UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Pato Branco ENGENHARIA DE COMPUTAÇÃO. Prova Parcial 1 Matemática Discreta para Computação

Tamanho: px
Começar a partir da página:

Download "UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Pato Branco ENGENHARIA DE COMPUTAÇÃO. Prova Parcial 1 Matemática Discreta para Computação"

Transcrição

1 Prova Parcial Aluno(a): Data: 08/09/ (3p) Usando regras de inferência, prove que os argumentos são válidos. Use os símbolos proposicionais indicados: a. A Rússia era uma potência superior, e ou a França não era suficientemente poderosa ou Napoleão cometeu um erro. Napoleão não cometeu um erro, mas, se o exército não perdeu então a França era poderosa. Portanto, o exército perdeu e a Rússia era uma potência superior. (R, F, N, E) b. Não é verdade que, se as tarifas de energia elétrica subirem, então o uso diminuirá, nem é verdade que novas usinas elétricas serão construídas ou as contas não serão pagas com atraso. Portanto, o uso não vai diminuir e as contas serão pagas com atraso. (T, U, E, C) 2. (3p) Prove por prova direta ou indireta ou contradição que: a. Se a soma de dois números inteiros é par, então a sua diferença também é par b. Se um número somado a ele mesmo é igual a ele mesmo, então esse número é zero 3. (3p) Prove usando indução matemática que a proposição é verdadeira (apresente todos os passos): n(2n+ 1)(2n 3 1) 2 ( 2n 1) =, n (1p) Uma coleção M de números é definida recursivamente por: a) 2 e 3 pertencem a M. b) Se X e Y pertencem a M, então X* Y também pertence a M. Quais dos seguintes números pertencem a M? a. 6 b.9 c. 16 d. 21 e. 26 f. 54 g. 72 h. 218

2 Prova Parcial Aluno(a): Data:13/10/ (1,5p) Sejam os seguintes subconjuntos de N (conjunto dos números naturais): A= { x/ x é um inteiro não negativo par} B= { x/( y)( y Nex= 2y+ 1)} C = { x/( y)( y Nex= 4y)} Encontre os seguintes conjuntos e expresse-os de forma simbólica como apresentado na questão e justifique de forma textual sua resposta: a) A B b) A C A c) B 2. (2p) Defina e indique a diferença de conjunto contável (enumerável) e não contável (não enumerável) e responda a pergunta: O conjunto dos números racionais é contável? Justifique de forma textual sua resposta. 3. (1p) Defina o conjunto de conjuntos ou conjunto de partes P e encontre: P (S) para S ={, { }, {, { }}} 4. (2p) A figura a seguir representa algumas ruas dentro de uma cidade. Existem diferentes formas para ir do ângulo inferior (denominado Sudoeste) ao ângulo oposto superior (denominado Nordeste). Suponha que as únicas rotas permitidas de percurso são direção leste e direção norte. Quantos caminhos possíveis existem? (As linhas escuras representam um possível caminho). NE SO 2. (1,5p) Há 51 casas em uma rua. Cada casa tem um número entre 1000 e 1099, inclusive. Mostre que pelo menos duas casas têm números que são inteiros consecutivos. 3. (2p) Quantos números inteiros positivos menores que têm exatamente um digito igual a 9 e têm a soma de seus dígitos igual a 13?

3 Prova Parcial 3 Aluno(a): Data: 18/11/ (0,5p) Uma função é um caso particular de uma relação, quais são as propriedades que fazem de uma relação ser uma função? Escreva de forma simbólica. 2. (2p) Dê um exemplo de uma função de ZxZ + (dos inteiros para os inteiros positivos) que seja: a. sobrejetora, mas, não injetora. b. Injetora, mas, não sobrejetora 3. (2p) Prove que a funçãof ( x) = ax+ b comf : R R é bijetora em que a e b são constantes, com a 0, e encontre a função inversa de f 4. (0,5p) Dado o conjunto A e a relação R em A. Completar as propriedades das relações: x, y, z A, Se xry e yrz então xrz x A, xrx x,y A, Se xry então yrx x, y A, Se xry e yrx então x = y 5. (2p) Quais propriedades têm a relação R a seguir, no conjunto S? S = { x / x é um aluno da sua sala } arb a senta na mesma fileira que b 6. (2p) Defina relação de equivalência e determine se R sobre A é uma relação de equivalência A = {Z} R={(a,b) AXA a b } 7. (1p) Seja R uma relação sobre o conjunto S, onde: S = {1, 2, 3, 4} R = {(1, 1), (1, 4), (2, 3), (3, 1), (3, 3), (4, 4)} Encontre os fechos: (a) Reflexivo (b) Simétrico (c) Transitivo

4 Prova Parcial 4 Aluno(a): Data: 09/12/ (1,5p) Defina (utilize diagramas para exemplificar): a) Circuito Euleriano b) Circuito Hamiltoniano c) Diferenças e/ou semelhanças entre estes circuitos 2. (2,5p) Determinar um circuito Hamiltoniano no seguinte grafo (denominado grafo de Grötzsch). 3. (2,5p) Supor que os vértices de K 5 são numerados com 1, 2, 3, 4 e 5 e cada aresta tem um peso igual à soma dos valores de seus vértices (como mostrado na figura). Encontre a árvore geradora mínima para este grafo. Utilize o algoritmo de Prim, represente o grafo com uma matriz. 4. (2,5p) Na figura ao lado esta desenhada uma construção com quatro salas, designadas por S1 a S4, interconectadas por seis portas, P1 a P6. Determine o número mínimo de novas portas a instalar de forma que uma pessoa possa, ao chegar à construção, passar por cada porta exatamente uma vez e sair para o exterior. Justifique modelando o problema por meio de grafo. Em que locais devem ser instaladas as novas portas? 5. (1p) Quantas funções booleanas diferentes de 7 variáveis existem? Apresente duas destas funções booleanas.

5 Prova Parcial 4 Aluno(a): Data: 09/12/ (1,5p) Defina e utilize diagramas para exemplificar os seguintes conceitos: a) Circuito Euleriano b) Circuito Hamiltoniano c) Diferenças e/ou semelhanças entre estes circuitos 2. (2,5p) Determinar um circuito Hamiltoniano no grafo da figura 1 (denominado grafo de Grötzsch). Figura 1 3. (2,5p) Encontre, utilizando o algoritmo de PRIM, a árvore geradora mínima para o grafo representado pela matriz (figura 2): a) Desenhe o grafo b) Apresente os passos do algoritmo c) Desenhe a árvore obtida. Figura 2 4. (2,5p) Na figura 3 esta desenhada uma construção com quatro salas, designadas por S1 a S4, interconectadas por seis portas, P1 a P6. Determine o número mínimo de novas portas a instalar de forma que uma pessoa possa, ao chegar à construção, passar por cada porta exatamente uma vez e sair para o exterior. Justifique modelando o problema por meio de grafo. Em que locais devem ser instaladas as novas portas? Figura 3 5. (1p) Quantas funções booleanas diferentes de 7 variáveis existem? Apresente duas destas funções booleanas.

