 3 Discrete Mathematics with Graph Theory Edgar Goodaire e Michael Parmenter, 3rd ed 2006 1 FUNÇÕES Funções-2 Definição de função Uma função
Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 RELAÇÕES e FUNÇÕES
PAR ORDENADO... 2 PRODUTO CARTESIANO... 3 REPRESENTAÇÃO GRÁFICA... 4 RELAÇÃO... 8 DOMÍNIO E IMAGEM... 12 CONTRA-DOMÍNIO... 13 RELAÇÃO INVERSA... 17 PROPRIEDADES DA RELAÇÃO INVERSA... 18 FUNÇÕES... 22 IMAGEM
Notas de aulas. álgebra abstrata
1 Notas de aulas de álgebra abstrata UEMA LICENCIATURA EM MATEMATICA Elaborada por : Raimundo Merval Morais Gonçalves Licenciado em Matemática/UFMA Professor Assistente/UEMA Especialista em Ensino de Ciências/UEMA
Relações Binárias, Aplicações e Operações
Relações Binárias, Aplicações e Operações MAT 131-2018 II Pouya Mehdipour 19 de outubro de 2018 Pouya Mehdipour 19 de outubro de 2018 1 / 7 Referências ALENCAR FILHO, E. Teoria Elementar dos Conjuntos,
Matemática tica Discreta Módulo Extra (2)
Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática tica Discreta Módulo Extra (2) Prof. Jorge Cavalcanti [email protected] - www.univasf.edu.br/~jorge.cavalcanti
Plano Cartesiano. Relação Binária
Plano Cartesiano O plano cartesiano ortogonal é constituído por dois eixos x e y perpendiculares entre si que se cruzam na origem. O eixo horizontal é o eixo das abscissas (eixo OX) e o eixo vertical é
Esboço de Plano de Aula. Conteúdo específico: O uso do software WXMaxima nas equações do 1º Grau.
Esboço de Plano de Aula Bolsista: Rafael de Oliveira. Duração: 120 minutos. Conteúdo: Equações do 1º Grau. Conteúdo específico: O uso do software WXMaxima nas equações do 1º Grau. Objetivo geral: Permitir
Matemática Aplicada à Informática
Matemática Aplicada à Informática Unidade 9.0 Construindo Gráfico de uma Função Curso Técnico em Informática Aline Maciel Zenker SUMÁRIO SUMÁRIO... 2 GRÁFICOS DE FUNÇÃO DE 1º GRAU... 3 1 CARACTERÍSTICAS
FUNÇÃO. 4.1 Relação Binária. Definição 4.1
FUNÇÃO Apesar da formalização de função ter se efetivado com as reformas curriculares do século IX, seu uso já era freqüente desde a antiguidade, pelos babilônios. O conceito de função está presente em
Teoria dos Conjuntos MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES. Fundamentos de Lógica Técnicas Elementares de Prova A NOÇÃO DE CONJUNTO
SUMÁRIO MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES Teoria dos Conjuntos Relações e Funções Fundamentos de Lógica Técnicas Elementares de Prova Newton José Vieira 21 de agosto de 2007 1 A NOÇÃO DE CONJUNTO
DEFINIÇÃO DE FUNÇÃO y = x²
DEFINIÇÃO DE FUNÇÃO Definimos função como a relação entre dois ou mais conjuntos, estabelecida por uma lei de formação, isto é, uma regra geral. Os elementos de um grupo devem ser relacionados com os elementos
Matemática para Ciência de Computadores
Matemática para Ciência de Computadores 1 o Ano - LCC & ERSI Luís Antunes [email protected] DCC-FCUP Complexidade 2002/03 1 Relações Definição: Uma relação binária de um conjunto A num conjunto B é um subconjunto
