Matemática para Ciência dos Computadores 30 de Dezembro, Docente: Luís Antunes & Sandra Alves

Tamanho: px
Começar a partir da página:

Download "Matemática para Ciência dos Computadores 30 de Dezembro, Docente: Luís Antunes & Sandra Alves"

Transcrição

1 Matemática para Ciência dos Computadores 30 de Dezembro, 2003 Docente: Luís Antunes & Sandra Alves Mais exercícios de MCC 1. Sejam p, q, r e p 1, p 2, p 3 as seguintes afirmações primitivas e premissas respectivamente: p O aluno estuda q O aluno joga PS2 p 1 p 2 p 3 r O aluno passa a MCC Se o aluno estuda, então passa a MCC. Se o aluno não joga PS2, então estuda. O aluno reprovou a MCC. Determine se p 1 p 2 p 3 q. Mostre que: (p ( p q)) p q 2. Indique as regras de inferência usadas na seguinte prova: Passos 1) s u 2) u 3) u t 4) t 5) s 6) s t 7) r (s t) 8) ( s t) r 9) r 10) ( p q) r 11) r (p q) 12) p q 13) p Regras ( p q) r r (s t) s u u t p 3. Construa uma prova, usando regras de inferência, para mostrar que as hipóteses Não está sol esta tarde e está mais frio que ontem, Nós vamos nada apenas se estiver sol, Se não formos nadar então vamos dar um passeio de canoa e Se formos dar um passeio de canoa então estaremos em casa ao fim da tarde implicam que Estaremos em casa ao fim da tarde. 4. Construa uma prova, usando regras de inferência, para mostrar que as hipóteses Se me mandares um então acabarei o programa, Se não me mandares um , então vou dormir mais cedo e Se for para a cama mais cedo então vou acordar descansado, implicam que Se não acabar de escrever o programa, então vou acordar descansado. 1

2 5. (a) Utilizando equivalências lógicas simplifique a seguinte expressão [ [(p q) r] q] (b) Mostre que se p q, q (r s), r ( t u) e p t então u. (c) Construa uma prova, usando regras de inferência, para mostrar que as hipótese: Se a banda não souber tocar rock ou as bebidas não chegarem a tempo, então a festa de ano novo vai ser cancelada e a Maria vai ficar chateada., Se a festa for cancelada, então terão que devolver o dinheiro dos bilhetes. e O dinheiro dos bilhetes não foi devolvido. implicam que A banda sabe tocar rock. (d) Determine a negação da seguinte fórmula x y[(p(x, y) q(x, y)) r(x, y)] (e) Construa uma prova, usando regras de inferência, para mostrar que as hipótese: Se eu não especificar as condições iniciais, então o meu programa não executa., Se o programa não executa ou não termina, então o programa falha. implicam que Se o programa não falha, então especifiquei as condições iniciais e não programei um ciclo infinito. (f) Mostre, por contradição, que: se p (q r), (q s) t e p s, então t. 6. Sabendo que q é verdadeiro, determine as atribuições aos literais p, r e s que validam (q (( p r) s)) ( s ( r q)). 7. Simplifique a expressão (A B) C B. 8. (a) Determine os conjuntos A, B, onde A B = {1, 3, 7, 11}, B A = {2, 6, 8} e A B = {4, 9}. (b) Determine os conjuntos C, D, onde C D = {1, 2, 4}, D C = {7, 8} e C D = {1, 2, 4, 5, 7, 8, 9}. 9. Mostre, ou indique um contra-exemplo, dados dois conjuntos A, B U: (a) P (A B) = P (A) P (B). (b) P (A B) = P (A) P (B). 10. Quantas permutações dos dígitos 0, 1, 2,, 8, 9 começam por 7 ou terminam por 3 ou ambos? 11. Seja a um inteiro, mostre que um dos inteiros a, a + 2 e a + 4 é divisível por Mostre, ou indique um contra-exemplo, que: (a) quaisquer dois inteiros consecutivos, são primos relativos. (b) para todo o m inteiro, 2m e 4m + 3 são primos relativos. (c) para todo o m inteiro, 2m + 1 e 3m + 2 são primos relativos. 13. Suponhamos que o algoritmo de Euclides é usado para determinar mdc(a, b), e que num determinado passo o resto da divisão, r i, é um número primo. (a) Mostre que mdc(a, b) = 1 ou mdc(a, b) = r i. (b) Como podemos determinar qual dos casos da alínea anterior se verifica? (c) Com base nas alíneas anteriores, determine mdc(40, 371) e mdc(52, 325). 2

3 14. Seja p um número primo com p > 3, mostre que p se pode escrever como 4n + 1 ou 4n + 3 com n N. 15. Seja p um número primo com p > 3, mostre que p se pode escrever como 6n + 1 ou 6n + 5 com n N. 16. Quantos inteiros entre 1 e 6n inclusive, com n N, são primos relativos com 6? 17. Mostre que para todo o número natural n 2, n 2 > n Seja P 1 (n) a afirmação n 2 + n + 11 é um número primo e P 2 (n) a afirmação 3 (3n + 2). (a) Sabendo que P 1 (1), P 1 (2),, P 1 (9) são válidos, será que P 1 (n) é válido para todo o n N? (b) Sabendo que a implicação P 2 (k) P 2 (k + 1) é verdadeira para todo o k N, será que P 2 (n) é válido para todo o n N? 19. Mostre que para todo o n 4, n (n 1) (n 2) 2 1 > 2 n. 20. Seja A um conjunto com n N elementos, mostre que P (A) = 2 n (P (A) denota o conjunto de todos os subconjuntos de A). 21. Mostre que para todo o n N, 6 (n 3 + 5n). 22. Use indução matemática para mostrar que para todo o n N: (a) n j=0 2j = 2 n+1 1. (b) n j=0 (2j 1) = n2. (c) (2 n ) 2 1 é um múltiplo de 3. (d) n (n+1) = n n+1. (e) n (n + 1) = n(n+1)(n+2) Mostre que para todo o n N e todo o número q 1, n i=0 qi 1 = qn 1 q Mostre que todo o número natural n 2 é um número primo ou um produto de números primos. 25. Seja A = {1, 2, 5, 7}, B = {1, 5} e C = {3, 7}. (a) B A? (b) C A? (c) B B? 26. Se A = m e B = n, determine A B. 27. Das seguintes afirmações identifique as verdadeiras. (a) 2 {1, 2, 3}. (b) {2} {1, 2, 3}. (c) 2 {1, 2, 3}. (d) {2} {1, 2, 3}. (e) {2} {{1}}, {{2}}. 3

