ELEMENTOS DE MATEMÁTICA DISCRETA Exame de Segunda Data 18/01/2011

Tamanho: px
Começar a partir da página:

Download "ELEMENTOS DE MATEMÁTICA DISCRETA Exame de Segunda Data 18/01/2011"

Transcrição

1 Uma Resolução ELEMENTOS DE MATEMÁTICA DISCRETA Exame de Segunda Data 18/01/ Seleccione e transcreva para a sua folha de exame a única opção correcta: A fórmula proposicional (p q) (p q) é a) logicamente equivalente a (p q) b) logicamente equivalente a (p q) c) logicamente equivalente a p d) uma contradição c) logicamente equivalente a p 2. (a) Transcreva para a sua folha de exame e complete a seguinte tabela de verdade p q q p q (p q) q e use-a para obter uma fórmula logicamente equivalente a (p q) q na forma normal disjuntiva. (p q) q pq pq (b) Mostre, sem usar tabelas de verdade, que (p q) p é logicamente equivalente a p q. (p q) p (p q) p ( p q) p ( p p) ( q p) (p q) (p q) (c) Para cada uma das afirmações seguintes, diga (sem justificar) se é Verdadeira ou Falsa: i. x R y R(x < y z R(x < z < y)) ii. x Z y Z(x < y x 2 < y 2 ) i. Verdadeira ii. Falsa

2 3. Sejam A = {x N x 2 < 11}, B = {5,9} e C = P(B). Represente em extensão os conjuntos a seguir indicados: (a) A = {1,2,3} (b) B A = {5,9} (c) C = {,{5},{9},{5,9}} (d) B A = {1,2,3,5,9} 4. (a) Aplicando convenientemente as Leis de DeMorgan, escreva a negação da seguinte proposição: x y(xry (yrx yry)) x y(xry (y Rx y Ry)) (b) Considere o conjunto A = {alunos inscritos na FCUL}, e a função f : A N 0 tal que, para cada aluno x, f(x) é o número de disciplinas em que já foi aprovado. i. Diga, justificando, se f é injectiva. ii. Considere a relação binária R, definida no conjunto A por Diga, justificando, se: R é transitiva; R é anti-simétrica. xry f(x) f(y) i. A função f NÃO É injectiva, porque há alunos diferentes que foram aprovados no mesmo número de disciplinas. ii. A relação binária R É transitiva: se arb e brc, então temos f(a) f(b) e f(b) f(c); pela transitividade da relação de ordem nos números inteiros, concluímos que f(a) f(c), i. e., que arc. A relação binária R NÃO É anti-simétrica, porque há alunos que foram aprovados no mesmo número de cadeiras. Tomando dois alunos diferentes, a e b, aprovados no mesmo número de disciplinas, temos arb e bra, mas a b.

3 5. a) Diga o que entende por uma relação de equivalência num conjunto X. Uma relação de equivalência num conjunto X é uma relação binária em X que é reflexiva, simétrica e transitiva. b) Considere, no conjunto A = {a,b,c,d,e,h,i}, a relação de ordem parcial descrita pelo seguinte diagrama de Hasse: i c a d b e h i. Indique todos os majorantes do conjunto {a,b} e diga se existe supremo deste conjunto. ii. Indique, em cada caso, elementos de A nas condições indicadas, caso existam: A. Um elemento minimal diferente de h. B. Um elemento maximal C. a e D. Um par de elementos que não tenha ínfimo iii. Diga, justificando, se o c.p.o. é ou não um reticulado. i. Os majorantes do conjunto {a,b} são c, d e i. Como não existe mínimo do conjunto {c,d,i}, o conjunto {a,b} não tem supremo. ii. A. e B. i C. d D. b e e iii. O c.p.o. NÃO É um reticulado, porque, por exemplo, há pares de elementos que não têm supremo (como se viu na alínea i.) (para ser reticulado, cada par de elementos tem de ter supremo e ínfimo).

4 6. Sejam A = {a,b,c}, B = {h,i,j,k} e C = {1,2,3,4,5}. a) Em cada uma das alíneas seguintes, descreva uma função nas condições indicadas ou explique por que razão tal função não existe. (Pode usar diagramas de Venn se o desejar) i. uma função injectiva, mas não sobrejectiva, f : A C; ii. uma função sobrejectiva g : B C. b) Usando diagramas de Venn, descreva duas funções f : A B e g : B C, tais que (g f)(a) = (g f)(b) = 1, (g f)(c) = 2 e f(a) f(b). a) i. ii. Não existe nenhuma função sobrejectiva de B para C, porque o conjunto B tem menos elementos do que C. a 1 2 b 3 c 4 5 b) a f h i g 1 2 b j 3 c k a) Das quatro afirmações seguintes, apenas duas são verdadeiras, para quaisquer números inteiros a e b. Transcreva-as para a sua folha de exame. (i) Se mdc(a,b) 24, então a 24 ou b 24. (ii) Se mdc(a,b) 24, então 5 a ou 5 b. (iii) Se a 16 e b 24, então mmc(a,b) 48. (iv) Se mmc(a,b) 48, então a 16 e b 24. (ii) Se mdc(a,b) 24, então 5 a ou 5 b. (iii) Se a 16 e b 24, então mmc(a,b) 48.

5 b) Justifique APENAS UMA das afirmações que seleccionou como verdadeiras. (ii) Se a 16, e como 16 48, também, por transitividade, a 48. Analogamente, porque b 24 e 24 48, também b 48. Por definição de mínimo múltiplo comum, concluímos que mmc(a,b) 48. c) Para APENAS UMA das afirmações que não são verdadeiras, apresente um contraexemplo adequado. Contra-exemplo para a afirmação (iv): se a = 48 e b = 48, tem-se mmc(a,b) 48, mas a a) Considere o número inteiro n = Sem efectuar a multiplicação, determine o resto da divisão de n por 4. b) Considere, para um certo inteiro positivo m, a congruência 12x 3(modm). i. Para m = 11, indique uma solução da congruência. ii. Mostre que, para m = 18, a congruência não admite soluções. a) Pelo critério de congruência módulo 4, cada número é congruente com o número formado apenas pelos algarismos das dezenas e das unidades, pelo que e Logo, temos n = = 9 1 O resto da divisão de n por 4 é igual a 1. b) i. Como 12 1(mod11), temos 12x x(mod11), peloque uma solução dacongruência 12x 3(mod11) é x = 3. ii. Como mdc(12,18) = 6 3, a congruência 12x 3(mod18) não tem soluções. 9. a) Utilize a decomposição em factoresprimos de1029 = e413 = 7 37 paradeterminar o mdc(1029,413). b) Diga, justificando, qual o menor número inteiro positivo u que se pode escrever na forma u = 1029x+413y, com x e y inteiros. a) Das decomposições de 1029 e 413 em factores primos resulta imediatamente que mdc(1029, 413) = 7. b) O menor número inteiro positivo que se pode exprimir na forma indicada é o mdc(1029, 413) que, como vimos na alínea anterior, é igual a a) Considere as matrizes A = B =