6 Prova Parcial 4 Aluno(a): Data: 15/12/ (2p) Defina: a) Grafo bipartido b) Grafo bipartido completo c) Determine se os grafos a seguir são bipartidos: apresente os conjuntos da partição 2. (2p) Determinar um circuito Hamiltoniano no grafo da figura 1 (denominado grafo de Grötzsch). O ponto de partida esta sinalizado com uma seta. Figura 1 3. (2p) Explique os algoritmos de PRIM e KRUSKAL para encontrar a árvore geradora mínima e apresente um exemplo para cada algoritmo. 4. (2p) Na figura 2: sinalize os vértices com letras e determine: a) Um circuito euleriano b) Um trajeto euleriano c) Para os itens a e b caso no seja possível encontrar resposta, explique o porquê e o que deveria ser mudado para que seja possível. Figura 2 2. (2p) As formas principais de representar grafos computacionalmente são Matriz de adjacência e Lista de adjacência. Desenhe um grafo e: a) Represente esse grafo através dessas duas formas. b) Faça um quadro comparativo de vantagens e desvantagens dessas duas formas de representação.

7 Prova Parcial 5 Aluno(a): Data: 16/12/2011 As questões 2 e 3 são similares, escolha uma delas. 1. (2p) Dê um exemplo de uma função de que seja: a. sobrejetora, mas, não injetora. b. Injetora, mas, não sobrejetora + Z Z (dos inteiros para os inteiros positivos) 2. (2p) Prove que a funçãof ( x) = ax+ b comf : R R é bijetora em que a e b são constantes, com a 0, e encontre a função inversa de f 3. (2p) Prove que a função 2x f ( x) = 2x 1 se se x 0 x> 0 comf : Z N é bijetora, e encontre a função inversa de f 4. (2p) Defina as seguintes propriedades das relações: Reflexiva Simétrica e Transitiva e indique quais propriedades apresentam as seguintes relações: 5. (2p) Defina e exemplifique: a. Relação de equivalência b. Relação anti-simétrica a b} a b} a= b a= b} a b} R1 =, R 2 =, > R =, 3 R =, = 4 6. (2p) Defina os seguintes conceitos e exemplifique: a) Fecho Reflexivo b) Fecho Simétrico c) Fecho Transitivo

Prova Parcial 1 com peso de 0,2 na média Matemática Discreta para Computação Aluno(a): Data: 12/04/2012

Prova Parcial 1 com peso de 0,2 na média Matemática Discreta para Computação Aluno(a): Data: 12/04/2012 Prova Parcial com peso de, na média Aluno(a): Data: /4/. (3p) Usando regras de inferência, prove que os argumentos são válidos. Use os símbolos proposicionais indicados: a. A Rússia era uma potência superior,

Leia mais

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Pato Branco ENGENHARIA DE COMPUTAÇÃO Prova Parcial 1 Matemática Discreta para Computação

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Pato Branco ENGENHARIA DE COMPUTAÇÃO Prova Parcial 1 Matemática Discreta para Computação Prova Parcial 1 Aluno(a): Data: 10/03/2015 1. (1p) As linhas críticas permitem avaliar a validade de um argumento usando tabelas verdade. Explique o que são as linhas críticas e como é feita a avaliação,

Leia mais

Matemática Discreta para Computação: Prova 1 06/09/2017

Matemática Discreta para Computação: Prova 1 06/09/2017 Matemática Discreta para Computação: Prova 1 06/09/2017 Aluno(a): 1. Considere as premissas: Se o universo é finito, então a vida é curta., Se a vida vale a pena, então a vida é complexa., Se a vida é

Leia mais

Prova Parcial 1 Matemática Discreta para Computação Aluno(a): Data: 18/12/2012

Prova Parcial 1 Matemática Discreta para Computação Aluno(a): Data: 18/12/2012 Prova Parcial Aluo(a): Data: 8/2/202. (,5p) Use regras de iferêcia para provar que os argumetos são válidos. (usar os símbolos proposicioais idicados): A Rússia era uma potêcia superior, e ou a Fraça ão

Leia mais

ESTRUTURAS DISCRETAS (INF 1631) GRAFOS. 1. O que é um grafo? Defina um grafo orientado. Defina um grafo não-orientado.

ESTRUTURAS DISCRETAS (INF 1631) GRAFOS. 1. O que é um grafo? Defina um grafo orientado. Defina um grafo não-orientado. PUC-Rio Departamento de Informática Profs. Marcus Vinicius S. Poggi de Aragão Período: 0. Horário: as-feiras e as-feiras de - horas de maio de 0 ESTRUTURAS DISCRETAS (INF 6) a Lista de Exercícios Procure

Leia mais

MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES

MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES Newton José Vieira 21 de agosto de 2007 SUMÁRIO Teoria dos Conjuntos Relações e Funções Fundamentos de Lógica Técnicas Elementares de Prova 1 CONJUNTOS A NOÇÃO

Leia mais

ANÁLISE COMBINATÓRIA

ANÁLISE COMBINATÓRIA Nome Nota ANÁLISE COMBINATÓRIA 1) De quantas maneiras diferentes 11 homens e 8 mulheres podem se sentar em uma fila se os homens sentam juntos e as mulheres também? 2!*11!*8! 2) O controle de qualidade

Leia mais

Relações. George Darmiton da Cunha Cavalcanti CIn - UFPE

Relações. George Darmiton da Cunha Cavalcanti CIn - UFPE Relações George Darmiton da Cunha Cavalcanti CIn - UFPE Relações Binárias Sejam X e Y dois conjuntos. Uma relação entre X e Y é um subconjunto de produto cartesiano X Y. No caso de X = Y, a uma relação

Leia mais

4.1 Preliminares. No exemplo acima: Dom(R 1 ) = e Im(R 1 ) = Dom(R 2 ) = e Im(R 2 ) = Dom(R 3 ) = e Im(R 3 ) = Diagrama de Venn

4.1 Preliminares. No exemplo acima: Dom(R 1 ) = e Im(R 1 ) = Dom(R 2 ) = e Im(R 2 ) = Dom(R 3 ) = e Im(R 3 ) = Diagrama de Venn 4 Relações 4.1 Preliminares Definição 4.1. Sejam A e B conjuntos. Uma relação binária, R, de A em B é um subconjunto de A B. (R A B) Dizemos que a A está relacionado com b B sss (a, b) R. Notação: arb.