4 (f) {2} {{1}}, {{2}}. 28. Determine a composição das relações R e S, com R definida de {1, 2, 3} em {1, 2, 3, 4} e S definida de {1, 2, 3, 4} em {0, 1, 2} e R = {(1, 1), (1, 4), (2, 3), (3, 1), (3, 4)} S = {(1, 0), (2, 0), (3, 1), (3, 2), (4, 1)} 29. Represente a seguinte relação, (a, b) R (a < b a b) definida em {1, 2, 4, 5, 10, 20}, sob a forma de um grafo dirigido e como uma matriz. 30. Mostre que a relação (a, b) R 3 (a b) definida em Z, é uma relação de equivalência. Diga, justificando, se a relação dada é anti-simétrica. 31. Seja U um conjunto não vazio, mostre que a relação R definida no conjunto de todos os subconjuntos de U (P (U)) é uma relação de ordem parcial. A, B P (U), (A, B) R A B. Diga, justificando, se a relação dada é simétrica. 32. Mostre que a a seguinte relação definida em {1, 2, 3, 4, 5} {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (1, 3), (1, 5), (2, 4), (3, 1), (3, 5), (4, 2), (5, 1), (5, 3)} é uma relação de equivalência. Determine as suas classes de equivalência. 33. Diga quais das seguintes relações em N são reflexivas e/ou simétricas e/ou anti-simétricas e/ou transitivas. (a) R 1 = {(m, n) : mdc(n, m) = 1}. (b) R 2 = {(m, n) : mdc(n, m) > 1}. (c) R 3 = {(m, n) : m n}. (d) R 4 = {(m, n) : n + m é par}. (e) R 5 = {(m, n) : n + m é ímpar}. 34. Sejam R 1 e R 2 relações num conjunto A não vazio. Diga, justificando, se as seguintes afirmações são verdadeiras ou falsas: (a) se R 1 e R 2 são relações de equivalência, então R 1 R 2 é uma relação de equivalência. (b) se R 1 e R 2 são relações de equivalência, então R 1 R 2 é uma relação de equivalência. (c) se R 1 e R 2 são relações de equivalência, então R 1 R 2 é uma relação de equivalência. 35. Quantas relações de equivalência existem em: (a) {1}. (b) {1, 2}. (c) {1, 2, 3}. (d) {1, 2, 3, 4}. 36. Desenhe o diagrama de Hasse da relação definida em P ({1, 2, 3}). 4

5 37. Desenhe o diagrama de Hasse da relação de divisibilidade definida no conjunto dos divisores de Sejam p 1, p 2, p 3, p 4 números primos distintos e sejam a!, a 2, a 3, a 4 inteiros positivos. (a) Quantos divisores positivos distintos tem ? (b) Quantos divisores positivos distintos tem n = p a1 1 pa2 2 pa3 3 pa Quantas palavras de 5 letras podem ser formadas a partir das letras: a, b, c, d, e, f e h, em que as letras não aparecem repetidas. Quantas destas palavras incluem a letra a. 40. De quantas maneiras distintas pode formar 10 casais a partir de um conjunto de 10 rapazes e 16 raparigas? 41. Em cada lote de 100 lâmpadas produzidas na fabrica Dar a Luz é sabido haver 10 defeituosas. Uma amostra de sete lâmpadas é selecionada aleatoriamente e verificada. Quantas amostras contém: (a) exactamente 3 lâmpadas defeituosas. (b) pelo menos uma lapada defeituosa. 42. Se o João tem 15 cavalos e o Miguel tem 12 cavalos, de quantas maneiras distintas podem eles trocar grupos de 8 cavalos? 43. De quantas maneiras distintas podemos distribuir 12 trabalhos de casa por 20 estudantes, se cada estudante receber no máximo um trabalho? 44. Quantas strings binárias de tamanho 16 contém exactamente 6 1 s? 45. Determine a expansão de: (a) (x + y) 5. (b) (x + y) 6. (c) (x + 3y) Determine o coeficiente de: (a) x 11 y 4 na expansão de (x + y) 15. (b) x 6 y 4 na expansão de (2x + y) 10. (c) x 5 na expansão de (1 + x + x 2 ) na expansão de (1 + x + x 2 )(1 + x) Considere o problema de seleccionar 3 dígitos do conjunto {0, 1, 2,, 9}. (a) De quantas maneiras distintas o pode fazer? (b) De quantas maneiras distintas o pode fazer se não poder seleccionar dois dígitos consecutivos? 48. De quantas maneiras pode juntar os símbolos a,b,c,d,e,e,e,e,e de forma a que nenhum e seja adjacente a outro e? 49. (a) De quantas maneiras distintas pode um aluno responder a um exame com 10 questões de resposta verdadeiro/falso, de resposta obrigatória? (b) De quantas maneiras distintas pode um aluno responder a um exame com 10 questões de resposta verdadeiro/falso, com a possibilidade de não responder? 5

Prova Parcial 1 com peso de 0,2 na média Matemática Discreta para Computação Aluno(a): Data: 12/04/2012

Prova Parcial 1 com peso de 0,2 na média Matemática Discreta para Computação Aluno(a): Data: 12/04/2012 Prova Parcial com peso de, na média Aluno(a): Data: /4/. (3p) Usando regras de inferência, prove que os argumentos são válidos. Use os símbolos proposicionais indicados: a. A Rússia era uma potência superior,

Leia mais

ELEMENTOS DE MATEMÁTICA DISCRETA Exame de Segunda Data 18/01/2011

ELEMENTOS DE MATEMÁTICA DISCRETA Exame de Segunda Data 18/01/2011 Uma Resolução ELEMENTOS DE MATEMÁTICA DISCRETA Exame de Segunda Data 18/01/2011 1. Seleccione e transcreva para a sua folha de exame a única opção correcta: A fórmula proposicional (p q) (p q) é a) logicamente

Leia mais

Matemática para Ciência de Computadores

Matemática para Ciência de Computadores Matemática para Ciência de Computadores 1 o Ano - LCC & ERSI Luís Antunes lfa@ncc.up.pt DCC-FCUP Complexidade 2002/03 1 Inteiros e divisão Definição: Se a e b são inteiros com a 0, dizemos que a divide

Leia mais

Matemática para Ciência de Computadores

Matemática para Ciência de Computadores Matemática para Ciência de Computadores 1 o Ano - LCC & ERSI Luís Antunes lfa@ncc.up.pt DCC-FCUP Complexidade 2002/03 1 Relações Definição: Uma relação binária de um conjunto A num conjunto B é um subconjunto

Leia mais

(Ciência de Computadores) 2005/ Diga quais dos conjuntos seguintes satisfazem o Princípio de Boa Ordenação