6 Para cada um dos produtos A B e B A, calcule-o ou explique por que razão não faz sentido. b) i. Escreva a matriz que determina, em R 3, uma homotetia de centro na origem e razão 3. ii. Escreva uma matriz P tal que P = a) O produto A B não faz sentido, porque o número de colunas de A não é igual ao número de linhas de B. B A = = b) i ii. P = a) Usando congruências módulo 7, mostre que, para quaisquer inteiros x e a, 10x+a 0(mod7) se e só se x 2a 0(mod7). (Sugestão: para estabelecer uma das implicações, multiplique 10x + a por 2; para a outra, multiplique x 2a por 3) b) Utilize o resultado estabelecido na alínea anterior para mostrar que o número 7133 é divisível por 7, sem efectuar a divisão. [Nota: este resultado permite estabelecer um critério de divisibilidade por 7, que não estudámos nas aulas.] a) Supondo que 10x+a 0(mod7), então temos, módulo 7: 0 = ( 2) 0 ( 2) (10x+a) = 20x 2a x 2a em que a última congruência resulta de que 20 1(mod7). Reciprocamente, se x 2a 0(mod7): 0 = (x 2a) = 3x 6a 10x+a em que a última congruência resulta de ser 3 10(mod7) e 6 1(mod7). b) Pelo resultado anterior 7133 = será divisível por 7 (i. e., congruente com zero módulo 7) se e só se o for. Ora = 707 = é divisível por 7; logo, 7133 também o é.

Lógica e Matemática Discreta

Lógica e Matemática Discreta Lógica e Matemática Discreta Teoria Elementar dos Conjuntos Prof Clezio 19 de Agosto de 2018 Curso de Ciência da Computação Relações Binárias Sejam A e B dois conjuntos. Definição: Chama-se relação binária

Leia mais

Par ordenado [ordered pair]. É uma estrutura do tipo x, y. Se x y x,y y,x.

Par ordenado [ordered pair]. É uma estrutura do tipo x, y. Se x y x,y y,x. Matemática Discreta ESTiG\IPB Cap2. Relações. Funções pg 4 Par ordenado [ordered pair]. É uma estrutura do tipo x, y. Se x y x,y y,x. então Produto cartesiano do conjunto A pelo conjunto B [cartesian product].

Leia mais

Matemática Discreta. Introdução à Teoria de Números - Exercícios 1 o ano /2011

Matemática Discreta. Introdução à Teoria de Números - Exercícios 1 o ano /2011 Lic. em Ciências da Computação Matemática Discreta Introdução à Teoria de Números - Exercícios 1 o ano - 2010/2011 1. Determine o quociente e o resto na divisão de: (a) 310156 por 197; (b) 32 por 45; (c)

Leia mais

Apontamentos de Matemática Discreta

Apontamentos de Matemática Discreta Apontamentos de Matemática Discreta Ano Lectivo 2014/2015 Henrique Cruz Conteúdo 1 Agrupar Objectos: Conjuntos 1 1.1 Teoria intuitiva de conjuntos............................. 1 1.2 Conjunto universal

Leia mais

A ordem em que os elementos se apresentam em um conjunto não é levada em consideração. Há

A ordem em que os elementos se apresentam em um conjunto não é levada em consideração. Há 1 Produto Cartesiano Par Ordenado A ordem em que os elementos se apresentam em um conjunto não é levada em consideração. Há casos entretanto em que a ordem é importante. Daí a necessidade de se introduzir

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I Texto de apoio às aulas. Amélia Bastos, António Bravo Dezembro 2010 Capítulo 1 Números reais As propriedades do conjunto dos números reais têm por base um conjunto restrito

Leia mais

4.1 Preliminares. No exemplo acima: Dom(R 1 ) = e Im(R 1 ) = Dom(R 2 ) = e Im(R 2 ) = Dom(R 3 ) = e Im(R 3 ) = Diagrama de Venn

4.1 Preliminares. No exemplo acima: Dom(R 1 ) = e Im(R 1 ) = Dom(R 2 ) = e Im(R 2 ) = Dom(R 3 ) = e Im(R 3 ) = Diagrama de Venn 4 Relações 4.1 Preliminares Definição 4.1. Sejam A e B conjuntos. Uma relação binária, R, de A em B é um subconjunto de A B. (R A B) Dizemos que a A está relacionado com b B sss (a, b) R. Notação: arb.

Leia mais

INE Fundamentos de Matemática Discreta para a Computação

INE Fundamentos de Matemática Discreta para a Computação INE5403 - Fundamentos de Matemática Discreta para a Computação 5) Relações 5.1) Relações e Dígrafos 5.2) Propriedades de Relações 5.3) Relações de Equivalência 5.4) Manipulação de Relações 5.5) Fecho de

Leia mais

Matemática Discreta - Departamento de Matemática - EST-IPV / III

Matemática Discreta - Departamento de Matemática - EST-IPV / III Matemática Discreta - Departamento de Matemática - EST-IPV - 2003/2004 III - 1 Matemática Discreta - Departamento de Matemática - EST-IPV - 2003/2004 - III 1. Conjuntos Conjuntos, relações e funções Axioma

Leia mais

Elementos de Matemática Finita

Elementos de Matemática Finita Elementos de Matemática Finita Exercícios Resolvidos - Princípio de Indução; Algoritmo de Euclides 1. Seja ( n) k n! k!(n k)! o coeficiente binomial, para n k 0. Por convenção, assumimos que, para outros