Leia mais

Curso: Ciência da Computação Disciplina: Matemática Discreta RELAÇÕES. Prof.: Marcelo Maraschin de Souza

Curso: Ciência da Computação Disciplina: Matemática Discreta RELAÇÕES. Prof.: Marcelo Maraschin de Souza Curso: Ciência da Computação Disciplina: Matemática Discreta RELAÇÕES Prof.: Marcelo Maraschin de Souza marcelo.maraschin@ifsc.edu.br Considere o conjunto S={1,2,3}, descreva o conjunto dos pares ordenados

Leia mais

Teoria dos Conjuntos MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES. Fundamentos de Lógica Técnicas Elementares de Prova A NOÇÃO DE CONJUNTO

Teoria dos Conjuntos MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES. Fundamentos de Lógica Técnicas Elementares de Prova A NOÇÃO DE CONJUNTO SUMÁRIO MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES Teoria dos Conjuntos Relações e Funções Fundamentos de Lógica Técnicas Elementares de Prova Newton José Vieira 21 de agosto de 2007 1 A NOÇÃO DE CONJUNTO

Leia mais

Conjuntos, cap. 4 de Introdução à Lógica (Mortari 2001) Luiz Arthur Pagani

Conjuntos, cap. 4 de Introdução à Lógica (Mortari 2001) Luiz Arthur Pagani Conjuntos, cap. 4 de Introdução à Lógica (Mortari 00) Luiz Arthur Pagani Caracterização de conjuntos conjunto coleção de objetos: A idéia básica é de que conjuntos são coleções de objetos. (Outros termos

Leia mais

CT-200 Fundamentos de Linguagens Formais e Automata - Aula 01 - In...

CT-200 Fundamentos de Linguagens Formais e Automata - Aula 01 - In... 1 de 1 1//010 09:1 CT-00 Fundamentos de Linguagens Formais e Automata Aula 01 - Introdução Segunda Aula (updated just now by YourName) Propriedades de Relações Partições Seja A={1,,,...,10} e os subconjuntos

Leia mais

complemento para a disciplina de Matemática Discreta versão 1 - Jerônimo C. Pellegrini Relações de Equivalência e de Ordem

complemento para a disciplina de Matemática Discreta versão 1 - Jerônimo C. Pellegrini Relações de Equivalência e de Ordem Relações de Equivalência e de Ordem complemento para a disciplina de Matemática Discreta versão 1 Jerônimo C. Pellegrini 5 de agosto de 2013 ii Sumário Sumário Nomenclatura 1 Conjuntos e Relações 1 1.1

Leia mais

1 Análise combinatória

1 Análise combinatória Matemática Discreta September 11, 2018 1 1 Análise combinatória 1.1 Alguns princípios básicos Teorema (Princípio da adição). Se {A i },..,N é uma família (finita) de conjuntos FINITOS, mutuamente disjuntos,

Leia mais

GAN Matemática Discreta Professores Renata de Freitas e Petrucio Viana. Lista A

GAN Matemática Discreta Professores Renata de Freitas e Petrucio Viana. Lista A GAN 00167 Matemática Discreta Professores Renata de Freitas e Petrucio Viana Lista A 1. Verdadeiro ou falso? Justifique. (a) {3} {3, 4, 5} (b) {3} {{3}, 4, 5} (c) {3} {3, 4, 5} (d) {3} {{3}, 4, 5} 2. Verdadeiro

Leia mais

SCC603 Algoritmos e Estruturas de Dados II Prof.a Rosane Minghim 1o sem. 2013

SCC603 Algoritmos e Estruturas de Dados II Prof.a Rosane Minghim 1o sem. 2013 SCC603 Algoritmos e Estruturas de Dados II Prof.a Rosane Minghim 1o sem. 2013 Lista de Exercícios 1 1) Escrever em C funções para: a) Obter todos os nós adjacentes (vizinhos) a um nó do grafo, dado que

Leia mais

Par ordenado [ordered pair]. É uma estrutura do tipo x, y. Se x y x,y y,x.

Par ordenado [ordered pair]. É uma estrutura do tipo x, y. Se x y x,y y,x. Matemática Discreta ESTiG\IPB Cap2. Relações. Funções pg 4 Par ordenado [ordered pair]. É uma estrutura do tipo x, y. Se x y x,y y,x. então Produto cartesiano do conjunto A pelo conjunto B [cartesian product].

Leia mais

Lógica e Matemática Discreta

Lógica e Matemática Discreta Lógica e Matemática Discreta Teoria Elementar dos Conjuntos Prof Clezio 19 de Agosto de 2018 Curso de Ciência da Computação Relações Binárias Sejam A e B dois conjuntos. Definição: Chama-se relação binária

Leia mais

A ordem em que os elementos se apresentam em um conjunto não é levada em consideração. Há

A ordem em que os elementos se apresentam em um conjunto não é levada em consideração. Há 1 Produto Cartesiano Par Ordenado A ordem em que os elementos se apresentam em um conjunto não é levada em consideração. Há casos entretanto em que a ordem é importante. Daí a necessidade de se introduzir

Leia mais

Matemática para Ciência de Computadores

Matemática para Ciência de Computadores Matemática para Ciência de Computadores 1 o Ano - LCC & ERSI Luís Antunes lfa@ncc.up.pt DCC-FCUP Complexidade 2002/03 1 Fecho transitivo Teorema: o fecho transitivo de uma relação R é igual a relação de

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática MAT Introdução à Álgebra 2015/I

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática MAT Introdução à Álgebra 2015/I 1 Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática MAT 131 - Introdução à Álgebra 2015/I Tópico: Produto Cartesiano 1. Dados os conjuntos M = {1, 3, 5} e N = {2, 4},

Leia mais

Curso: Ciência da Computação Turma: 6ª Série. Teoria da Computação. Aula 2. Conceitos Básicos da Teoria da Computação

