Circuitos Hamiltorianos
|
|
|
- Sara de Santarém Caminha
- 7 Há anos
- Visualizações:
Transcrição
1 Circuitos Hamiltorianos Vimos que o teorema de euler resolve o problema de caracterizar grafos que tenham um circuito em que cada aresta apareça exatamente uma vez. Vamos estudar aqui uma questão relacionada. Dado um grafo G, é possível achar um circuito de G em que cada vértice de G apareça uma única vez? Em 1859, o matemático irlandês Sir Willian Hamilton introduziu um quebra-cabeça com formato de dodecaedro que é um figura sólida de 12 faces pentagonais idênticas.
2 Cada vértice foi rotulado com o nome de uma cidade. A questão proposta por Hamilton foi começar em uma cidade e fazer um tour pelo mundo visitando cada cidade uma única vez, voltando à cidade original. O quebra-cabeça é fácil de resolver se espicharmos as faces do dodecaedro planificando-o
3 Definição: dado um grafo G, um circuito Hamiltoniano para G é circuito simples que inclui todos os vértices de G. Ou seja, é uma seqüência de vértices adjacentes e arestas distintas em que cada vértice aparece exatamente uma vez O problema de Hamilton é, portanto, achar um caminho Hamiltoniano no grafo abaixo.
4 Note que um circuito Euleriano inclui todos os vértices, mas pode visitar um vértice mais de uma vez. No caso de caminhos Eulerianos, resolvemos com elegância o problema, caracterizando que são Eulerianos. Matemática não é tão eficiente aqui. Vamos supor que G tenha um circuito Hamiltoriano C: v0 e1 v1 e2 v2... vn-1 en vn e considere o subgrafo H formado por C. Note que o número de vértices é igual ao número de arestas, pois v0=vn e ei ej Note ainda que H tem os mesmos vértices de G e que cada vértice de H tem grau 2.
5 Proposição1: Se um grafo G tem um circuito Hamiltoriano então G tem um subgrafo H tal que. 1. H contem todos os vértices de G 2. H é conexo 3. H tem tantos vértices quanto arestas 4. Todo vértice de H tem grau 2 Essa preposição serve para mostrar que determinado grafo não tem circuito Hamiltoriano.
6 Ex: Mostre que o grafo G abaixo não tem circuito Hamiltoriano a c b e d Se G tivesse um circuito Hamiltoriano teria um subgrafo em que todos os vértices a,b,c,d,e tem grau 2. Como b tem grau 4, duas arestas tem de ser removidas. Quais? {a,b} não pode, pois a teria grau 1. Similarmente {e,b}, {b,c} e {b,d} Então não dá!
7 O problema do caixeiro viajante Considere o mapa da figura mostrando 4 cidades e a distância (em Km) entre elas. b 30 c Qual a rota passando por 30 todas as cidades que minimiza a distância a ser percorrida. a d 40 Solução: o problema pode ser resolvido escrevendo todos os circuitos Hamiltorianos começando e terminando em a e calculando a distancia total.
8 a 30 b d 25 c Rota ABCDA ABDCA ACBDA ACDBA ADBCA ADCBA Distancia total = = = = = = 25
9 O problema do caixeiro viajante geral envolve encontrar um circuito Hamiltoriano que minimize a distância total percorrida. Aplicações * empresas de transportes * coletores de lixo * carteiro Como resolver este problema? Uma maneira é escrever todos os circuitos Hamiltorianos e começando e terminando em um aresta e escolher um que tenha distância mínima. Esse método não é pratico, pois não há métodos eficientes para determinar e em geral, há muitos circuitos Hamiltorianos. Quantos caminhos Hamiltorianos tem um grafo completo com n vértices? (n-1)!