(Ciência de Computadores) 2005/ Diga quais dos conjuntos seguintes satisfazem o Princípio de Boa Ordenação Álgebra (Ciência de Computadores) 2005/2006 Números inteiros 1. Diga quais dos conjuntos seguintes satisfazem o Princípio de Boa Ordenação (a) {inteiros positivos impares}; (b) {inteiros negativos pares};

Leia mais

Matemática Discreta. Fundamentos e Conceitos da Teoria dos Números. Universidade do Estado de Mato Grosso. 4 de setembro de 2017

Matemática Discreta. Fundamentos e Conceitos da Teoria dos Números. Universidade do Estado de Mato Grosso. 4 de setembro de 2017 Matemática Discreta Fundamentos e Conceitos da Teoria dos Números Professora Dr. a Donizete Ritter Universidade do Estado de Mato Grosso 4 de setembro de 2017 Ritter, D. (UNEMAT) Matemática Discreta 4

Leia mais

Matemática para Ciência de Computadores

Matemática para Ciência de Computadores Matemática para Ciência de Computadores 1 o Ano - LCC & ERSI Luís Antunes lfa@ncc.up.pt DCC-FCUP Complexidade 2002/03 1 Fecho transitivo Teorema: o fecho transitivo de uma relação R é igual a relação de

Leia mais

Elementos de Matemática Finita

Elementos de Matemática Finita Elementos de Matemática Finita Exercícios Resolvidos - Princípio de Indução; Algoritmo de Euclides 1. Seja ( n) k n! k!(n k)! o coeficiente binomial, para n k 0. Por convenção, assumimos que, para outros

Leia mais

Indução Matemática. George Darmiton da Cunha Cavalcanti CIn - UFPE

Indução Matemática. George Darmiton da Cunha Cavalcanti CIn - UFPE Indução Matemática George Darmiton da Cunha Cavalcanti CIn - UFPE Introdução Qual é a fórmula para a soma dos primeiros n inteiros ímpares positivos? Observando os resultados para um n pequeno, encontra-se

Leia mais

DISCIPLINA: MATEMÁTICA DISCRETA I PROFESSOR: GISLAN SILVEIRA SANTOS CURSO: SISTEMAS DE INFORMAÇÃO SEMESTRE: TURNO: NOTURNO

DISCIPLINA: MATEMÁTICA DISCRETA I PROFESSOR: GISLAN SILVEIRA SANTOS CURSO: SISTEMAS DE INFORMAÇÃO SEMESTRE: TURNO: NOTURNO DISCIPLINA: MATEMÁTICA DISCRETA I PROFESSOR: GISLAN SILVEIRA SANTOS CURSO: SISTEMAS DE INFORMAÇÃO SEMESTRE: 2018-2 TURNO: NOTURNO ALUNO a): 1ª Lista de Exercícios - Introdução à Lógica Matemática, Teoria

Leia mais

Roteiro da segunda aula presencial - ME

Roteiro da segunda aula presencial - ME PIF Enumerabilidade Teoria dos Números Congruência Matemática Elementar Departamento de Matemática Universidade Federal da Paraíba 29 de outubro de 2014 PIF Enumerabilidade Teoria dos Números Congruência

Leia mais

Faculdade de Informática e Tecnologia de Pernambuco. Primeira lista de exercícios de Álgebra Aplicada à Computação Prof. Diego Machado Dias

Faculdade de Informática e Tecnologia de Pernambuco. Primeira lista de exercícios de Álgebra Aplicada à Computação Prof. Diego Machado Dias Faculdade de Informática e Tecnologia de Pernambuco Primeira lista de exercícios de Álgebra Aplicada à Computação Prof. Diego Machado Dias Instruções 1. No início de cada seção da lista há uma sugestão

Leia mais

Departamento de Engenharia Informática da Universidade de Coimbra

Departamento de Engenharia Informática da Universidade de Coimbra Departamento de Engenharia Informática da Universidade de Coimbra Estruturas Discretas 2013/14 Folha 1 - TP Lógica proposicional 1. Quais das seguintes frases são proposições? (a) Isto é verdade? (b) João

Leia mais

ax + by 347 = 0 k = text UNIDADE CURRICULAR: Matemática Finita CÓDIGO: DOCENTES: Gilda Ferreira e Ana Nunes

ax + by 347 = 0 k = text UNIDADE CURRICULAR: Matemática Finita CÓDIGO: DOCENTES: Gilda Ferreira e Ana Nunes text UNIDADE CURRICULAR: Matemática Finita CÓDIGO: 21082 DOCENTES: Gilda Ferreira e Ana Nunes Resolução e Critérios de Correção 1. Sejam a, b Z tais que mdc(a, b) = 12. Relativamente à equação ax + by

Leia mais

Matemática Discreta para Computação: Prova 1 06/09/2017

Matemática Discreta para Computação: Prova 1 06/09/2017 Matemática Discreta para Computação: Prova 1 06/09/2017 Aluno(a): 1. Considere as premissas: Se o universo é finito, então a vida é curta., Se a vida vale a pena, então a vida é complexa., Se a vida é

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/30 3 - INDUÇÃO E RECURSÃO 3.1) Indução Matemática 3.2)

Leia mais

Matemática para Ciência de Computadores

Matemática para Ciência de Computadores Matemática para Ciência de Computadores 1 o Ano - LCC & ERSI Luís Antunes lfa@ncc.up.pt DCC-FCUP Complexidade 2002/03 1 Fundamentos de Lógica No nosso dia a dia, usamos todo o tipo de frases: Cinco é menor

Leia mais

Lógica. Fernando Fontes. Universidade do Minho. Fernando Fontes (Universidade do Minho) Lógica 1 / 65

Lógica. Fernando Fontes. Universidade do Minho. Fernando Fontes (Universidade do Minho) Lógica 1 / 65 Lógica Fernando Fontes Universidade do Minho Fernando Fontes (Universidade do Minho) Lógica 1 / 65 Outline 1 Introdução 2 Implicações e Equivalências Lógicas 3 Mapas de Karnaugh 4 Lógica de Predicados

Leia mais

Matemática para Ciência de Computadores

Matemática para Ciência de Computadores Matemática para Ciência de Computadores 1 o Ano - LCC & ERSI Luís Antunes lfa@ncc.up.pt DCC-FCUP Complexidade 2002/03 1 Representação de Relações Definição: Uma relação binária de um conjunto A num conjunto

Leia mais

Definição. Diremos que um número inteiro d é um divisor de outro inteiro a, se a é múltiplo de d; ou seja, se a = d c, para algum inteiro c.