Leia mais

complemento para a disciplina de Matemática Discreta versão 1 - Jerônimo C. Pellegrini Relações de Equivalência e de Ordem

complemento para a disciplina de Matemática Discreta versão 1 - Jerônimo C. Pellegrini Relações de Equivalência e de Ordem Relações de Equivalência e de Ordem complemento para a disciplina de Matemática Discreta versão 1 Jerônimo C. Pellegrini 5 de agosto de 2013 ii Sumário Sumário Nomenclatura 1 Conjuntos e Relações 1 1.1

Leia mais

(Ciência de Computadores) 2005/ Diga quais dos conjuntos seguintes satisfazem o Princípio de Boa Ordenação

(Ciência de Computadores) 2005/ Diga quais dos conjuntos seguintes satisfazem o Princípio de Boa Ordenação Álgebra (Ciência de Computadores) 2005/2006 Números inteiros 1. Diga quais dos conjuntos seguintes satisfazem o Princípio de Boa Ordenação (a) {inteiros positivos impares}; (b) {inteiros negativos pares};

Leia mais

A2. Cada operação é distributiva sobre a outra, isto é, para todo x, y e z em A, x (y + z) = (x y) + (x z) e x + (y z) = (x + y) (x + z)

A2. Cada operação é distributiva sobre a outra, isto é, para todo x, y e z em A, x (y + z) = (x y) + (x z) e x + (y z) = (x + y) (x + z) Álgebra Booleana Nesta parte veremos uma definição formal de álgebra booleana, que é baseada em um conjunto de axiomas (ou postulados). Veremos também algumas leis ou propriedades de álgebras booleanas.

Leia mais

Matemática D s r t i c e a

Matemática D s r t i c e a Matemática D s r t i c e a A B A B q A B A B u t f p g n h a b m e c d i l j k s r Maria do Rosário Fernandes Departamento de Matemática Faculdade de Ciências e Tecnologia UNL Índice i Capítulo 1 CONJUNTOS

Leia mais

Matemática para Ciência dos Computadores 30 de Dezembro, Docente: Luís Antunes & Sandra Alves

Matemática para Ciência dos Computadores 30 de Dezembro, Docente: Luís Antunes & Sandra Alves Matemática para Ciência dos Computadores 30 de Dezembro, 2003 Docente: Luís Antunes & Sandra Alves Mais exercícios de MCC 1. Sejam p, q, r e p 1, p 2, p 3 as seguintes afirmações primitivas e premissas

Leia mais

3.4 Álgebra booleana, ordens parciais e reticulados

3.4 Álgebra booleana, ordens parciais e reticulados Notas de aula de MAC0329 (2003) 23 3.4 Álgebra booleana, ordens parciais e reticulados Seja A um conjunto não vazio. Uma relação binária R sobre A é um subconjunto de A A, isto é, R A A. Se (x, y) R, denotamos

Leia mais

Reticulados e Álgebras de Boole

Reticulados e Álgebras de Boole Capítulo 3 Reticulados e Álgebras de Boole 3.1 Reticulados Recorde-se que uma relação de ordem parcial num conjunto X é uma relação reflexiva, anti-simétrica e transitiva em X. Um conjunto parcialmente

Leia mais

MATEMÁTICA MÓDULO 8 DIVISIBILIDADE E CONGRUÊNCIA. Professor Matheus Secco

MATEMÁTICA MÓDULO 8 DIVISIBILIDADE E CONGRUÊNCIA. Professor Matheus Secco MATEMÁTICA Professor Matheus Secco MÓDULO 8 DIVISIBILIDADE E CONGRUÊNCIA 1. DIVISIBILIDADE Definição: Sejam a, b inteiros com a 0. Diz-se que a divide b (denota-se por a b) se existe c inteiro tal que

Leia mais

Matemática para Ciência de Computadores

Matemática para Ciência de Computadores Matemática para Ciência de Computadores 1 o Ano - LCC & ERSI Luís Antunes lfa@ncc.up.pt DCC-FCUP Complexidade 2002/03 1 Fecho transitivo Teorema: o fecho transitivo de uma relação R é igual a relação de

Leia mais

Elementos de Matemática Finita

Elementos de Matemática Finita Elementos de Matemática Finita Exercícios Resolvidos 1 - Algoritmo de Euclides; Indução Matemática; Teorema Fundamental da Aritmética 1. Considere os inteiros a 406 e b 654. (a) Encontre d mdc(a,b), o

Leia mais

MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES

MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES Newton José Vieira 21 de agosto de 2007 SUMÁRIO Teoria dos Conjuntos Relações e Funções Fundamentos de Lógica Técnicas Elementares de Prova 1 CONJUNTOS A NOÇÃO

Leia mais

Matemática- 2008/ Se possível, dê exemplos de: (no caso de não ser possível explique porquê)

Matemática- 2008/ Se possível, dê exemplos de: (no caso de não ser possível explique porquê) Matemática- 00/09. Se possível, dê exemplos de (no caso de não ser possível explique porquê) (a) Uma matriz do tipo ; cujos elementos principais sejam 0. (b) Uma matriz do tipo ; cujo elemento na posição

Leia mais

Matemática Discreta. Fundamentos e Conceitos da Teoria dos Números. Universidade do Estado de Mato Grosso. 4 de setembro de 2017

Matemática Discreta. Fundamentos e Conceitos da Teoria dos Números. Universidade do Estado de Mato Grosso. 4 de setembro de 2017 Matemática Discreta Fundamentos e Conceitos da Teoria dos Números Professora Dr. a Donizete Ritter Universidade do Estado de Mato Grosso 4 de setembro de 2017 Ritter, D. (UNEMAT) Matemática Discreta 4

Leia mais

ax + by 347 = 0 k = text UNIDADE CURRICULAR: Matemática Finita CÓDIGO: DOCENTES: Gilda Ferreira e Ana Nunes

ax + by 347 = 0 k = text UNIDADE CURRICULAR: Matemática Finita CÓDIGO: DOCENTES: Gilda Ferreira e Ana Nunes text UNIDADE CURRICULAR: Matemática Finita CÓDIGO: 21082 DOCENTES: Gilda Ferreira e Ana Nunes Resolução e Critérios de Correção 1. Sejam a, b Z tais que mdc(a, b) = 12. Relativamente à equação ax + by

Leia mais

Aritmética Racional MATEMÁTICA DISCRETA. Patrícia Ribeiro. Departamento de Matemática, ESTSetúbal 2018/ / 42