10 Representação Matricial de Grafos Como representar um grafo em um computador? Considere o dígrafo abaixo. v1 e1 v2 v3 A matriz v1 v2 v Representa o dígrafo no sentido seguinte
11 Definição: Seja G um (dí)grafo com vértices ordenados v1,v2,v3,... A matriz de adjacência de G A = (a ij ) onde a ij = o número de arestas de v i, a v j Ex v 1 v 4 v 3 v 2 Tem matriz de adjacência v 1 [ ] v v v Note que a matriz de adjacência de um grafo é simétrica
12 Ex: qual o dígrafo representado pela matriz de adjacências A = V 1 [ ] V V V 4 Solução : como a matriz não é simétrica, a matriz representa um dígrafo. v1 v2 v4 v3
13 Qual a relação entre matrizes de adjacências e componentes conexas? Por exemplo v1 v3 v4 v6 A= v2 v v7
14 Observe os zeros. A matriz fica uma matriz de blocos na diagonal e zeros fora da diagonal. É fácil mostrar o seguinte Teorema: Seja G um grafo com componentes G1,..., Gk, cada um com ni vértices. Se os vértices estão numerados consecutivamente, então a matriz de adjacências de G tem a forma A1 0 A Ak Onde cada Ai é a matriz de adjacências dos grafo Gi, i=1...k
15 Vamos agora fazer uma importante interpretação de operações com matrizes de adjacências em relação a grafos. Considere o exemplo v2 e2 e1 v1 v3 e3 e4 Cuja Matriz de Adjacências é A= Quantos passeios de comprimento 2 existem ligando v2 a v2? Passando por v1: Passando por v2: Passando por v3: e1e1 e2e2 e3e3, e3e4, e4e4, e4e3 Portanto há 6 caminhos de comprimento 2 de v2 a v2
16 e1 v2 e2 E quantos passeios de comprimento 2 ligando v1 a v3? v1 e3 v3 e4 Passando por v1: Passando por v2: Passando por v3: Não tem e1e3, e1e4 Não tem Portanto há um total de dois passeios de comprimento 2 de v1 a v3. A questão geral é como determinar o número de passeios de vi a vj com um determinado comprimento. Podemos usar a multiplicação matrizes para responder essa questão: Vamos calcular A 2 = A A = Em particular o elemento 2,2 coincide. Porque? =
17 Examinemos o elemento 2 da matriz produto = Note que 6=1 * * * 2 No. de arestas de v2 a v1. No. de arestas de v1 a v2. No. de pares de arestas de v2 a v1 e de v1 a v2. = = No. de passeios de v2 a v2 de comprimento 2 passando por v1. Similarmente, temos No. de passeios de v2 a v2 passando por v2 (de comp. 2). No. de passeios de v2 a v2 passando por v3 (de comp. 2). Em geral, temos o seguinte
18 Teorema 6: Se G é um grafo com vértices v 1, v 2,..., v m e A é a matriz de adjacências de G, então para cada inteiro positivo n, o elemento i,j da matriz A n é o número de passeios de comprimento n de v i a v j. Prova: Por indução em n, o número de vértices Para n=1: A matriz A n = A, a matriz de adjacências e o elemento i,j da matriz é o número de passeios de comprimento 1. Por indução, supõe que o elemento i,j da matriz A k é o número de passeios de comprimento k de v i a v j. Temos de mostrar que o número de passeios de comprimento k+1 de v i a v j é o elemento i,j da matriz A k+1 Seja A=(a i,j ) e A k = (b i,j ) O elemento i,j de A k+1 = a i,1 b 1,j + a i,2 b 2,j +...+a i,m b m,j No de arestas de v i a v 1 * No de passeios de v 1 a v j de comprimento k Que é o número de passeios de comprimento k+1 de v i a v j passando por v 1
19 Isomorfismos de Grafos Lembremos que as figuras abaixo v 1 v 4 v 5 v 2 v 1 v 2 v 4 v 3 Representam o mesmo grafo. De fato cada vértice tem exatamente os mesmos vizinhos. E os diagramas abaixo representam o mesmo grafo? v1 v2 v3 v1 v3 v2 v 3 v 5 Não, pois os vizinhos de v2 no primeiro grafo são v1 e v3, ao passo que no da direita, é só v3. Entretanto, se renomearmos os vértices teremos o mesmo grafo. O que nos inspira a seguinte