Curso: Ciência da Computação Turma: 6ª Série. Teoria da Computação. Aula 2. Conceitos Básicos da Teoria da Computação Curso: Ciência da Computação Turma: 6ª Série Aula 2 Conceitos Básicos da Computação pode ser definida como a solução de um problema ou, formalmente, o cálculo de uma função, através de um algoritmo. A

Leia mais

Produto Cartesiano. Exemplo: Dados os conjuntos A = {5,6} e B = {2,3,4}, vamos determinar o produto cartesiano AXB;

Produto Cartesiano. Exemplo: Dados os conjuntos A = {5,6} e B = {2,3,4}, vamos determinar o produto cartesiano AXB; Produto Cartesiano Par ordenado: são dois elementos em uma ordem fixa, (x,y) Produto Cartesiano: Dados dois conjuntos A e B, não vazios, chamamos de produto cartesiano de A por B o conjunto indicado por

Leia mais

Matemática Discreta para Ciência da Computação

Matemática Discreta para Ciência da Computação Matemática Discreta para Ciência da Computação P. Blauth Menezes blauth@inf.ufrgs.br Departamento de Informática Teórica Instituto de Informática / UFRGS Matemática Discreta para Ciência da Computação

Leia mais

Noções da Teoria dos Grafos. André Arbex Hallack

Noções da Teoria dos Grafos. André Arbex Hallack Noções da Teoria dos Grafos André Arbex Hallack Junho/2015 Índice 1 Introdução e definições básicas. Passeios eulerianos 1 1.1 Introdução histórica..................................... 1 1.2 Passeios

Leia mais

Grafos Orientados (digrafos)

Grafos Orientados (digrafos) Grafos Orientados (digrafos) Grafo Orientado ou digrafo Consiste em um grafo G = (V,A) onde V = {v 1,, v n } é um conjunto de vértices e A = {a 1,, a k } é um conjunto de arcos tais que a k, k=1,,m é representado

Leia mais

Combinando relações. Exemplo Seja A = {1, 2, 3} e B = {1, 2, 3, 4}. As relações

Combinando relações. Exemplo Seja A = {1, 2, 3} e B = {1, 2, 3, 4}. As relações 1 / 11 Combinando relações Combinando relações Exemplo Seja A = {1, 2, 3} e B = {1, 2, 3, 4}. As relações R 1 = {(1, 1), (2, 2), (3, 3)} e R 2 = {(1, 1), (1, 2), (1, 3), (1, 4)} podem ser combinadas para

Leia mais

Matemática Discreta - Exercícios de Grafos

Matemática Discreta - Exercícios de Grafos UALG - 0/0 1. Seja G o grafo cuja matriz de adjacência é: 1 8 9 1 8 9 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 1 0 1 1 0 1 0 1 0 1 1 0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

Leia mais

CONJUNTO DOS NÚMEROS INTEIROS

CONJUNTO DOS NÚMEROS INTEIROS Fundamentos de Álgebra Moderna Profª Ana Paula CONJUNTO DOS NÚMEROS INTEIROS Os números inteiros formam um conjunto, que notaremos por, no qual estão definidas duas operações, que chamaremos de adição

Leia mais

Percursos em um grafo

Percursos em um grafo Percursos em um grafo Definição Um percurso ou cadeia é uma seqüência de arestas sucessivamente adjacentes, cada uma tendo uma extremidade adjacente à anterior e a outra a subsequente (à exceção da primeira

Leia mais

Matemática para Ciência de Computadores

Matemática para Ciência de Computadores Matemática para Ciência de Computadores 1 o Ano - LCC & ERSI Luís Antunes lfa@ncc.up.pt DCC-FCUP Complexidade 2002/03 1 Relações Definição: Uma relação binária de um conjunto A num conjunto B é um subconjunto

Leia mais

( ) Leonardo joga futebol e Fernanda joga golfe. ( ) Leonardo joga futebol e Fernanda não joga golfe.

( ) Leonardo joga futebol e Fernanda joga golfe. ( ) Leonardo joga futebol e Fernanda não joga golfe. 1 a Vericação de Aprendizagem Questão 1. (1,0)(FGV/2008) Leonardo disse a Fernanda: -Eu jogo futebol ou você não joga golfe. Fernanda retrucou: -Isso não é verdade. Sabendo que Fernanda falou a verdade,

Leia mais

CI065 CI755 Algoritmos e Teoria dos Grafos

CI065 CI755 Algoritmos e Teoria dos Grafos CI065 CI755 Algoritmos e Teoria dos Grafos Exercícios 11 de outubro de 2017 1 Fundamentos 1. Seja S = {S 1,..., S n } uma família de conjuntos. O grafo intercessão de S é o grafo G S cujo conjunto de vértices

Leia mais

Matemática Discreta Parte 11

Matemática Discreta Parte 11 Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta Parte 11 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br - www.univasf.edu.br/~jorge.cavalcanti

Leia mais

Lista de Exercícios 8: Soluções Relações

Lista de Exercícios 8: Soluções Relações UFMG/ICEx/DCC DCC111 Matemática Discreta Lista de Exercícios 8: Soluções Relações Ciências Exatas & Engenharias 2 o Semestre de 2016 Definição 1 [Composição de relações]. Seja R uma relação do conjunto

Leia mais

Relações binárias. Laura Goulart. 7 de Março de 2018 UESB. Laura Goulart (UESB) Relações binárias 7 de Março de / 1

Relações binárias. Laura Goulart. 7 de Março de 2018 UESB. Laura Goulart (UESB) Relações binárias 7 de Março de / 1 Relações binárias Laura Goulart UESB 7 de Março de 2018 Laura Goulart (UESB) Relações binárias 7 de Março de 2018 1 / 1 Produto Cartesiano Dados E, F conjuntos quaisquer não vazios, denimos o produto cartesiano

Leia mais

Bacharelado em Ciência da Computação Matemática Discreta

Bacharelado em Ciência da Computação Matemática Discreta Bacharelado em Ciência da Computação Matemática Discreta Prof. Diego Mello da Silva Instituto Federal de Minas Gerais - Campus Formiga 27 de fevereiro de 2013 diego.silva@ifmg.edu.br (IFMG) Matemática

Leia mais

Matemática Discreta Bacharelado em Sistemas de Informação Resolução - 3ª Lista de Exercícios RESOLUÇÃO

Matemática Discreta Bacharelado em Sistemas de Informação Resolução - 3ª Lista de Exercícios RESOLUÇÃO Nome Nota RESOLUÇÃO 1) Para cada uma das relações a seguir, em R, desenhe uma figura para mostrar a região do plano que a descreve. a) x R 2 b) S = {(x,) Rx R 2x + 3-0} x 0 2 3 0 2) São dados A={,,7,8}