1 FUNÇÃO - DEFINIÇÃO. Chama-se função do 1. grau toda função definida de por f(x) = ax + b com a, b e a 0.
MATEMÁTICA ENSINO MÉDIO FUNÇÃO - DEFINIÇÃO FUNÇÃO - DEFINIÇÃO Chama-se função do 1. grau toda função definida de por f(x) = ax + b com a, b e a 0. EXEMPLOS: f(x) = 5x 3, onde a = 5 e b = 3 (função afim)
Aula 1 Conjuntos. Meta. Introduzir as noções básicas de conjunto e produto cartesiano de. conjuntos. Objetivos
Conjuntos AULA 1 Aula 1 Conjuntos Meta conjuntos. Introduzir as noções básicas de conjunto e produto cartesiano de Objetivos Ao final desta aula, você deve ser capaz de: Definir as noções básicas de conjunto
Produto Cartesiano de dois conjuntos, Relações e Funções
o Semestre de 9/ Miscelânea Produto Cartesiano de dois conjuntos, elações e Funções Sejam e dois conjuntos e sejam a e b O conjunto a,a,b chama-se par ordenado e designa-se por (a,b) Os elementos a e b
CÁLCULO VETORIAL E GEOMETRIA ANÁLITICA
CÁLCULO VETORIAL E GEOMETRIA ANÁLITICA Consideremos uma reta r e sejam A e B dois pontos de r Ao segmento de reta AB, podemos associar 2 sentidos : de A para B e de B para A Escrevemos AB para representar
Teoria Elementar dos Conjuntos
Teoria Elementar dos Conjuntos Última revisão em 27 de fevereiro de 2009 Este texto é uma breve revisão sobre teoria elementar dos conjuntos. Em particular, importam-nos os aspectos algébricos no estudo
Teoria Elementar dos Conjuntos
Teoria Elementar dos Conjuntos Este capítulo visa oferecer uma breve revisão sobre teoria elementar dos conjuntos. Além de conceitos básicos importantes em matemática, a sua imprtância reside no fato da
complemento para a disciplina de Matemática Discreta versão 1 - Jerônimo C. Pellegrini Relações de Equivalência e de Ordem
Relações de Equivalência e de Ordem complemento para a disciplina de Matemática Discreta versão 1 Jerônimo C. Pellegrini 5 de agosto de 2013 ii Sumário Sumário Nomenclatura 1 Conjuntos e Relações 1 1.1
A noção intuitiva de função
Funções A noção intuitiva de função Situação 1 João vai escolher um plano de saúde entre duas opções: A e B. Veja as condições dos planos: Plano A: cobra um valor fixo mensal de R$ 140,00 e R$ 20,00 por
Equação de 1º Grau. ax = -b
Introdução Equação é toda sentença matemática aberta que exprime uma relação de igualdade. A palavra equação tem o prefixo equa, que em latim quer dizer "igual". Exemplos: 2x + 8 = 0 5x - 4 = 6x + 8 3a
2 Igualdade e Operações com pares ordenados. 1 Conjunto R 2. 3 Vetores. 2.1 Igualdade. 1.2 Coordenadas Cartesianas no Plano
1 Conjunto R 1.1 Definição VETORES NO PLANO Representamos por R o conjunto de todos os pares ordenados de números reais, ou seja: R = {(x, y) x R y R} 1. Coordenadas Cartesianas no Plano Em um plano α,
Relações. Relações. {1, 2} = {2, 1}, {3, -1} = {-1, 3}, {a, b} = {b, a}.
UNIVERSIDDE DO ESTDO DE MTO GROSSO CMPUS UNIVERSITÁRIO DE SINOP FCULDDE DE CIÊNCIS EXTS E TECNOLÓGICS CURSO DE ENGENHRI CIVIL DISCIPLIN: FUNDMENTOS DE MTEMÁTIC Relações. Par ordenado Em Matemática eistem
Em matemática definimos e estudamos conjuntos de números, pontos, retas curvas, funções etc.