Definição. Diremos que um número inteiro d é um divisor de outro inteiro a, se a é múltiplo de d; ou seja, se a = d c, para algum inteiro c. Divisores Definição. Diremos que um número inteiro d é um divisor de outro inteiro a, se a é múltiplo de d; ou seja, se a = d c, para algum inteiro c. Quando a é múltiplo de d dizemos também que a é divisível

Leia mais

Programa Combinatória Aritmética Racional MATEMÁTICA DISCRETA. Patrícia Ribeiro. Departamento de Matemática, ESTSetúbal 2018/ / 52

Programa Combinatória Aritmética Racional MATEMÁTICA DISCRETA. Patrícia Ribeiro. Departamento de Matemática, ESTSetúbal 2018/ / 52 1 / 52 MATEMÁTICA DISCRETA Patrícia Ribeiro Departamento de Matemática, ESTSetúbal 2018/2019 2 / 52 Programa 1 Combinatória 2 Aritmética Racional 3 Grafos 3 / 52 Capítulo 1 Combinatória 4 / 52 Princípio

Leia mais

Matemática Discreta. Introdução à Teoria de Números - Exercícios 1 o ano /2011

Matemática Discreta. Introdução à Teoria de Números - Exercícios 1 o ano /2011 Lic. em Ciências da Computação Matemática Discreta Introdução à Teoria de Números - Exercícios 1 o ano - 2010/2011 1. Determine o quociente e o resto na divisão de: (a) 310156 por 197; (b) 32 por 45; (c)

Leia mais

Exercícios de Teoria da Computação Lógica de 1a. ordem

Exercícios de Teoria da Computação Lógica de 1a. ordem Licenciatura em Engenharia Informática e de Computadores - LEIC Licenciatura em Engenharia de Redes de Comunicação e Informação - LERCI Exercícios de Teoria da Computação Lógica de 1a. ordem Secção Ciência

Leia mais

Matemática Discreta 11/12 Soluções

Matemática Discreta 11/12 Soluções Matemática Discreta 11/1 Soluções Lógica 1. (a) Não é proposição. (b) Proposição verdadeira. (c) Proposição falsa. (d) Não é proposição. (e) Proposição falsa. (f) Não é proposição.. (a) + 4 5 e. (c) A

Leia mais

GAN Matemática Discreta Professores Renata de Freitas e Petrucio Viana. Lista A

GAN Matemática Discreta Professores Renata de Freitas e Petrucio Viana. Lista A GAN 00167 Matemática Discreta Professores Renata de Freitas e Petrucio Viana Lista A 1. Verdadeiro ou falso? Justifique. (a) {3} {3, 4, 5} (b) {3} {{3}, 4, 5} (c) {3} {3, 4, 5} (d) {3} {{3}, 4, 5} 2. Verdadeiro

Leia mais

Aritmética Racional MATEMÁTICA DISCRETA. Patrícia Ribeiro. Departamento de Matemática, ESTSetúbal 2018/ / 42

Aritmética Racional MATEMÁTICA DISCRETA. Patrícia Ribeiro. Departamento de Matemática, ESTSetúbal 2018/ / 42 1 / 42 MATEMÁTICA DISCRETA Patrícia Ribeiro Departamento de Matemática, ESTSetúbal 2018/2019 2 / 42 1 Combinatória 2 3 Grafos 3 / 42 Capítulo 2 4 / 42 Axiomática dos Inteiros Sejam a e b inteiros. Designaremos

Leia mais

Matemática A - 10 o Ano Ficha de Trabalho

Matemática A - 10 o Ano Ficha de Trabalho Matemática A - 10 o Ano Ficha de Trabalho Álgebra - Divisão Inteira de Polinómios Grupo I 1. Tendo em conta que n N; a n, a n 1,..., a 1, a 0 R e a n 0; b n, b n 1,..., b 1, b 0 R e b n 0, considere os

Leia mais

2016 / Nome do aluno: N.º: Turma:

2016 / Nome do aluno: N.º: Turma: Teste de Matemática A 2016 / 2017 Teste N.º 1 Matemática A Duração do Teste: 90 minutos 10.º Ano de Escolaridade Nome do aluno: N.º: Turma: Grupo I Os cinco itens deste grupo são de escolha múltipla. Em

Leia mais

U.C Matemática Finita. 6 de junho de Questões de escolha múltipla

U.C Matemática Finita. 6 de junho de Questões de escolha múltipla Ministério da Ciência, Tecnologia e Ensino Superior U.C. 21082 Matemática Finita 6 de junho de 2018 - Resolução e Critérios de Avaliação - Questões de escolha múltipla 1. (Exame e P-fólio De quantas maneiras

Leia mais

Referências e materiais complementares desse tópico

Referências e materiais complementares desse tópico Notas de aula: Análise de Algoritmos Centro de Matemática, Computação e Cognição Universidade Federal do ABC Profa. Carla Negri Lintzmayer Conceitos matemáticos e técnicas de prova (Última atualização:

Leia mais

ALGORITMO DE EUCLIDES

ALGORITMO DE EUCLIDES Sumário ALGORITMO DE EUCLIDES Luciana Santos da Silva Martino lulismartino.wordpress.com lulismartino@gmail.com PROFMAT - Colégio Pedro II 25 de agosto de 2017 Sumário 1 Máximo Divisor Comum 2 Algoritmo

Leia mais

INE Fundamentos de Matemática Discreta para a Computação

INE Fundamentos de Matemática Discreta para a Computação INE5403 - Fundamentos de Matemática Discreta para a Computação 5) Relações 5.1) Relações e Dígrafos 5.2) Propriedades de Relações 5.3) Relações de Equivalência 5.4) Manipulação de Relações 5.5) Fecho de

Leia mais

5. De um bloco formado por cubos retiraram-se alguns cubos como mostra a figura. Quantos cubos foram retirados?

5. De um bloco formado por cubos retiraram-se alguns cubos como mostra a figura. Quantos cubos foram retirados? AGRUPAMENTO DE ESCOLAS D. JOSÉ I - VRSA MATEMÁTICA 6.º ANO 014/1 NOME N.º Turma Nas questões 1 a, assinale com x a opção correta. 1. O valor de 4 : 4 10. A soma de dois números negativos é um número: Positivo

Leia mais

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Pato Branco ENGENHARIA DE COMPUTAÇÃO Prova Parcial 1 Matemática Discreta para Computação

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Pato Branco ENGENHARIA DE COMPUTAÇÃO Prova Parcial 1 Matemática Discreta para Computação Prova Parcial 1 Aluno(a): Data: 10/03/2015 1. (1p) As linhas críticas permitem avaliar a validade de um argumento usando tabelas verdade. Explique o que são as linhas críticas e como é feita a avaliação,

Leia mais

é uma proposição verdadeira. tal que: 2 n N k, Φ(n) = Φ(n + 1) é uma proposição verdadeira. com n N k, tal que:

é uma proposição verdadeira. tal que: 2 n N k, Φ(n) = Φ(n + 1) é uma proposição verdadeira. com n N k, tal que: Matemática Discreta 2008/09 Vítor Hugo Fernandes Departamento de Matemática FCT/UNL Axioma (Princípio da Boa Ordenação dos Números Naturais) O conjunto parcialmente (totalmente) ordenado (N, ), em que

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 2

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 2 FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão Nome: N.º Turma: Apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando,

Leia mais

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Pato Branco ENGENHARIA DE COMPUTAÇÃO. Prova Parcial 1 Matemática Discreta para Computação

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Pato Branco ENGENHARIA DE COMPUTAÇÃO. Prova Parcial 1 Matemática Discreta para Computação Prova Parcial 1 2011-2 Aluno(a): Data: 08/09/2011 1. (3p) Usando regras de inferência, prove que os argumentos são válidos. Use os símbolos proposicionais indicados: a. A Rússia era uma potência superior,

Leia mais

MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES

MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES Newton José Vieira 21 de agosto de 2007 SUMÁRIO Teoria dos Conjuntos Relações e Funções Fundamentos de Lógica Técnicas Elementares de Prova 1 CONJUNTOS A NOÇÃO

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/81 1 - LÓGICA E MÉTODOS DE PROVA 1.1) Lógica Proposicional

Leia mais

Teoria intuitiva de conjuntos

Teoria intuitiva de conjuntos Teoria intuitiva de conjuntos.................................... 1 Relação binária............................................ 10 Lista 3................................................. 15 Teoria intuitiva

Leia mais

Produto Cartesiano. Exemplo: Dados os conjuntos A = {5,6} e B = {2,3,4}, vamos determinar o produto cartesiano AXB;

Produto Cartesiano. Exemplo: Dados os conjuntos A = {5,6} e B = {2,3,4}, vamos determinar o produto cartesiano AXB; Produto Cartesiano Par ordenado: são dois elementos em uma ordem fixa, (x,y) Produto Cartesiano: Dados dois conjuntos A e B, não vazios, chamamos de produto cartesiano de A por B o conjunto indicado por

Leia mais

MA14 - Aritmética Unidade 1 Resumo. Divisibilidade

MA14 - Aritmética Unidade 1 Resumo. Divisibilidade MA14 - Aritmética Unidade 1 Resumo Divisibilidade Abramo Hefez PROFMAT - SBM Julho 2013 Aviso Este material é apenas um resumo de parte do conteúdo da disciplina e o seu estudo não garante o domínio do

Leia mais

MA14 - Unidade 1 Divisibilidade Semana de 08/08 a 14/08

MA14 - Unidade 1 Divisibilidade Semana de 08/08 a 14/08 MA14 - Unidade 1 Divisibilidade Semana de 08/08 a 14/08 Neste curso, consideraremos o conjunto dos números naturais como sendo o conjunto N = {0, 1, 2, 3,... }, denotando por N o conjunto N \ {0}. Como

Leia mais

Aritmética dos Restos. Pequeno Teorema de Fermat. Tópicos Adicionais

Aritmética dos Restos. Pequeno Teorema de Fermat. Tópicos Adicionais Aritmética dos Restos Pequeno Teorema de Fermat Tópicos Adicionais Aritmética dos Restos Pequeno Teorema de Fermat 1 Exercícios Introdutórios Exercício 1. Encontre os restos da divisão de 2 24 por a) 5

Leia mais

FICHA DE TRABALHO N.º 1 MATEMÁTICA A - 10.º ANO INTRODUÇÃO À LÓGICA BIVALENTE

FICHA DE TRABALHO N.º 1 MATEMÁTICA A - 10.º ANO INTRODUÇÃO À LÓGICA BIVALENTE FICHA DE TRABALHO N.º 1 MATEMÁTICA A - 10.º ANO INTRODUÇÃO À LÓGICA BIVALENTE Conhece a Matemática e dominarás o Mundo. Galileu Galilei GRUPO I ITENS DE ESCOLHA MÚLTIPLA 1. Sejam p e q duas proposições

Leia mais

Aula 1: Introdução ao curso

Aula 1: Introdução ao curso Aula 1: Introdução ao curso MCTA027-17 - Teoria dos Grafos Profa. Carla Negri Lintzmayer carla.negri@ufabc.edu.br Centro de Matemática, Computação e Cognição Universidade Federal do ABC 1 Grafos Grafos

Leia mais

MÚLTIPLOS DE UM NÚMERO NATURAL

MÚLTIPLOS DE UM NÚMERO NATURAL PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - 5º ANO - ENSINO FUNDAMENTAL ======================================================================== MÚLTIPLOS DE UM NÚMERO NATURAL Para

Leia mais

Elementos de Matemática Finita

Elementos de Matemática Finita Elementos de Matemática Finita Exercícios Resolvidos 1 - Algoritmo de Euclides; Indução Matemática; Teorema Fundamental da Aritmética 1. Considere os inteiros a 406 e b 654. (a) Encontre d mdc(a,b), o

Leia mais

Regras de Inferência. Matemática Discreta. Profa. Sheila Morais de Almeida DAINF-UTFPR-PG. março

Regras de Inferência. Matemática Discreta. Profa. Sheila Morais de Almeida DAINF-UTFPR-PG. março Matemática Discreta Regras de Inferência Profa. Sheila Morais de Almeida DAINF-UTFPR-PG março - 2017 Argumentos Válidos em Lógica Proposicional Considere o argumento: Se João pensa, então João existe.

Leia mais

UDESC - Universidade do Estado de Santa Catarina CCT - Centro de Ciências Tecnológicas DMAT - Departamento de Matemática

UDESC - Universidade do Estado de Santa Catarina CCT - Centro de Ciências Tecnológicas DMAT - Departamento de Matemática UDESC - Universidade do Estado de Santa Catarina CCT - Centro de Ciências Tecnológicas DMAT - Departamento de Matemática Segunda Lista de Exercícios de ITN: Números Inteiros Prof. Marnei Luis Mandler Segundo

Leia mais

Matemática para Ciência de Computadores

Matemática para Ciência de Computadores Matemática para Ciência de Computadores 1 o Ano - LCC & ERSI Luís Antunes lfa@ncc.up.pt DCC-FCUP Complexidade 2002/03 1 Teoria de Conjuntos Um conjunto é uma colecção de objectos/elementos/membros. (Cantor

Leia mais

Lista 2 - Álgebra I para Computação - IME -USP -2011

Lista 2 - Álgebra I para Computação - IME -USP -2011 Lista 2 - Álgebra I para Computação - IME -USP -2011 (A) Relações de Equivalência e Quocientes 1. Seja N = {0, 1, 2,...} o conjunto dos números naturais e considere em X = N N a seguinte relação: (a, b)