Leia mais

Teoria dos Grafos. Edson Prestes

Teoria dos Grafos. Edson Prestes Edson Prestes Introdução Isomorfismo Dois grafos G e G' são isomorfos, ou seja, apresentam as mesmas propriedades estruturais. se eles Definição: Dois grafos G e G' são isomorfos se existe uma função bijetora

Leia mais

AXB = {(x, y) x A e y B}

AXB = {(x, y) x A e y B} CENTRO UNIVERSITÁRIO DO NORTE PAULISTA LÓGICA E MATEMÁTICA DISCRETA 2010 1 Produto Cartesiano Par ordenado: são dois elementos em uma ordem fixa, (x,y) Produto Cartesiano: Dados dois conjuntos A e B, não

Leia mais

Instituto de Computação - Universidade Federal Fluminense Teoria dos Grafos - Lista de exercícios

Instituto de Computação - Universidade Federal Fluminense Teoria dos Grafos - Lista de exercícios Instituto de Computação - Universidade Federal Fluminense Teoria dos Grafos - Lista de exercícios 1 Conceitos 1. Prove o Teorema da Amizade: em qualquer festa com pelo menos seis pessoas, ou três se conhecem

Leia mais

MATEMÁTICA DISCRETA. Patrícia Ribeiro 2018/2019. Departamento de Matemática, ESTSetúbal 1 / 47

MATEMÁTICA DISCRETA. Patrícia Ribeiro 2018/2019. Departamento de Matemática, ESTSetúbal 1 / 47 1 / 47 MATEMÁTICA DISCRETA Patrícia Ribeiro Departamento de Matemática, ESTSetúbal 2018/2019 2 / 47 1 Combinatória 2 Aritmética Racional 3 3 / 47 Capítulo 3 4 / 47 não orientados Um grafo não orientado

Leia mais

Percursos em um grafo

Percursos em um grafo Percursos em um grafo Definição Um percurso ou cadeia é uma seqüência de arestas sucessivamente adjacentes, cada uma tendo uma extremidade adjacente à anterior e a outra a subsequente (à exceção da primeira

Leia mais

Teoria Elementar dos Conjuntos

Teoria Elementar dos Conjuntos Teoria Elementar dos Conjuntos Última revisão em 27 de fevereiro de 2009 Este texto é uma breve revisão sobre teoria elementar dos conjuntos. Em particular, importam-nos os aspectos algébricos no estudo

Leia mais

Parte B Teoria dos Grafos

Parte B Teoria dos Grafos 45 Parte B Teoria dos Grafos B. Grafos e Subgrafos Um grafo G é uma tripla ordenada (V(G), E(G), ), constituindo de um conjunto não vazio V(G) de vértices, um conjunto disjunto E(G) das arestas e uma função

Leia mais

Introdução à Teoria dos Grafos. Isomorfismo

Introdução à Teoria dos Grafos. Isomorfismo Isomorfismo Um isomorfismo entre dois grafos G e H é uma bijeção f : V (G) V (H) tal que dois vértices v e w são adjacentes em G, se e somente se, f (v) e f (w) são adjacentes em H. Os grafos G e H são

Leia mais

Teoria Elementar dos Conjuntos

Teoria Elementar dos Conjuntos Teoria Elementar dos Conjuntos Este capítulo visa oferecer uma breve revisão sobre teoria elementar dos conjuntos. Além de conceitos básicos importantes em matemática, a sua imprtância reside no fato da

Leia mais

Teoria intuitiva de conjuntos

Teoria intuitiva de conjuntos Teoria intuitiva de conjuntos.................................... 1 Relação binária............................................ 10 Lista 3................................................. 15 Teoria intuitiva

Leia mais

Instituto de Computação - Universidade Federal Fluminense Teoria dos Grafos - Lista de exercícios

Instituto de Computação - Universidade Federal Fluminense Teoria dos Grafos - Lista de exercícios Instituto de Computação - Universidade Federal Fluminense Teoria dos Grafos - Lista de exercícios 1 Conceitos 1. Prove o Teorema da Amizade: em qualquer festa com pelo menos seis pessoas, ou três se conhecem

Leia mais

Noções da Teoria dos Grafos

Noções da Teoria dos Grafos Noções da Teoria dos Grafos André Arbex Hallack Índice 1 Introdução e definições básicas. Passeios eulerianos 1 2 Ciclos hamiltonianos 7 3 Árvores 11 4 Emparelhamento em grafos 15 5 Grafos planares: Colorindo

Leia mais

Conjunto Quociente e Classe de Equivalência (Alguns Exemplos e Definições)

Conjunto Quociente e Classe de Equivalência (Alguns Exemplos e Definições) Exemplos Definições Conjunto Quociente e Classe de Equivalência (Alguns Exemplos e Definições) Matemática Elementar - EAD Departamento de Matemática Universidade Federal da Paraíba 4 de setembro de 2014

Leia mais

Noções da Teoria dos Grafos. André Arbex Hallack

Noções da Teoria dos Grafos. André Arbex Hallack Noções da Teoria dos Grafos André Arbex Hallack Junho/2015 Índice 1 Introdução e definições básicas. Passeios eulerianos 1 2 Ciclos hamiltonianos 5 3 Árvores 7 4 Emparelhamento em grafos 11 5 Grafos planares:

Leia mais

INE0003 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE0003 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE0003 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/3 6 - RELAÇÕES DE ORDENAMENTO 6.1) Conjuntos parcialmente

Leia mais

Circuitos Hamiltorianos

Circuitos Hamiltorianos Circuitos Hamiltorianos Vimos que o teorema de euler resolve o problema de caracterizar grafos que tenham um circuito em que cada aresta apareça exatamente uma vez. Vamos estudar aqui uma questão relacionada.

Leia mais

Relações. Antonio Alfredo Ferreira Loureiro. loureiro@dcc.ufmg.br http://www.dcc.ufmg.br/~loureiro. UFMG/ICEx/DCC MD Relações 1

Relações. Antonio Alfredo Ferreira Loureiro. loureiro@dcc.ufmg.br http://www.dcc.ufmg.br/~loureiro. UFMG/ICEx/DCC MD Relações 1 Relações Antonio Alfredo Ferreira Loureiro loureiro@dcc.ufmg.br http://www.dcc.ufmg.br/~loureiro MD Relações 1 Introdução O mundo está povoado por relações: família, emprego, governo, negócios, etc. Entidades

Leia mais

TGR BCC Representação Computacional de Grafos. Prof. Ricardo José Pfitscher

TGR BCC Representação Computacional de Grafos. Prof. Ricardo José Pfitscher TGR BCC Representação Computacional de Grafos Prof. Ricardo José Pfitscher Cronograma Representação Matriz de djacências Lista de djacências Matriz de Incidências Representação Como podemos representar

Leia mais

GRAFOS. Prof. André Backes. Como representar um conjunto de objetos e as suas relações?