Aritmética Racional MATEMÁTICA DISCRETA. Patrícia Ribeiro. Departamento de Matemática, ESTSetúbal 2018/ / 42 1 / 42 MATEMÁTICA DISCRETA Patrícia Ribeiro Departamento de Matemática, ESTSetúbal 2018/2019 2 / 42 1 Combinatória 2 3 Grafos 3 / 42 Capítulo 2 4 / 42 Axiomática dos Inteiros Sejam a e b inteiros. Designaremos

Leia mais

A prática já tida com conjuntos familiariza com os axiomas seguintes:

A prática já tida com conjuntos familiariza com os axiomas seguintes: Capítulo III Conjuntos, relações e funções 1 1 Conjuntos A prática já tida com conjuntos familiariza com os axiomas seguintes: Axioma da Extensão: Dois conjuntos são iguais se, e somente se, têm os mesmos

Leia mais

Lógica e Programação - Folha de trabalho n. 3

Lógica e Programação - Folha de trabalho n. 3 Lógica de 1 ā ordem Linguagens, termos, fórmulas e semântica 1 Seja L uma linguagem de 1 ā ordem com igualdade e tal que F 0 = {a, b}, F 1 = {g}, F 2 = {f, h}, R 1 = {R, S} e R 2 = {P, Q}. i. O comprimento

Leia mais

(A1) As operações + e são comutativas, ou seja, para todo x e y em A, x + y = y + x e x y = y x

(A1) As operações + e são comutativas, ou seja, para todo x e y em A, x + y = y + x e x y = y x Notas de aula de MAC0329 (2003) 17 3 Álgebra Booleana Nesta parte veremos uma definição formal de álgebra booleana, a qual é feita via um conjunto de axiomas (ou postulados). Veremos também algumas leis

Leia mais

Aula 1 Conjuntos. Meta. Introduzir as noções básicas de conjunto e produto cartesiano de. conjuntos. Objetivos

Aula 1 Conjuntos. Meta. Introduzir as noções básicas de conjunto e produto cartesiano de. conjuntos. Objetivos Conjuntos AULA 1 Aula 1 Conjuntos Meta conjuntos. Introduzir as noções básicas de conjunto e produto cartesiano de Objetivos Ao final desta aula, você deve ser capaz de: Definir as noções básicas de conjunto

Leia mais

Matemática Discreta 11/12 Soluções

Matemática Discreta 11/12 Soluções Matemática Discreta 11/1 Soluções Lógica 1. (a) Não é proposição. (b) Proposição verdadeira. (c) Proposição falsa. (d) Não é proposição. (e) Proposição falsa. (f) Não é proposição.. (a) + 4 5 e. (c) A

Leia mais

FICHA DE TRABALHO N.º 2 MATEMÁTICA A - 10.º ANO CONJUNTOS E CONDIÇÕES

FICHA DE TRABALHO N.º 2 MATEMÁTICA A - 10.º ANO CONJUNTOS E CONDIÇÕES FICHA DE TRABALHO N.º MATEMÁTICA A - 10.º ANO CONJUNTOS E CONDIÇÕES Conhece a Matemática e dominarás o Mundo. Galileu Galilei GRUPO I ITENS DE ESCOLHA MÚLTIPLA 1. Considere a condição px : x é um número

Leia mais

DISCIPLINA: MATEMÁTICA DISCRETA I PROFESSOR: GISLAN SILVEIRA SANTOS CURSO: SISTEMAS DE INFORMAÇÃO SEMESTRE: TURNO: NOTURNO

DISCIPLINA: MATEMÁTICA DISCRETA I PROFESSOR: GISLAN SILVEIRA SANTOS CURSO: SISTEMAS DE INFORMAÇÃO SEMESTRE: TURNO: NOTURNO DISCIPLINA: MATEMÁTICA DISCRETA I PROFESSOR: GISLAN SILVEIRA SANTOS CURSO: SISTEMAS DE INFORMAÇÃO SEMESTRE: 2018-2 TURNO: NOTURNO ALUNO a): 1ª Lista de Exercícios - Introdução à Lógica Matemática, Teoria

Leia mais

Matemática Discreta para Computação: Prova 1 06/09/2017

Matemática Discreta para Computação: Prova 1 06/09/2017 Matemática Discreta para Computação: Prova 1 06/09/2017 Aluno(a): 1. Considere as premissas: Se o universo é finito, então a vida é curta., Se a vida vale a pena, então a vida é complexa., Se a vida é

Leia mais

Roteiro da segunda aula presencial - ME

Roteiro da segunda aula presencial - ME PIF Enumerabilidade Teoria dos Números Congruência Matemática Elementar Departamento de Matemática Universidade Federal da Paraíba 29 de outubro de 2014 PIF Enumerabilidade Teoria dos Números Congruência

Leia mais

AXB = {(x, y) x A e y B}

AXB = {(x, y) x A e y B} CENTRO UNIVERSITÁRIO DO NORTE PAULISTA LÓGICA E MATEMÁTICA DISCRETA 2010 1 Produto Cartesiano Par ordenado: são dois elementos em uma ordem fixa, (x,y) Produto Cartesiano: Dados dois conjuntos A e B, não

Leia mais

Criptografia e Segurança das Comunicações. das Comunicações Bases Matemáticas - Relações e Ordens

Criptografia e Segurança das Comunicações. das Comunicações Bases Matemáticas - Relações e Ordens 9 Criptografia e Segurança das Comunicações Bases Matemáticas - Relações e Ordens Teoria Ordem: /22 Relações binárias () 9 Teoria da ordem é o ramo da matemática, dedicada a vária relações binárias, que

Leia mais

é uma proposição verdadeira. tal que: 2 n N k, Φ(n) = Φ(n + 1) é uma proposição verdadeira. com n N k, tal que:

é uma proposição verdadeira. tal que: 2 n N k, Φ(n) = Φ(n + 1) é uma proposição verdadeira. com n N k, tal que: Matemática Discreta 2008/09 Vítor Hugo Fernandes Departamento de Matemática FCT/UNL Axioma (Princípio da Boa Ordenação dos Números Naturais) O conjunto parcialmente (totalmente) ordenado (N, ), em que

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática MAT Introdução à Álgebra 2015/I