20 Definição: Sejam G=(V,A) e G =(V,A ) dois grafos simples. G é dito isomorfo a G se existe função bijetora f : G > G que preserva adjacências: {u,v} é uma aresta de G se e somente se {f(u),f(v)} é uma aresta de G Exemplo: Considere os grafos w1 w3 v1 v2 v5 v3 v4 w4 w2 w5 São isomorfos. Um isomorfismo pode ser dado pela função: v1 v2 v3 v4 v5 w2 w3 w1 w4 w5
21 Como determinar se dois grafos são ou não isomorfos? Esse é problema muito difícil. Não, há, infelizmente, um método eficiente para resolver este problema. Se por inspeção, como fizemos, temos a sorte de verificar um isomorfismo, muito bem. Se não for possível, tenta-se mostrar que existe alguma diferença estrutural entre os dois grafos que evidencie o fato de eles não serem isomorfos. Definição: Uma propriedade P é dita invariante isomorfa se dados dois grafos isomorfos G e G, G tem a propriedade P, então G tem a propriedade P.
22 Teorema: São invariantes isomorfas as seguintes propriedades: 1. O no. de vértices 5. Ser conexo 2. O no. de arestas 6. Ter circuito Euleriano 3. O conjunto de vértices de grau k 7. Ter circuito Hamiltoniano 4. Circuito de comprimento k 8. No. de circuitos de comp k Exemplo: Verificar se são isomorfos os pares de grafos: Solução: Não são isomorfos pois o número de arestas não é o mesmo.
23 E para esse par de grafos, verifique se são isomorfos Note que eles têm o mesmo número de vértices e de arestas Têm o mesmo conjunto de graus: {2,2,2,3,3,4}
24 Vamos remover os vértices de grau 3. O grafo resultante é Note que eles não são isomorfos (e deveriam ser). Portanto, os grafos originais não são isomorfos Outra propriedade invariante importante é a planaridade, que vermos a seguir.
GRAFOS Aula 04 Caminhos, Conexidade e Distância Max Pereira
Ciência da Computação GRAFOS Aula 04 Caminhos, Conexidade e Distância Max Pereira Um grafo é dito conexo se for possível visitar qualquer vértice, partindo de um outro qualquer, passando pelas suas arestas.
GRAFOS: UMA INTRODUÇÃO
GRAFOS: UMA INTRODUÇÃO Vilmar Trevisan -Instituto de Matemática - UFRGS Junho de 2006 Grafos: uma introdução Informalmente, um grafo é um conjunto de pontos no plano ligados entre por flechas ou por segmentos
Grafos: caminhos mínimos
quando o grafo é sem pesos, a determinação de um caminho mais curto pode ser feita através de uma busca em largura caminho mais curto é aquele que apresenta o menor número de arestas quando o grafo tem
Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada.
Teoria dos Grafos Valeriano A de Oliveira Socorro Rangel Departamento de Matemática Aplicada antunes@ibilceunespbr, socorro@ibilceunespbr Grafos Hamiltonianos Preparado a partir do texto: Rangel, Socorro
Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Departamento de Matemática Aplicada
Teoria dos Grafos Valeriano A de Oliveira, Socorro Rangel, Silvio A de Araujo Departamento de Matemática Aplicada Capítulo 12: Grafos Hamiltonianos Preparado a partir do texto: Rangel, Socorro Teoria do
GRAFOS E ALGORITMOS TEORIA DE GRAFOS
GRAFOS E ALGORITMOS TEORIA DE GRAFOS 1a. PARTE Prof. Ronaldo R. Goldschmidt [email protected] [email protected] ROTEIRO 1. INTRODUÇÃO E MOTIVAÇÃO 2. FUNDAMENTOS 3. CONECTIVIDADE 4.