GRAFOS. Prof. André Backes. Como representar um conjunto de objetos e as suas relações? 8/0/06 GRAFOS Prof. André Backes Definição Como representar um conjunto de objetos e as suas relações? Diversos tipos de aplicações necessitam disso Um grafo é um modelo matemático que representa as relações

Leia mais

Lista de Exercícios 9 (Extra): Soluções Grafos

Lista de Exercícios 9 (Extra): Soluções Grafos UFMG/ICEx/DCC DCC111 Matemática Discreta Lista de Exercícios 9 (Extra): Soluções Grafos Ciências Exatas & Engenharias 1 o Semestre de 018 Para cada uma das seguintes armações, diga se é verdadeira ou falsa

Leia mais

RESOLUÇÃO DCC-UFRJ MATEMÁTICA COMBINATÓRIA 2006/2 PROVA Considere a soma. S n = n 2 n 1

RESOLUÇÃO DCC-UFRJ MATEMÁTICA COMBINATÓRIA 2006/2 PROVA Considere a soma. S n = n 2 n 1 DCC-UFRJ MATEMÁTICA COMBINATÓRIA 2006/2 PROVA 1 1. Considere a soma S n = 1 2 0 + 2 2 1 + 3 2 2 + + n 2 n 1. Mostre, por indução finita, que S n = (n 1)2 n + 1. Indique claramente a base da indução, a

Leia mais

Matemática para Ciência de Computadores

Matemática para Ciência de Computadores Matemática para Ciência de Computadores 1 o Ano - LCC & ERSI Luís Antunes lfa@ncc.up.pt DCC-FCUP Complexidade 2002/03 1 Representação de Relações Definição: Uma relação binária de um conjunto A num conjunto

Leia mais

GRAFOS E ALGORITMOS ALGORITMOS E APLICAÇÕES

GRAFOS E ALGORITMOS ALGORITMOS E APLICAÇÕES GRAFOS E ALGORITMOS ALGORITMOS E APLICAÇÕES 1a. PARTE Prof. Ronaldo R. Goldschmidt rribeiro@univercidade.br ronaldo_goldschmidt@yahoo.com.br ROTEIRO 1. EXEMPLOS DE APLICAÇÕES DE GRAFOS 2. IMPLEMENTAÇÕES

Leia mais

Estrutura de Dados e Algoritmos e Programação e Computadores II. Aula 10: Introdução aos Grafos

Estrutura de Dados e Algoritmos e Programação e Computadores II. Aula 10: Introdução aos Grafos Estrutura de Dados e Algoritmos e Programação e Computadores II Aula 10: Introdução aos Grafos História O assunto que se constitui no marco inicial da teoria de grafos é na realidade um problema algorítmico.

Leia mais

ELEMENTOS DE MATEMÁTICA DISCRETA Exame de Segunda Data 18/01/2011

ELEMENTOS DE MATEMÁTICA DISCRETA Exame de Segunda Data 18/01/2011 Uma Resolução ELEMENTOS DE MATEMÁTICA DISCRETA Exame de Segunda Data 18/01/2011 1. Seleccione e transcreva para a sua folha de exame a única opção correcta: A fórmula proposicional (p q) (p q) é a) logicamente

Leia mais

Matemática para Ciência dos Computadores 30 de Dezembro, Docente: Luís Antunes & Sandra Alves

Matemática para Ciência dos Computadores 30 de Dezembro, Docente: Luís Antunes & Sandra Alves Matemática para Ciência dos Computadores 30 de Dezembro, 2003 Docente: Luís Antunes & Sandra Alves Mais exercícios de MCC 1. Sejam p, q, r e p 1, p 2, p 3 as seguintes afirmações primitivas e premissas

Leia mais

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO DEPARTAMENTO DE CIÊNCIAS DA COMPUTAÇÃO. 5 a Lista de Exercícios

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO DEPARTAMENTO DE CIÊNCIAS DA COMPUTAÇÃO. 5 a Lista de Exercícios UNIVERSIDADE FEDERAL DO RIO DE JANEIRO DEPARTAMENTO DE CIÊNCIAS DA COMPUTAÇÃO MATEMÁTICA COMBINATÓRIA 5 a Lista de Exercícios 1. O grafo de intersecção de uma coleção de conjuntos A 1,..., A n é o grafo

Leia mais

Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada.

Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada. Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada antunes@ibilce.unesp.br, socorro@ibilce.unesp.br Grafos direcionados (Digrafos) Preparado a partir do texto:

Leia mais

Notas de aulas. álgebra abstrata

Notas de aulas. álgebra abstrata 1 Notas de aulas de álgebra abstrata UEMA LICENCIATURA EM MATEMATICA Elaborada por : Raimundo Merval Morais Gonçalves Licenciado em Matemática/UFMA Professor Assistente/UEMA Especialista em Ensino de Ciências/UEMA

Leia mais

Sumário Algumas Demonstrações CONCLUSÃO RESUMO ATIVIDADES... 34

Sumário Algumas Demonstrações CONCLUSÃO RESUMO ATIVIDADES... 34 Sumário Aula 11: Relações Binárias 9 11.1 Introdução... 10 11.2 Relações Binárias... 10 11.2.1 Propriedades das Relações Binárias... 13 11.3 Algumas Demonstrações... 16 11.4 CONCLUSÃO... 18 11.5 RESUMO....