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática MAT Introdução à Álgebra 2015/I 1 Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática MAT 131 - Introdução à Álgebra 2015/I Tópico: Produto Cartesiano 1. Dados os conjuntos M = {1, 3, 5} e N = {2, 4},

Leia mais

MAT TEORIA DOS CONJUNTOS 1 o SEMESTRE 2014 BACHARELADO - IME

MAT TEORIA DOS CONJUNTOS 1 o SEMESTRE 2014 BACHARELADO - IME MAT 330 - TEORIA DOS CONJUNTOS 1 o SEMESTRE 2014 BACHARELADO - IME LISTA 2 1. Prove que (a, b) ( ({a, b, })) e a, b (a, b). Mais geralmente, se a A e b A, então (a, b) ( (A)). 2. Prove que (a, b), (a,

Leia mais

Teoria dos Conjuntos MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES. Fundamentos de Lógica Técnicas Elementares de Prova A NOÇÃO DE CONJUNTO

Teoria dos Conjuntos MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES. Fundamentos de Lógica Técnicas Elementares de Prova A NOÇÃO DE CONJUNTO SUMÁRIO MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES Teoria dos Conjuntos Relações e Funções Fundamentos de Lógica Técnicas Elementares de Prova Newton José Vieira 21 de agosto de 2007 1 A NOÇÃO DE CONJUNTO

Leia mais

Relações binárias. Laura Goulart. 7 de Março de 2018 UESB. Laura Goulart (UESB) Relações binárias 7 de Março de / 1

Relações binárias. Laura Goulart. 7 de Março de 2018 UESB. Laura Goulart (UESB) Relações binárias 7 de Março de / 1 Relações binárias Laura Goulart UESB 7 de Março de 2018 Laura Goulart (UESB) Relações binárias 7 de Março de 2018 1 / 1 Produto Cartesiano Dados E, F conjuntos quaisquer não vazios, denimos o produto cartesiano

Leia mais

Matemática para Ciência de Computadores

Matemática para Ciência de Computadores Matemática para Ciência de Computadores 1 o Ano - LCC & ERSI Luís Antunes lfa@ncc.up.pt DCC-FCUP Complexidade 2002/03 1 Inteiros e divisão Definição: Se a e b são inteiros com a 0, dizemos que a divide

Leia mais

Matemática Discreta Bacharelado em Sistemas de Informação Resolução - 3ª Lista de Exercícios RESOLUÇÃO

Matemática Discreta Bacharelado em Sistemas de Informação Resolução - 3ª Lista de Exercícios RESOLUÇÃO Nome Nota RESOLUÇÃO 1) Para cada uma das relações a seguir, em R, desenhe uma figura para mostrar a região do plano que a descreve. a) x R 2 b) S = {(x,) Rx R 2x + 3-0} x 0 2 3 0 2) São dados A={,,7,8}

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 2

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 2 FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão Nome: N.º Turma: Apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando,

Leia mais

Tópicos de Matemática Elementar

Tópicos de Matemática Elementar Tópicos de Matemática Elementar 2 a série de exercícios 2004/05. A seguinte prova por indução parece correcta, mas para n = 6 o lado esquerdo é igual a 2 + 6 + 2 + 20 + 30 = 5 6, enquanto o direito é igual

Leia mais

Teoria Elementar dos Conjuntos

Teoria Elementar dos Conjuntos Teoria Elementar dos Conjuntos Última revisão em 27 de fevereiro de 2009 Este texto é uma breve revisão sobre teoria elementar dos conjuntos. Em particular, importam-nos os aspectos algébricos no estudo

Leia mais

Teoria Elementar dos Conjuntos

Teoria Elementar dos Conjuntos Teoria Elementar dos Conjuntos Este capítulo visa oferecer uma breve revisão sobre teoria elementar dos conjuntos. Além de conceitos básicos importantes em matemática, a sua imprtância reside no fato da

Leia mais

MA14 - Aritmética Lista 1. Unidades 1 e 2

MA14 - Aritmética Lista 1. Unidades 1 e 2 MA14 - Aritmética Lista 1 Unidades 1 e 2 Abramo Hefez PROFMAT - SBM 05 a 11 de agosto 2013 Unidade 1 1. Mostre, por indução matemática, que, para todo n N {0}, a) 8 3 2n + 7 b) 9 10 n + 3.4 n+2 + 5 2.

Leia mais

CONJUNTO DOS NÚMEROS INTEIROS

CONJUNTO DOS NÚMEROS INTEIROS Fundamentos de Álgebra Moderna Profª Ana Paula CONJUNTO DOS NÚMEROS INTEIROS Os números inteiros formam um conjunto, que notaremos por, no qual estão definidas duas operações, que chamaremos de adição

Leia mais

1.1 Conjuntos parcialmente ordenados (c.p.o. s)

1.1 Conjuntos parcialmente ordenados (c.p.o. s) Capítulo 1 PRELIMINARES Neste primeiro capítulo podemos encontrar algumas definições e proposições que para além de nos familiarizar com a notação que iremos utilizar também têm como finalidade a referência

Leia mais

Conjuntos parcialmente ordenados, totalmente ordenados e bem ordenados

Conjuntos parcialmente ordenados, totalmente ordenados e bem ordenados Conteúdo Conteúdo 1 1 Conjuntos parcialmente ordenados, totalmente ordenados e bem ordenados 2 1.1 Conjuntos parcialmente ordenados................ 2 1.2 Diagramas de Hasse........................ 4 1.3

Leia mais

Álgebra I. Volume 1 - Módulo 1. Adilson Gonçalves Luiz Manoel Figueiredo. Apoio:

Álgebra I. Volume 1 - Módulo 1. Adilson Gonçalves Luiz Manoel Figueiredo. Apoio: Álgebra I Volume 1 - Módulo 1 Adilson Gonçalves Luiz Manoel Figueiredo Apoio: Fundação Cecierj / Consórcio Cederj Rua Visconde de Niterói, 1364 Mangueira Rio de Janeiro, RJ CEP 20943-001 Tel.: (21) 2334-1569

Leia mais

Referências e materiais complementares desse tópico

Referências e materiais complementares desse tópico Notas de aula: Análise de Algoritmos Centro de Matemática, Computação e Cognição Universidade Federal do ABC Profa. Carla Negri Lintzmayer Conceitos matemáticos e técnicas de prova (Última atualização:

Leia mais

Lista 2 - Bases Matemáticas

Lista 2 - Bases Matemáticas Lista 2 - Bases Matemáticas (Última versão: 14/6/2017-21:00) Elementos de Lógica e Linguagem Matemática Parte I 1 Atribua valores verdades as seguintes proposições: a) 5 é primo e 4 é ímpar. b) 5 é primo

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 4

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 4 FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 4 Nome: N.º Turma: Apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando,

Leia mais

g) 2 x2 (2 x ) 2, 6 x i) x 2 x + 2, j) k) log ( 1 l) log ( 2x 2 + 2x 2) + log ( x 2

g) 2 x2 (2 x ) 2, 6 x i) x 2 x + 2, j) k) log ( 1 l) log ( 2x 2 + 2x 2) + log ( x 2 Números Reais. Simplifique as seguintes epressões (definidas nos respectivos domínios): a), b) + +, c) + + +, d), e) ( ), f) 4 4, g) ( ), h) 3 6, i) +, j) +, k) log ( ) + log ( ), l) log ( + ) + log (

Leia mais

GAN Matemática Discreta Professores Renata de Freitas e Petrucio Viana. Lista A

GAN Matemática Discreta Professores Renata de Freitas e Petrucio Viana. Lista A GAN 00167 Matemática Discreta Professores Renata de Freitas e Petrucio Viana Lista A 1. Verdadeiro ou falso? Justifique. (a) {3} {3, 4, 5} (b) {3} {{3}, 4, 5} (c) {3} {3, 4, 5} (d) {3} {{3}, 4, 5} 2. Verdadeiro

Leia mais

Errata da lista 1: Na página 4 (respostas), a resposta da letra e da questão 13 é {2, 3, 5, 7, 11, 13, 17} (faltou o número 17)

Errata da lista 1: Na página 4 (respostas), a resposta da letra e da questão 13 é {2, 3, 5, 7, 11, 13, 17} (faltou o número 17) Errata da lista 1: Na página 4 (respostas), a resposta da letra e da questão 13 é {2, 3, 5, 7, 11, 13, 17} (faltou o número 17) Lista 1 - Bases Matemáticas Elementos de Lógica e Linguagem Matemática 1

Leia mais

Produto Cartesiano. Exemplo: Dados os conjuntos A = {5,6} e B = {2,3,4}, vamos determinar o produto cartesiano AXB;

Produto Cartesiano. Exemplo: Dados os conjuntos A = {5,6} e B = {2,3,4}, vamos determinar o produto cartesiano AXB; Produto Cartesiano Par ordenado: são dois elementos em uma ordem fixa, (x,y) Produto Cartesiano: Dados dois conjuntos A e B, não vazios, chamamos de produto cartesiano de A por B o conjunto indicado por

Leia mais

a) Falsa. Por exemplo, para n = 2, temos 3n = 3 2 = 6, ou seja, um número par.

a) Falsa. Por exemplo, para n = 2, temos 3n = 3 2 = 6, ou seja, um número par. Matemática Unidade I Álgebra Série - Teoria dos números 01 a) Falsa. Por exemplo, para n =, temos 3n = 3 = 6, ou seja, um número par. b) Verdadeira. Por exemplo, para n = 1, temos n = 1 =, ou seja, um

Leia mais

Universidade de Caxias do Sul Centro de Ciências Exatas e Tecnologia Departamento de Informática. Matemática Discreta. Márcia Rodrigues Notare

Universidade de Caxias do Sul Centro de Ciências Exatas e Tecnologia Departamento de Informática. Matemática Discreta. Márcia Rodrigues Notare Universidade de Caxias do Sul Centro de Ciências Exatas e Tecnologia Departamento de Informática Caxias do Sul, julho de. ÍNDICE TEORIA DOS CONJUNTOS...4. RELAÇÃO DE PERTINÊNCIA...4. ALGUNS CONJUNTOS IMPORTANTES...4.

Leia mais

Lista 1 - Bases Matemáticas

Lista 1 - Bases Matemáticas Lista 1 - Bases Matemáticas Elementos de Lógica e Linguagem Matemática Parte I 1 Atribua valores verdades as seguintes proposições: a) 5 é primo e 4 é ímpar. b) 5 é primo ou 4 é ímpar. c) (Não é verdade

Leia mais

Álgebras Booleanas e Aplicações

Álgebras Booleanas e Aplicações Álgebras Booleanas e Aplicações Prof. Dr. Clotilzio Moreira dos Santos IBILCE - UNESP São José do Rio Preto Outubro de 2013 Álgebras Booleanas e Aplicações Clotilzio Moreira dos Santos Sumário 1 ÁLGEBRAS

Leia mais

Fundamentos de Matemática. Lista de Exercícios Humberto José Bortolossi

Fundamentos de Matemática. Lista de Exercícios Humberto José Bortolossi GMA DEPARTAMENTO DE MATEMÁTICA APLICADA Fundamentos de Matemática Lista de Exercícios Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ 02 Demonstração direta, demonstração por absurdo e

Leia mais

Lógica para computação

Lógica para computação Lógica para computação PROPRIEDADES SEMÂNTICAS DA LÓGICA PROPOSICIONAL Professor Marlon Marcon Introdução Esta seção considera a análise de algumas propriedades semânticas da LP que relacionam os resultados

Leia mais

Matemática I. 1 Propriedades dos números reais

Matemática I. 1 Propriedades dos números reais Matemática I 1 Propriedades dos números reais O conjunto R dos números reais satisfaz algumas propriedades fundamentais: dados quaisquer x, y R, estão definidos a soma x + y e produto xy e tem-se 1 x +

Leia mais

Inteiros. Inteiros. Congruência. Discrete Mathematics with Graph Theory Edgar Goodaire e Michael Parmenter, 3rd ed 2006.