Leia mais

Tema I Introdução à lógica bivalente e à teoria de conjuntos

Tema I Introdução à lógica bivalente e à teoria de conjuntos Tema I Introdução à lógica bivalente e à teoria de conjuntos Unidade 1 Proposições Páginas 13 a 9 1. a) 3 é uma designação. b) 3 = 6 é uma proposição. c) é o único número primo par é uma proposição. d)

Leia mais

O REI MALIGNO E A PRINCESA GENEROSA: SOBRE BASES NUMÉRICAS E CRITÉRIOS DE DIVISIBILIDADE

O REI MALIGNO E A PRINCESA GENEROSA: SOBRE BASES NUMÉRICAS E CRITÉRIOS DE DIVISIBILIDADE O REI MALIGNO E A PRINCESA GENEROSA: SOBRE BASES NUMÉRICAS E CRITÉRIOS DE DIVISIBILIDADE ANA PAULA CHAVES AND THIAGO PORTO 1. Introdução Os temas centrais deste texto - bases numéricas e critérios de divisibilidade

Leia mais

Para Computação. Aula de Monitoria - Miniprova

Para Computação. Aula de Monitoria - Miniprova Para Computação Aula de Monitoria - Miniprova 1 2013.1 Roteiro Provas e Proposições Conjuntos Provas e Proposições Proposição - Sentença que ou é verdadeira ou é falsa. ex: Hoje é sábado. -> É uma proposição.

Leia mais

Curso: Ciência da Computação Turma: 6ª Série. Teoria da Computação. Aula 2. Conceitos Básicos da Teoria da Computação

Curso: Ciência da Computação Turma: 6ª Série. Teoria da Computação. Aula 2. Conceitos Básicos da Teoria da Computação Curso: Ciência da Computação Turma: 6ª Série Aula 2 Conceitos Básicos da Computação pode ser definida como a solução de um problema ou, formalmente, o cálculo de uma função, através de um algoritmo. A

Leia mais

4.1 Preliminares. No exemplo acima: Dom(R 1 ) = e Im(R 1 ) = Dom(R 2 ) = e Im(R 2 ) = Dom(R 3 ) = e Im(R 3 ) = Diagrama de Venn

4.1 Preliminares. No exemplo acima: Dom(R 1 ) = e Im(R 1 ) = Dom(R 2 ) = e Im(R 2 ) = Dom(R 3 ) = e Im(R 3 ) = Diagrama de Venn 4 Relações 4.1 Preliminares Definição 4.1. Sejam A e B conjuntos. Uma relação binária, R, de A em B é um subconjunto de A B. (R A B) Dizemos que a A está relacionado com b B sss (a, b) R. Notação: arb.

Leia mais

MATEMÁTICA MÓDULO 8 DIVISIBILIDADE E CONGRUÊNCIA. Professor Matheus Secco

MATEMÁTICA MÓDULO 8 DIVISIBILIDADE E CONGRUÊNCIA. Professor Matheus Secco MATEMÁTICA Professor Matheus Secco MÓDULO 8 DIVISIBILIDADE E CONGRUÊNCIA 1. DIVISIBILIDADE Definição: Sejam a, b inteiros com a 0. Diz-se que a divide b (denota-se por a b) se existe c inteiro tal que

Leia mais

a = bq + r e 0 r < b.

a = bq + r e 0 r < b. 1 Aritmética dos Inteiros 1.1 Lema da Divisão e o Algoritmo de Euclides Recorde-se que a, o módulo ou valor absoluto de a, designa a se a N a = a se a / N Dados a, b, c Z denotamos por a b : a divide b

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1 Nome: N.º Turma: Apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando,

Leia mais

1. O que podemos dizer sobre a imagem da função. f : Z Z, f(x) = x 2 + x + 1?

1. O que podemos dizer sobre a imagem da função. f : Z Z, f(x) = x 2 + x + 1? 1 Congruências e aritmética modular Vamos considerar alguns exemplos de problemas sobre números inteiros como motivação para o que se segue. 1. O que podemos dizer sobre a imagem da função f : Z Z, f(x)

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática MAT Introdução à Álgebra 2015/I

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática MAT Introdução à Álgebra 2015/I 1 Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática MAT 131 - Introdução à Álgebra 2015/I Tópico: Produto Cartesiano 1. Dados os conjuntos M = {1, 3, 5} e N = {2, 4},

Leia mais

DIVISÃO NOS INTEIROS. Luciana Santos da Silva Martino. lulismartino.wordpress.com PROFMAT - Colégio Pedro II

DIVISÃO NOS INTEIROS. Luciana Santos da Silva Martino. lulismartino.wordpress.com PROFMAT - Colégio Pedro II Sumário DIVISÃO NOS INTEIROS Luciana Santos da Silva Martino lulismartino.wordpress.com lulismartino@gmail.com PROFMAT - Colégio Pedro II 18 de agosto de 2017 Sumário 1 Divisibilidade 2 Divisão Euclidiana

Leia mais

Teste de Matemática A 2015 / 2016

Teste de Matemática A 2015 / 2016 Teste de Matemática A 2015 / 2016 Teste N.º 2 Matemática A Duração do Teste: 90 minutos 10.º Ano de Escolaridade Nome do aluno: Turma: Grupo I Os cinco itens deste grupo são de escolha múltipla. Em cada

Leia mais

Teoria de Linguagens 1 o semestre de 2018 Professor: Newton José Vieira Primeira Lista de Exercícios Data de entrega: 17/4/2018 Valor: 10 pontos

Teoria de Linguagens 1 o semestre de 2018 Professor: Newton José Vieira Primeira Lista de Exercícios Data de entrega: 17/4/2018 Valor: 10 pontos Departamento de Ciência da Computação ICEx/UFMG Teoria de Linguagens o semestre de 8 Professor: Newton José Vieira Primeira Lista de Exercícios Data de entrega: 7/4/8 Valor: pontos. Uma versão do problema

Leia mais

Álgebra Linear e Geometria Analítica

Álgebra Linear e Geometria Analítica Instituto Politécnico de Viseu Escola Superior de Tecnologia Departamento: Matemática Álgebra Linear e Geometria Analítica Curso: Engenharia Electrotécnica Ano: 1 o Semestre: 1 o Ano Lectivo: 007/008 Ficha

Leia mais

Programação imperativa

Programação imperativa Capítulo 8 Programação imperativa 8.1 Exercícios de revisão 1. Distinga entre programação imperativa e programação funcional. 2. Explique a necessidade da introdução do operador de atribuição. 3. Diga