Leia mais

1. Entre as funções dadas abaixo, verifique quais são transformações lineares: x y z

1. Entre as funções dadas abaixo, verifique quais são transformações lineares: x y z MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA 657- - VIÇOSA - MG BRASIL a LISTA DE EXERCÍCIOS DE MAT 8 I SEMESTRE DE Entre as funções dadas abaixo, verifique quais são transformações

Leia mais

INE Fundamentos de Matemática Discreta para a Computação

INE Fundamentos de Matemática Discreta para a Computação INE5403 - Fundamentos de Matemática Discreta para a Computação 5) Relações 5.1) Relações e Dígrafos 5.2) Propriedades de Relações 5.3) Relações de Equivalência 5.4) Manipulação de Relações 5.5) Fecho de

Leia mais

Disciplina: Matemática Discreta Agostinho Iaqchan Ryokiti Homa

Disciplina: Matemática Discreta Agostinho Iaqchan Ryokiti Homa Disciplina: Matemática Discreta Agostinho Iaqchan Ryokiti Homa Aula -Grafos Uma figura vale por mil palavras A representação de dados e ou informações utilizando de recursos visuais é, em muitos casos,

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática 1 Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática Lista 4 - MAT 137 -Introdução à Álgebra Linear 2017/II 1. Entre as funções dadas abaixo, verifique quais

Leia mais

Relações Binárias, Aplicações e Operações

Relações Binárias, Aplicações e Operações Relações Binárias, Aplicações e Operações MAT 131-2018 II Pouya Mehdipour 6 de dezembro de 2018 Pouya Mehdipour 6 de dezembro de 2018 1 / 24 Referências ALENCAR FILHO, E. Teoria Elementar dos Conjuntos,

Leia mais

INF1010 Lista de Exercícios 2

INF1010 Lista de Exercícios 2 INF00 Lista de Exercícios 2 Árvores. Construir algoritmo para dada uma árvore n-ária, transformá-la em uma árvore binária. 2. Qual a maior e menor quantidade de nós que podem existir em uma árvore binária

Leia mais

MATEMÁTICA DISCRETA LISTA DE EXERCÍCIOS 3

MATEMÁTICA DISCRETA LISTA DE EXERCÍCIOS 3 MATEMÁTICA DISCRETA LISTA DE EXERCÍCIOS 3 1. Construa tabelas-verdade para as expressões abaixo. Note quaisquer tautologias ou contradições. a) A (B A) b) A B B' A' c) (A B') (A B)' d) [(A B) C'] A' C

Leia mais

1 Números Reais. 1. Simplifique as seguintes expressões (definidas nos respectivos domínios): b) x+1. d) x 2, f) 4 x 4 2 x, g) 2 x2 (2 x ) 2, h)

1 Números Reais. 1. Simplifique as seguintes expressões (definidas nos respectivos domínios): b) x+1. d) x 2, f) 4 x 4 2 x, g) 2 x2 (2 x ) 2, h) Números Reais. Simplifique as seguintes expressões (definidas nos respectivos domínios): x a), x b) x+ +, x c) +x + x +x, d) x, e) ( x ), f) 4 x 4 x, g) x ( x ), h) 3 x 6 x, i) x x +, j) x x+ x, k) log

Leia mais

Matemática tica Discreta Módulo Extra (2)

Matemática tica Discreta Módulo Extra (2) Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática tica Discreta Módulo Extra (2) Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br - www.univasf.edu.br/~jorge.cavalcanti

Leia mais

Revisão de Matemática Discreta

Revisão de Matemática Discreta Apêndice A Revisão de Matemática Discreta Neste apêndice serão revisados, de forma sucinta, os conceitos matemáticos necessários para o entendimento do assunto tratado neste texto. Inicialmente, na Seção

Leia mais

Matemática Discreta 10

Matemática Discreta 10 Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta 10 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br - www.univasf.edu.br/~jorge.cavalcanti 1 Muitas

Leia mais

Introdução ao Curso. Área de Teoria DCC/UFMG 2019/01. Introdução à Lógica Computacional Introdução ao Curso Área de Teoria DCC/UFMG /01 1 / 22

Introdução ao Curso. Área de Teoria DCC/UFMG 2019/01. Introdução à Lógica Computacional Introdução ao Curso Área de Teoria DCC/UFMG /01 1 / 22 Introdução ao Curso Área de Teoria DCC/UFMG Introdução à Lógica Computacional 2019/01 Introdução à Lógica Computacional Introdução ao Curso Área de Teoria DCC/UFMG - 2019/01 1 / 22 Introdução: O que é

Leia mais

GRAFOS E ALGORITMOS TEORIA DE GRAFOS

GRAFOS E ALGORITMOS TEORIA DE GRAFOS GRAFOS E ALGORITMOS TEORIA DE GRAFOS 1a. PARTE Prof. Ronaldo R. Goldschmidt rribeiro@univercidade.br ronaldo_goldschmidt@yahoo.com.br ROTEIRO 1. INTRODUÇÃO E MOTIVAÇÃO 2. FUNDAMENTOS 3. CONECTIVIDADE 4.

Leia mais

Notas de aula de MAC0329 Álgebra Booleana e Aplicações

Notas de aula de MAC0329 Álgebra Booleana e Aplicações Notas de aula de MAC0329 Álgebra Booleana e Aplicações Nina S. T. Hirata Depto. de Ciência da Computação IME / USP Este texto é uma referência-base para o curso de MAC0329 (Álgebra Booleana e Aplicações).

Leia mais

Soluções dos Exercícios Propostos no Livro. Introdução aos Fundamentos da Computação: Linguagens e Máquinas (Ed. Thomson, 2006)

Soluções dos Exercícios Propostos no Livro. Introdução aos Fundamentos da Computação: Linguagens e Máquinas (Ed. Thomson, 2006) Soluções dos Exercícios Propostos no Livro Introdução aos Fundamentos da Computação: Linguagens e Máquinas (Ed. Thomson, 2006) Newton José Vieira Departamento de Ciência da Computação Instituto de Ciências

Leia mais

TEORIA DOS GRAFOS UMA APLICAÇÃO DE LOGÍSTICA PARA O ENSINO MÉDIO. Profº M. Sc. Marcelo Mazetto Moala

TEORIA DOS GRAFOS UMA APLICAÇÃO DE LOGÍSTICA PARA O ENSINO MÉDIO. Profº M. Sc. Marcelo Mazetto Moala TEORIA DOS GRAFOS UMA APLICAÇÃO DE LOGÍSTICA PARA O ENSINO MÉDIO mmmoala@fafica.br Breve Histórico Leonhard Euler (Matemático Suíço) - Pai da Teoria dos Grafos Nascimento de abril de 77 / 8 de setembro

Leia mais

Faculdade de Informática e Tecnologia de Pernambuco. Primeira lista de exercícios de Álgebra Aplicada à Computação Prof. Diego Machado Dias

Faculdade de Informática e Tecnologia de Pernambuco. Primeira lista de exercícios de Álgebra Aplicada à Computação Prof. Diego Machado Dias Faculdade de Informática e Tecnologia de Pernambuco Primeira lista de exercícios de Álgebra Aplicada à Computação Prof. Diego Machado Dias Instruções 1. No início de cada seção da lista há uma sugestão

Leia mais

ESTRUTURAS DE DADOS. prof. Alexandre César Muniz de Oliveira. 1. Introdução 2. Pilhas 3. Filas 4. Listas 5. Árvores 6. Ordenação 7. Busca 8.