INTRODUÇÃO Curso de Geometria Analítica Abrangência: Graduação em Engenharia e Matemática Professor Responsável: Anastassios H. Kambourakis Resumo Teórico 02 - Introdução, Plano Cartesiano, Pontos e Retas
Lista de Exercícios 8: Soluções Relações
UFMG/ICEx/DCC DCC111 Matemática Discreta Lista de Exercícios 8: Soluções Relações Ciências Exatas & Engenharias 2 o Semestre de 2016 Definição 1 [Composição de relações]. Seja R uma relação do conjunto
1. Conhecendo-se somente os produtos AB e AC, calcule A = X 2 = 2X. 3. Mostre que se A e B são matrizes que comutam com a matriz M = 1 0
Lista de exercícios. AL. 1 sem. 2015 Prof. Fabiano Borges da Silva 1 Matrizes Notações: 0 para matriz nula; I para matriz identidade; 1. Conhecendo-se somente os produtos AB e AC calcule A(B + C) B t A
MATEMÁTICA. Conceito de Funções. Professor : Dêner Rocha
MATEMÁTICA Conceito de Funções Professor : Dêner Rocha Monster Concursos 1 Noção de Função 1º) Dados A = {-, -1, 0, 1, } e B = {-8, -6, -4, -3, 0, 3, 6, 7} e a correspondência entre A e B dada pela fórmula
Números Reais. Jairo Menezes e Souza 19/09/2013 UFG/CAC
UFG/CAC 19/09/2013 Iniciamos com o conjunto dos números naturais N = {0, 1, 2, 3, 4, 5,...} Iniciamos com o conjunto dos números naturais N = {0, 1, 2, 3, 4, 5,...} Chamamos de Z o conjunto dos números
ALGEBRA I Maria L ucia Torres Villela Instituto de Matem atica Universidade Federal Fluminense Junho de 2007 Revis ao em Fevereiro de 2008
ÁLGEBRA I Maria Lúcia Torres Villela Instituto de Matemática Universidade Federal Fluminense Junho de 2007 Revisão em Fevereiro de 2008 Sumário Introdução... 3 Parte 1 - Preliminares... 5 Seção 1 - Noções
Tópicos de Matemática. Teoria elementar de conjuntos
Tópicos de Matemática Lic. em Ciências da Computação Teoria elementar de conjuntos Carla Mendes Dep. Matemática e Aplicações Universidade do Minho 2010/2011 Tóp. de Matemática - LCC - 2010/2011 Dep. Matemática
Sumário Algumas Demonstrações CONCLUSÃO RESUMO ATIVIDADES... 34
Sumário Aula 11: Relações Binárias 9 11.1 Introdução... 10 11.2 Relações Binárias... 10 11.2.1 Propriedades das Relações Binárias... 13 11.3 Algumas Demonstrações... 16 11.4 CONCLUSÃO... 18 11.5 RESUMO....
Pré-Cálculo. Humberto José Bortolossi. Aula 8 26 de abril de Departamento de Matemática Aplicada Universidade Federal Fluminense
Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 8 26 de abril de 200 Aula 8 Pré-Cálculo O que é uma função? Funções reais Uma função real f
AULA 4 - MATEMATICA BÁSICA: FUNÇÃO DO 1º GRAU
UL - MTEMTIC ÁSIC: FUNÇÃO DO º GRU. Definição e eemplos (Revisão) Função é uma relação entre dois conjuntos e definida por uma lei de formação f (ou regra), onde cada elemento de está relacionado com apenas
Capítulo Propriedades das operações com vetores
Capítulo 6 1. Propriedades das operações com vetores Propriedades da adição de vetores Sejam u, v e w vetores no plano. Valem as seguintes propriedades. Comutatividade: u + v = v + u. Associatividade:
MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES
MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES Newton José Vieira 21 de agosto de 2007 SUMÁRIO Teoria dos Conjuntos Relações e Funções Fundamentos de Lógica Técnicas Elementares de Prova 1 CONJUNTOS A NOÇÃO
Álgebra Linear e Geometria Analítica Bacharelados e Engenharias Parte I - Matrizes
Álgebra Linear e Geometria Analítica Bacharelados e Engenharias Parte I - Matrizes Prof.a Tânia Preto Departamento Acadêmico de Matemática UTFPR - 2014 Importante Material desenvolvido a partir dos livros
Apontamentos de Matemática Discreta