Leia mais

Proposta de teste de avaliação

Proposta de teste de avaliação Proposta de teste de avaliação Matemática A 10º ANO DE ESCOLARIDADE Duração: 90 minutos Data: O teste é constituído por dois grupos, I e II O Grupo I inclui quatro questões de escolha múltipla O Grupo

Leia mais

Se mdc(a,m) = 1, como a é invertível módulo m, a equação. ax b (mod m)

Se mdc(a,m) = 1, como a é invertível módulo m, a equação. ax b (mod m) Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 3 Carlos Gustavo Moreira Aula 8 Equações lineares módulo n e o teorema chinês dos restos 1 Equações Lineares Módulo m Se mdc(a,m) = 1,

Leia mais

Teoria dos Conjuntos. Prof. Jorge

Teoria dos Conjuntos. Prof. Jorge Teoria dos Conjuntos Conjuntos Conceitos iniciais Na teoria dos conjuntos, consideramos como primitivos os conceitos de elemento, pertinência e conjunto. Exemplos - Conjunto I. O conjunto dos alunos do

Leia mais

NÚMEROS INTEIROS. Álgebra Abstrata - Verão 2012

NÚMEROS INTEIROS. Álgebra Abstrata - Verão 2012 NÚMEROS INTEIROS PROF. FRANCISCO MEDEIROS Álgebra Abstrata - Verão 2012 Faremos, nessas notas, uma breve discussão sobre o conjunto dos números inteiros. O texto é basicamente a seção 3 do capítulo 1 de

Leia mais

Propostas de resolução. Capítulo 1 Números racionais

Propostas de resolução. Capítulo 1 Números racionais Capítulo Números racionais F Pág... O número 89 89 não é divisível por, pois não se pode aplicar qualquer um dos critérios de divisibilidade por. Por outro lado, o resto da divisão inteira entre 89 89

Leia mais

Expoente 10 Dossiê do Professor 2

Expoente 10 Dossiê do Professor 2 Expoente 0 Dossiê do Professor Tema I Introdução à lógica bivalente e à teoria de conjuntos Unidade Proposições Páginas a 9. a) é uma designação. b) = 6 é uma proposição. c) é o único número primo par

Leia mais

Teoria de Linguagens 2 o semestre de 2015 Professor: Newton José Vieira Primeira Lista de Exercícios Entrega: até 16:40h de 15/9.

Teoria de Linguagens 2 o semestre de 2015 Professor: Newton José Vieira Primeira Lista de Exercícios Entrega: até 16:40h de 15/9. Pós-Graduação em Ciência da Computação DCC/ICEx/UFMG Teoria de Linguagens 2 o semestre de 2015 Professor: Newton José Vieira Primeira Lista de Exercícios Entrega: até 16:40h de 15/9. Observações: Pontos

Leia mais

Resolução do EXAME da ÉPOCA de RECURSO

Resolução do EXAME da ÉPOCA de RECURSO ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA MATEMÁTICA DISCRETA Resolução do EXAME da ÉPOCA de RECURSO Curso: LEI o Semestre / Data: 8 de Julho de Duração: hm I Diga, justificando

Leia mais

MD Lógica de Proposições Quantificadas Cálculo de Predicados 1

MD Lógica de Proposições Quantificadas Cálculo de Predicados 1 Lógica de Proposições Quantificadas Cálculo de Predicados Antonio Alfredo Ferreira Loureiro loureiro@dcc.ufmg.br http://www.dcc.ufmg.br/~loureiro MD Lógica de Proposições Quantificadas Cálculo de Predicados

Leia mais

Tópicos de Matemática Elementar

Tópicos de Matemática Elementar Tópicos de Matemática Elementar 2 a série de exercícios 2004/05. A seguinte prova por indução parece correcta, mas para n = 6 o lado esquerdo é igual a 2 + 6 + 2 + 20 + 30 = 5 6, enquanto o direito é igual

Leia mais

Curso: Ciência da Computação Disciplina: Matemática Discreta RELAÇÕES. Prof.: Marcelo Maraschin de Souza

Curso: Ciência da Computação Disciplina: Matemática Discreta RELAÇÕES. Prof.: Marcelo Maraschin de Souza Curso: Ciência da Computação Disciplina: Matemática Discreta RELAÇÕES Prof.: Marcelo Maraschin de Souza marcelo.maraschin@ifsc.edu.br Considere o conjunto S={1,2,3}, descreva o conjunto dos pares ordenados

Leia mais

a = bq + r e 0 r < b.

a = bq + r e 0 r < b. 1 Aritmética dos Inteiros 1.1 Lema da Divisão e o Algoritmo de Euclides Recorde-se que a, o módulo ou valor absoluto de a, designa a se a N a = a se a / N Dados a, b Z denotamos por a b : a divide b ou

Leia mais

Análise e Síntese de Algoritmos

Análise e Síntese de Algoritmos Análise e Síntese de Algoritmos Problemas NP-Completos CLRS, Cap. 34 Contexto Algoritmos em Grafos Estruturas de Dados para Conjuntos Disjuntos Programação Linear Programação Dinâmica Algoritmos Greedy

Leia mais

1 Congruências e aritmética modular

1 Congruências e aritmética modular 1 Congruências e aritmética modular Vamos considerar alguns exemplos de problemas sobre números inteiros como motivação para o que se segue. 1. O que podemos dizer sobre a imagem da função f : Z Z, f(x)

Leia mais

RESOLUÇÃO DCC-UFRJ MATEMÁTICA COMBINATÓRIA 2006/2 PROVA Considere a soma. S n = n 2 n 1

RESOLUÇÃO DCC-UFRJ MATEMÁTICA COMBINATÓRIA 2006/2 PROVA Considere a soma. S n = n 2 n 1 DCC-UFRJ MATEMÁTICA COMBINATÓRIA 2006/2 PROVA 1 1. Considere a soma S n = 1 2 0 + 2 2 1 + 3 2 2 + + n 2 n 1. Mostre, por indução finita, que S n = (n 1)2 n + 1. Indique claramente a base da indução, a

Leia mais

n. 28 RELAÇÕES BINÁRIAS ENTRE CONJUNTOS

n. 28 RELAÇÕES BINÁRIAS ENTRE CONJUNTOS n. 28 RELAÇÕES BINÁRIAS ENTRE CONJUNTOS Uma relação é um conjunto de pares ordenados, ou seja, um subconjunto de A B. Utilizando pares ordenados podemos definir relações por meio da linguagem de conjuntos.