Inteiros. Inteiros. Congruência. Discrete Mathematics with Graph Theory Edgar Goodaire e Michael Parmenter, 3rd ed 2006. Inteiros Inteiros. Congruência. Referência: Capítulo: 4 Discrete Mathematics with Graph Theory Edgar Goodaire e Michael Parmenter, 3rd ed 2006 1 Números reais A relação binária em R é uma ordem parcial

Leia mais

Relações. Ester Maria Klippel

Relações. Ester Maria Klippel Relações Relações Ligações entre elementos de conjuntos são representados usando uma estrutura chamada relação. No nosso dia-a-dia estamos freqüentemente utilizando o conceito de relações: Comparar objetos

Leia mais

1. O que podemos dizer sobre a imagem da função. f : Z Z, f(x) = x 2 + x + 1?

1. O que podemos dizer sobre a imagem da função. f : Z Z, f(x) = x 2 + x + 1? 1 Congruências e aritmética modular Vamos considerar alguns exemplos de problemas sobre números inteiros como motivação para o que se segue. 1. O que podemos dizer sobre a imagem da função f : Z Z, f(x)

Leia mais

Notas de aulas. álgebra abstrata

Notas de aulas. álgebra abstrata 1 Notas de aulas de álgebra abstrata UEMA LICENCIATURA EM MATEMATICA Elaborada por : Raimundo Merval Morais Gonçalves Licenciado em Matemática/UFMA Professor Assistente/UEMA Especialista em Ensino de Ciências/UEMA

Leia mais

13 AULA. Relações de Equivalência LIVRO. META: Introduzir o conceito de relações de equivalência e suas propriedades.

13 AULA. Relações de Equivalência LIVRO. META: Introduzir o conceito de relações de equivalência e suas propriedades. 2 LIVRO Relações de Equivalência META: Introduzir o conceito de relações de equivalência e suas propriedades. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Identificar se uma dada relação

Leia mais

Apontamentos de matemática 6.º ano Decomposição de um número em fatores primos

Apontamentos de matemática 6.º ano Decomposição de um número em fatores primos Divisores de um número (revisão do 5.º ano) Os divisores de um número são os números naturais pelos quais podemos dividir esse número de forma exata (resto zero). Exemplos: Os divisores de 4 são 1, 2 e

Leia mais

Exercícios de Teoria da Computação Lógica de 1a. ordem

Exercícios de Teoria da Computação Lógica de 1a. ordem Licenciatura em Engenharia Informática e de Computadores - LEIC Licenciatura em Engenharia de Redes de Comunicação e Informação - LERCI Exercícios de Teoria da Computação Lógica de 1a. ordem Secção Ciência

Leia mais

Questão 4 (2,0 pontos). Defina função convexa (0,5 pontos). Seja f : I R uma função convexa no intervalo aberto I. Dado c I (qualquer)

Questão 4 (2,0 pontos). Defina função convexa (0,5 pontos). Seja f : I R uma função convexa no intervalo aberto I. Dado c I (qualquer) DM IMECC UNICAMP, Análise I, Prof. Marcelo M. Santos Exame Final, 15/07/2009 Aluno: RA: Ass.: Observações: Tempo de prova: 100min; Justifique sucintamente todas as suas afirmações; Disponha as suas resoluções

Leia mais

Resolução do EXAME da ÉPOCA de RECURSO

Resolução do EXAME da ÉPOCA de RECURSO ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA MATEMÁTICA DISCRETA Resolução do EXAME da ÉPOCA de RECURSO Curso: LEI o Semestre / Data: 8 de Julho de Duração: hm I Diga, justificando

Leia mais

1 Congruências e aritmética modular

1 Congruências e aritmética modular 1 Congruências e aritmética modular Vamos considerar alguns exemplos de problemas sobre números inteiros como motivação para o que se segue. 1. O que podemos dizer sobre a imagem da função f : Z Z, f(x)

Leia mais

Proposta de teste de avaliação

Proposta de teste de avaliação Proposta de teste de avaliação Matemática A 10º ANO DE ESCOLARIDADE Duração: 90 minutos Data: O teste é constituído por dois grupos, I e II O Grupo I inclui quatro questões de escolha múltipla O Grupo

Leia mais

Apontamentos de Matemática 6.º ano

Apontamentos de Matemática 6.º ano Revisão (divisores de um número) Os divisores de um número são os números naturais pelos quais podemos dividir esse número de forma exata (resto zero). Exemplos: Os divisores de 4 são 1, e 4, pois se dividirmos

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 5

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 5 FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 5 Nome: N.º Turma: Apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando,

Leia mais

1 Números Reais. 1. Simplifique as seguintes expressões (definidas nos respectivos domínios): b) x+1. d) x 2, f) 4 x 4 2 x, g) 2 x2 (2 x ) 2, h)

1 Números Reais. 1. Simplifique as seguintes expressões (definidas nos respectivos domínios): b) x+1. d) x 2, f) 4 x 4 2 x, g) 2 x2 (2 x ) 2, h) Números Reais. Simplifique as seguintes expressões (definidas nos respectivos domínios): x a), x b) x+ +, x c) +x + x +x, d) x, e) ( x ), f) 4 x 4 x, g) x ( x ), h) 3 x 6 x, i) x x +, j) x x+ x, k) log

Leia mais

Teoria intuitiva de conjuntos

Teoria intuitiva de conjuntos Teoria intuitiva de conjuntos.................................... 1 Relação binária............................................ 10 Lista 3................................................. 15 Teoria intuitiva

Leia mais

Matemática A - 10 o Ano Ficha de Trabalho

Matemática A - 10 o Ano Ficha de Trabalho Matemática A - 10 o Ano Ficha de Trabalho Álgebra - Divisão Inteira de Polinómios Grupo I 1. Tendo em conta que n N; a n, a n 1,..., a 1, a 0 R e a n 0; b n, b n 1,..., b 1, b 0 R e b n 0, considere os

Leia mais

INE0003 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE0003 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE0003 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/3 6 - RELAÇÕES DE ORDENAMENTO 6.1) Conjuntos parcialmente

Leia mais

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Pato Branco ENGENHARIA DE COMPUTAÇÃO. Prova Parcial 1 Matemática Discreta para Computação

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Pato Branco ENGENHARIA DE COMPUTAÇÃO. Prova Parcial 1 Matemática Discreta para Computação Prova Parcial 1 2011-2 Aluno(a): Data: 08/09/2011 1. (3p) Usando regras de inferência, prove que os argumentos são válidos. Use os símbolos proposicionais indicados: a. A Rússia era uma potência superior,

Leia mais

Faculdade de Informática e Tecnologia de Pernambuco. Primeira lista de exercícios de Álgebra Aplicada à Computação Prof. Diego Machado Dias