ESTRUTURAS DE DADOS. prof. Alexandre César Muniz de Oliveira. 1. Introdução 2. Pilhas 3. Filas 4. Listas 5. Árvores 6. Ordenação 7. Busca 8. ESTRUTURAS DE DADOS prof. Alexandre César Muniz de Oliveira 1. Introdução 2. Pilhas 3. Filas 4. Listas 5. Árvores 6. Ordenação 7. Busca 8. Grafos Sugestão bibliográfica: ESTRUTURAS DE DADOS USANDO C Aaron

Leia mais

Teoria dos Grafos Conceitos Básicos

Teoria dos Grafos Conceitos Básicos Teoria dos Grafos Conceitos Básicos Profª. Alessandra Martins Coelho fev/2014 Grafos com apelidos diamante Grafos com apelidos Grafos com apelidos diamante casinha Grafos com apelidos diamante casinha

Leia mais

1.3 Isomorfismo 12 CAP. 1 CONCEITOS BÁSICOS

1.3 Isomorfismo 12 CAP. 1 CONCEITOS BÁSICOS 12 CAP. 1 CONCEITOS BÁSICOS I i I j. Essa relação de adjacência define um grafo com conjunto de vértices {I 1,...,I k }. Esse é um grafo de intervalos. Faça uma figura do grafo definido pelos intervalos

Leia mais

FICHA DE TRABALHO N.º 2 MATEMÁTICA A - 10.º ANO CONJUNTOS E CONDIÇÕES

FICHA DE TRABALHO N.º 2 MATEMÁTICA A - 10.º ANO CONJUNTOS E CONDIÇÕES FICHA DE TRABALHO N.º MATEMÁTICA A - 10.º ANO CONJUNTOS E CONDIÇÕES Conhece a Matemática e dominarás o Mundo. Galileu Galilei GRUPO I ITENS DE ESCOLHA MÚLTIPLA 1. Considere a condição px : x é um número

Leia mais

Teoria dos Grafos. Edson Prestes

Teoria dos Grafos. Edson Prestes Edson Prestes Introdução Representação Mostre que todo passeio de u até v contém um caminho de u até v. Considere um passeio de comprimento l de u até v. Se l = 0 então temos um passeio sem nenhuma aresta.

Leia mais

Grafos - Motivação. Grafos - Motivação. Algoritmos e Estruturas de Dados II Introdução a Grafos

Grafos - Motivação. Grafos - Motivação. Algoritmos e Estruturas de Dados II Introdução a Grafos Algoritmos e Estruturas de Dados II Introdução a Profa. M. Cristina/ Profa. Rosane (2010) Material de aula original: Profa. Josiane M. Bueno - Motivação : conceito introduzido por Euler, em 1736 Problema

Leia mais

Problema da Árvore Geradora Mínima

Problema da Árvore Geradora Mínima Instituto Federal do Espírito Santo Campus Serra Problema da Árvore Geradora Mínima Diego Pasti Jefferson Rios Sumário Apresentação do Problema da AGM...3 Raízes do Problema Definindo o Problema O Problema

Leia mais

MATEMÁTICA DISCRETA PARA ENGENHARIA DE COMPUTAÇÃO

MATEMÁTICA DISCRETA PARA ENGENHARIA DE COMPUTAÇÃO MATEMÁTICA DISCRETA PARA ENGENHARIA DE COMPUTAÇÃO Profa. Kathya Collazos Linares *As aulas baseiam-se no material do Professor Antonio Alfredo Ferreira Loureiro; Jorge Figueiredo e Judith Gersting Árvore

Leia mais

UNIVERSIDADE DE SÃO PAULO INSTITUTO DE CIÊNCIAS MATEMÁTICAS E DE COMPUTAÇÃO Departamento de Ciências de Computação

UNIVERSIDADE DE SÃO PAULO INSTITUTO DE CIÊNCIAS MATEMÁTICAS E DE COMPUTAÇÃO Departamento de Ciências de Computação UNIVERSIDADE DE SÃO PAULO INSTITUTO DE CIÊNCIAS MATEMÁTICAS E DE COMPUTAÇÃO Departamento de Ciências de Computação SCC-203 ALGORITMOS E ESTRUTURAS DE DADOS II Prova - Gabarito Nome: Nro. USP ) O matemático

Leia mais

Indução Matemática. George Darmiton da Cunha Cavalcanti CIn - UFPE

Indução Matemática. George Darmiton da Cunha Cavalcanti CIn - UFPE Indução Matemática George Darmiton da Cunha Cavalcanti CIn - UFPE Introdução Qual é a fórmula para a soma dos primeiros n inteiros ímpares positivos? Observando os resultados para um n pequeno, encontra-se

Leia mais

Teoria dos Grafos. Aula 5 - Estruturas de Dados para Grafos. Profª. Alessandra Martins Coelho. março/2013

Teoria dos Grafos. Aula 5 - Estruturas de Dados para Grafos. Profª. Alessandra Martins Coelho. março/2013 Teoria dos Grafos Aula 5 - Estruturas de Dados para Grafos Profª. Alessandra Martins Coelho março/2013 Estrutura é o que caracteriza o próprio grafo e independe da forma como ele é representado. A representação

Leia mais

Definição 1.1 : Uma árvore é um grafo simples conexo e sem ciclos.

Definição 1.1 : Uma árvore é um grafo simples conexo e sem ciclos. 1 Árvores Definição 1.1 : Uma árvore é um grafo simples conexo e sem ciclos. Um grafo simples sem ciclos mas não conexo (em que cada componente conexa é portanto uma árvore) chama-se uma floresta. Numa

Leia mais

Seja S = {2, 5, 17, 27}. Quais da sentenças a seguir são verdadeiras? 3. Quantos conjuntos diferentes são descritos abaixo? Quais são eles?

Seja S = {2, 5, 17, 27}. Quais da sentenças a seguir são verdadeiras? 3. Quantos conjuntos diferentes são descritos abaixo? Quais são eles? Seção 3.1 Conjuntos 113 Existem identidades básicas (em pares duais) e elas podem ser usadas para provarem identidades de conjuntos; uma vez que uma identidade seja provada desta maneira, sua dual também

Leia mais