Leia mais

complemento para a disciplina de Matemática Discreta versão 1 - Jerônimo C. Pellegrini Relações de Equivalência e de Ordem

complemento para a disciplina de Matemática Discreta versão 1 - Jerônimo C. Pellegrini Relações de Equivalência e de Ordem Relações de Equivalência e de Ordem complemento para a disciplina de Matemática Discreta versão 1 Jerônimo C. Pellegrini 5 de agosto de 2013 ii Sumário Sumário Nomenclatura 1 Conjuntos e Relações 1 1.1

Leia mais

30 a OLIMPÍADA DE MATEMÁTICA DO RIO GRANDE DO NORTE PRIMEIRA FASE. NÍVEL UNIVERSITÁRIO. 35! =

30 a OLIMPÍADA DE MATEMÁTICA DO RIO GRANDE DO NORTE PRIMEIRA FASE. NÍVEL UNIVERSITÁRIO. 35! = 0 a OLIMPÍADA DE MATEMÁTICA DO RIO GRANDE DO NORTE 09- PRIMEIRA FASE. NÍVEL UNIVERSITÁRIO. Para cada questão, assinale uma alternativa como a resposta correta. NOME DO(A) ESTUDANTE: UNIVERSIDADE:. O fatorial

Leia mais

TEORIA DOS CONJUNTOS. Turma: A - Licenciatura em Matemática 1 Semestre de Prof. Dr. Agnaldo José Ferrari OS NÚMEROS NATURAIS

TEORIA DOS CONJUNTOS. Turma: A - Licenciatura em Matemática 1 Semestre de Prof. Dr. Agnaldo José Ferrari OS NÚMEROS NATURAIS TEORIA DOS CONJUNTOS Turma: 0004105A - Licenciatura em Matemática 1 Semestre de 2014 Prof. Dr. Agnaldo José Ferrari OS NÚMEROS NATURAIS Em 1908 Ernst Zermelo (Alemanha / 1871 1953) propôs usar a sequência,

Leia mais

Semana 3 MCTB J Donadelli. 1 Técnicas de provas. Demonstração indireta de implicação. indireta de. Demonstração por vacuidade e trivial

Semana 3 MCTB J Donadelli. 1 Técnicas de provas. Demonstração indireta de implicação. indireta de. Demonstração por vacuidade e trivial Semana 3 por de por de 1 indireta por de por de Teoremas resultados importantes, Os rótulos por de por de Teoremas resultados importantes, Os rótulos Proposições um pouco menos importantes, por de por

Leia mais

Célia Borlido 07/09/2007 Encontro Nacional dos Novos Talentos em Matemática

Célia Borlido 07/09/2007 Encontro Nacional dos Novos Talentos em Matemática Sistemas de Numeração Célia Borlido 7/9/27 Encontro Nacional dos Novos Talentos em Matemática Alguma notação para começar Є representa a palavra vazia. Se é um alfabeto, isto é, um conjunto não vazio de

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 4

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 4 FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 4 Nome: N.º Turma: Apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando,

Leia mais

Análise e Síntese de Algoritmos. Problemas NP-Completos CLRS, Cap. 34

Análise e Síntese de Algoritmos. Problemas NP-Completos CLRS, Cap. 34 Análise e Síntese de Algoritmos Problemas NP-Completos CLRS, Cap. 34 Contexto Revisões [CLRS, Cap. 1-10] Algoritmos em Grafos [CLRS, Cap. 22-26] Algoritmos elementares Árvores abrangentes Caminhos mais

Leia mais

Matemática A - 10 o Ano

Matemática A - 10 o Ano Matemática A - 10 o Ano Resolução da Ficha de Trabalho Álgebra - Divisão Inteira de Polinómios Grupo I 1. Considerando os polinómios p e b no enunciado temos que o termo de maior grau de p b é a nx n b

Leia mais

Matemática Computacional

Matemática Computacional folha de exercícios 5 :: página 1/5 exercício 5.1. Defina a função f : R R, f(x) = 4x 4 3x 3 + 2x 2 + x. Calcule f(0), f( 1), f(4/3) e f(2.88923). exercício 5.2. Defina a função g : R R R, g(x, y) = x

Leia mais

Universidade Federal de Viçosa Departamento de Matemática III LISTA DE MAT INTRODUÇÃO À ÁLGEBRA

Universidade Federal de Viçosa Departamento de Matemática III LISTA DE MAT INTRODUÇÃO À ÁLGEBRA Universidade Federal de Viçosa Departamento de Matemática III LISTA DE MAT 131 - INTRODUÇÃO À ÁLGEBRA 1. Seja A = {1, 3, 5, 7, 11}. Verifique quais das seguintes proposições são verdadeiras ou falsas.

Leia mais

Matemática discreta e Lógica Matemática

Matemática discreta e Lógica Matemática AULA 1 - Lógica Matemática Prof. Dr. Hércules A. Oliveira UTFPR - Universidade Tecnológica Federal do Paraná, Ponta Grossa Departamento Acadêmico de Matemática Ementa 1 Lógica Sentenças, representação

Leia mais

Lógica Proposicional

Lógica Proposicional Lógica Proposicional Lógica Proposicional Profa. Sheila Morais de Almeida DAINF-UTFPR-PG junho - 2018 Sheila Almeida (DAINF-UTFPR-PG) Lógica Proposicional junho - 2018 1 / 55 Este material é preparado

Leia mais

MA14 - Aritmética Unidade 3. Divisão nos Inteiros (Divisibilidade)

MA14 - Aritmética Unidade 3. Divisão nos Inteiros (Divisibilidade) MA14 - Aritmética Unidade 3 Divisão nos Inteiros (Divisibilidade) Abramo Hefez PROFMAT - SBM Aviso Este material é apenas um resumo de parte do conteúdo da disciplina e o seu estudo não garante o domínio

Leia mais

Conceitos básicos de Teoria da Computação

Conceitos básicos de Teoria da Computação Folha Prática Conceitos básicos de 1 Conceitos básicos de Métodos de Prova 1. Provar por indução matemática que para todo o número natural n: a) 1 + 2 + 2 2 + + 2 n = 2 n+1 1, para n 0 b) 1 2 + 2 2 + 3

Leia mais

Pontifícia Universidade Católica do Rio Grande do Sul

Pontifícia Universidade Católica do Rio Grande do Sul Pontifícia Universidade Católica do Rio Grande do Sul Faculdade de Matemática - Departamento de Matemática Estruturas Algébricas Prof. M.Sc. Guilherme Luís Roëhe Vaccaro e-mail: vaccaro@mat.pucrs.br Prof.

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 5

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 5 FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 5 Nome: N.º Turma: Apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando,

Leia mais

Lista 2 - Bases Matemáticas

Lista 2 - Bases Matemáticas Lista 2 - Bases Matemáticas (Última versão: 14/6/2017-21:00) Elementos de Lógica e Linguagem Matemática Parte I 1 Atribua valores verdades as seguintes proposições: a) 5 é primo e 4 é ímpar. b) 5 é primo

Leia mais