Faculdade de Informática e Tecnologia de Pernambuco. Primeira lista de exercícios de Álgebra Aplicada à Computação Prof. Diego Machado Dias Faculdade de Informática e Tecnologia de Pernambuco Primeira lista de exercícios de Álgebra Aplicada à Computação Prof. Diego Machado Dias Instruções 1. No início de cada seção da lista há uma sugestão

Leia mais

Argumentação em Matemática período Prof. Lenimar N. Andrade. 1 de setembro de 2009

Argumentação em Matemática período Prof. Lenimar N. Andrade. 1 de setembro de 2009 Noções de Lógica Matemática 2 a parte Argumentação em Matemática período 2009.2 Prof. Lenimar N. Andrade 1 de setembro de 2009 Sumário 1 Condicional 1 2 Bicondicional 2 3 Recíprocas e contrapositivas 2

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1 Nome: N.º Turma: Apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando,

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBIOM, MEFT 1 o SEM. 2014/15 2 a FICHA DE EXERCÍCIOS. k + e 1 x, x > 0 f(x) = x cos 1, x > 0

CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBIOM, MEFT 1 o SEM. 2014/15 2 a FICHA DE EXERCÍCIOS. k + e 1 x, x > 0 f(x) = x cos 1, x > 0 Instituto Superior Técnico Departamento de Matemática CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBIOM, MEFT 1 o SEM. 2014/15 2 a FICHA DE EXERCÍCIOS I. Continuidade de Funções. 1) Considere a função f :

Leia mais

Lista de Exercícios 8: Soluções Relações

Lista de Exercícios 8: Soluções Relações UFMG/ICEx/DCC DCC111 Matemática Discreta Lista de Exercícios 8: Soluções Relações Ciências Exatas & Engenharias 2 o Semestre de 2016 Definição 1 [Composição de relações]. Seja R uma relação do conjunto

Leia mais

5 Congruências lineares. Programa. 1 Parte 1 - Conjuntos e Aplicações. 1 Conjuntos. 4 Indução matemática e divisibilidade

5 Congruências lineares. Programa. 1 Parte 1 - Conjuntos e Aplicações. 1 Conjuntos. 4 Indução matemática e divisibilidade Matemática Discreta 2008/09 Jorge André & Vítor Hugo Fernandes Departamento de Matemática FCT/UNL Programa 1 Parte 1 - Conjuntos e Aplicações 1 Conjuntos 2 Relações Binárias 3 Aplicações 4 Indução matemática

Leia mais

ENFOQUE USANDO CORTES DE DEDEKIND

ENFOQUE USANDO CORTES DE DEDEKIND Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência c Publicação eletrônica do KIT http://www.dma.uem.br/kit CONSTRUÇÃO DOS REAIS: UM ENFOQUE

Leia mais

1 Congruências de Grau Superior. Dado um polinômio f(x) Z[x] e um número natural n, vamos estudar condições para que a congruência. f(x) 0 (mod n).

1 Congruências de Grau Superior. Dado um polinômio f(x) Z[x] e um número natural n, vamos estudar condições para que a congruência. f(x) 0 (mod n). Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 3 Carlos Gustavo Moreira Aula 10 Congruências de Grau Superior 1 Congruências de Grau Superior Dado um polinômio f(x Z[x] e um número

Leia mais

Material Teórico - Módulo de Divisibilidade. MDC e MMC - Parte 2. Sexto Ano. Prof. Angelo Papa Neto

Material Teórico - Módulo de Divisibilidade. MDC e MMC - Parte 2. Sexto Ano. Prof. Angelo Papa Neto Material Teórico - Módulo de Divisibilidade MDC e MMC - Parte 2 Sexto Ano Prof. Angelo Papa Neto 1 Mínimo múltiplo comum Continuando nossa aula, vamos estudar o mínimo múltiplo comum de um conjunto finito

Leia mais

1. Prove que (a+b) c = a c+b c para todo a, b, c em ZZ /mzz. (Explique cada passo).

1. Prove que (a+b) c = a c+b c para todo a, b, c em ZZ /mzz. (Explique cada passo). 1 a Lista de Exercícios de Álgebra II - MAT 231 1. Prove que (a+b) c = a c+b c para todo a, b, c em ZZ /mzz. (Explique cada passo). 2. Seja A um anel associativo. Dado a A, como você definiria a m, m IN?

Leia mais

Lógica. Fernando Fontes. Universidade do Minho. Fernando Fontes (Universidade do Minho) Lógica 1 / 65

Lógica. Fernando Fontes. Universidade do Minho. Fernando Fontes (Universidade do Minho) Lógica 1 / 65 Lógica Fernando Fontes Universidade do Minho Fernando Fontes (Universidade do Minho) Lógica 1 / 65 Outline 1 Introdução 2 Implicações e Equivalências Lógicas 3 Mapas de Karnaugh 4 Lógica de Predicados

Leia mais

Relações Binárias, Aplicações e Operações

Relações Binárias, Aplicações e Operações Relações Binárias, Aplicações e Operações MAT 131-2018 II Pouya Mehdipour 19 de outubro de 2018 Pouya Mehdipour 19 de outubro de 2018 1 / 7 Referências ALENCAR FILHO, E. Teoria Elementar dos Conjuntos,

Leia mais

Relações. George Darmiton da Cunha Cavalcanti CIn - UFPE

Relações. George Darmiton da Cunha Cavalcanti CIn - UFPE Relações George Darmiton da Cunha Cavalcanti CIn - UFPE Relações Binárias Sejam X e Y dois conjuntos. Uma relação entre X e Y é um subconjunto de produto cartesiano X Y. No caso de X = Y, a uma relação

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano de escolaridade Versão 5

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano de escolaridade Versão 5 FICHA de AVALIAÇÃO de MATEMÁTICA A 3.º Teste 0.º Ano de escolaridade Versão 5 Nome: N.º Turma: Professor: José Tinoco 0/0/07 É permitido o uso de calculadora científica Apresente o seu raciocínio de forma

Leia mais

Universidade Federal de Santa Maria Departamento de Matemática Curso de Verão Lista 1. Números Naturais

Universidade Federal de Santa Maria Departamento de Matemática Curso de Verão Lista 1. Números Naturais Universidade Federal de Santa Maria Departamento de Matemática Curso de Verão 01 Lista 1 Números Naturais 1. Demonstre por indução as seguintes fórmulas: (a) (b) n (j 1) = n (soma dos n primeiros ímpares).

Leia mais