Apontamentos de Matemática Discreta Ano Lectivo 2014/2015 Henrique Cruz Conteúdo 1 Agrupar Objectos: Conjuntos 1 1.1 Teoria intuitiva de conjuntos............................. 1 1.2 Conjunto universal
ELEMENTOS DE MATEMÁTICA DISCRETA Exame de Segunda Data 18/01/2011
Uma Resolução ELEMENTOS DE MATEMÁTICA DISCRETA Exame de Segunda Data 18/01/2011 1. Seleccione e transcreva para a sua folha de exame a única opção correcta: A fórmula proposicional (p q) (p q) é a) logicamente
2. Pré-requisitos do 3. Ciclo. 7. ano PR 7.1. Resolução
7. ano PR 7.1. Dados dois conjuntos A e B fica definida uma função 1ou aplicação2 f de A em B, quando a cada elemento de A se associa um elemento único de B representado por f 1x2. Dada uma função numérica
Reticulados e Álgebras de Boole
Capítulo 3 Reticulados e Álgebras de Boole 3.1 Reticulados Recorde-se que uma relação de ordem parcial num conjunto X é uma relação reflexiva, anti-simétrica e transitiva em X. Um conjunto parcialmente
Linguagens Formais e Autômatos P. Blauth Menezes
Linguagens Formais e Autômatos P. Blauth Menezes [email protected] Departamento de Informática Teórica Instituto de Informática / UFRGS Matemática Discreta para Ciência da Computação - P. Blauth Menezes
CÁLCULO I. 1 Funções. Objetivos da Aula. Aula n o 01: Funções. Denir função e conhecer os seus elementos; Reconhecer o gráco de uma função;
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 01: Funções. Objetivos da Aula Denir função e conhecer os seus elementos; Reconhecer o gráco de uma função; Denir funções compostas e inversas.
Revisão de conceitos Matemáticos. Matemática e Fundamentos de Informática
Revisão de conceitos Matemáticos Matemática e Fundamentos de Informática 1 1 Conjuntos Teoria dos conjuntos Em Matemática, conjunto é uma coleção de objetos (chamados elementos). Os elementos podem representar
CÁLCULO I. Aula n o 02: Funções. Determinar o domínio, imagem e o gráco de uma função; Reconhecer funções pares, ímpares, crescentes e decrescentes;
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 02: Funções Objetivos da Aula Denir e reconhecer funções; Determinar o domínio, imagem e o gráco de uma função; Reconhecer funções pares,
CÁLCULO I. 1 Número Reais. Objetivos da Aula
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida EMENTA: Conceitos introdutórios de limite, limites trigonométricos, funções contínuas, derivada e aplicações. Noções introdutórias sobre a integral
UNIDADE III INTRODUÇÃO AO ESTUDO DE FUNÇÃO PARTE 2 de 2
UNIDADE III INTRODUÇÃO AO ESTUDO DE FUNÇÃO PARTE de 3.0. IMAGEM DE UM ELEMENTO ATRAVÉS DO DIAGRAMA DE FLECHAS 3.. IMAGEM DE UM ELEMENTO ATRAVÉS DE Y = F(X) 3.. IMAGEM DE UM ELEMENTO ATRAVÉS DO GRÁFICO
Números - Aula 03. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil
Números - Aula 03 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 28 de Fevereiro de 2014 Primeiro Semestre de 2014 Turma 2013106 - Engenharia Mecânica Corpos Vimos que o
ENFOQUE USANDO CORTES DE DEDEKIND
Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência c Publicação eletrônica do KIT http://www.dma.uem.br/kit CONSTRUÇÃO DOS REAIS: UM ENFOQUE
Dado um inteiro positivo n, definimos U(n) como sendo o conjunto dos inteiros positivos menores que n e primos com n. Não é difícil ver que a
Exemplo (U(n)) Dado um inteiro positivo n, definimos U(n) como sendo o conjunto dos inteiros positivos menores que n e primos com n. Não é difícil ver que a multiplicação módulo n é uma operação binária
IBM1088 Linguagens Formais e Teoria da
IBM1088 Linguagens Formais e Teoria da Computação Linguagens e Gramáticas Evandro Eduardo Seron Ruiz [email protected] Universidade de São Paulo E.E.S. Ruiz (USP) LFA 1 / 47 Frase do dia Sofremos muito com