MATEMÁTICA DISCRETA PARA ENGENHARIA DE COMPUTAÇÃO
MATEMÁTICA DISCRETA PARA ENGENHARIA DE COMPUTAÇÃO Profa. Kathya Collazos Linares *As aulas baseiam-se no material do Professor Antonio Alfredo Ferreira Loureiro O problema das sete pontes de Königsberg
GRAFOS. Prof. André Backes. Como representar um conjunto de objetos e as suas relações?
8/0/06 GRAFOS Prof. André Backes Definição Como representar um conjunto de objetos e as suas relações? Diversos tipos de aplicações necessitam disso Um grafo é um modelo matemático que representa as relações
Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada.
Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada [email protected], [email protected] Grafos Eulerianos Preparado a partir do texto: Rangel, Socorro.
Teoria dos Grafos AULA 1
Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada [email protected], [email protected] AULA 1 Introdução, Conceitos Iniciais, Isomorfismo Preparado
Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada.
Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada [email protected], [email protected] Grafos direcionados (Digrafos) Preparado a partir do texto:
Parte B Teoria dos Grafos
45 Parte B Teoria dos Grafos B. Grafos e Subgrafos Um grafo G é uma tripla ordenada (V(G), E(G), ), constituindo de um conjunto não vazio V(G) de vértices, um conjunto disjunto E(G) das arestas e uma função
Teoria dos Grafos AULA 1
Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Silvio A. de Araujo Departamento de Matemática Aplicada [email protected], [email protected], [email protected] AULA 1 Introdução,
Grafos: aplicações. Grafos: árvore geradora mínima
árvore geradora mínima caminhos mínimos problemas tipo 1 desejase conectar todos os computadores em um prédio usando a menor quantidade possível de cabos uma companhia aérea deseja voar para algumas cidades
TEORIA DOS GRAFOS TECNOLOGIA EM ANÁLISE E DESENVOLVIMENTO DE SISTEMAS MATEMÁTICA DISCRETA II PROFº MARCOS NASCIMENTO
TEORIA DOS GRAFOS TECNOLOGIA EM ANÁLISE E DESENVOLVIMENTO DE SISTEMAS MATEMÁTICA DISCRETA II PROFº MARCOS NASCIMENTO Por que estudar grafos? Importante ferramenta matemática com aplicação em diversas áreas
Ciência da Computação Engenharia de Computação Mestrado em Informática. Teoria dos Grafos. Maria Claudia Silva Boeres.
Ciência da Computação Engenharia de Computação Mestrado em Informática Maria Claudia Silva Boeres [email protected] Programa 1.Conceitos Básicos 2.Grafos Eulerianos e Hamiltonianos 3.Caminhos, Ciclos
Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada.
Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada [email protected], [email protected] Preparado a partir do texto: Rangel, Socorro. Teoria do Grafos,
Matemática Discreta. Aula nº 22 Francisco Restivo
Matemática Discreta Aula nº 22 Francisco Restivo 2006-05-26 Definição: Um grafo cujos vértices são pontos no plano e cujos lados são linhas no plano que só se encontram nos vértices do grafo são grafos
Teoria dos Grafos Aula 2
Teoria dos Grafos Aula 2 Aula passada Logística, regras Objetivos Grafos, o que são? Formando pares Encontrando caminhos Aula de hoje Outro problema real Definições importantes Algumas propriedades Grafo
Grafos Orientados (digrafos)
Grafos Orientados (digrafos) Grafo Orientado ou digrafo Consiste em um grafo G = (V,A) onde V = {v 1,, v n } é um conjunto de vértices e A = {a 1,, a k } é um conjunto de arcos tais que a k, k=1,,m é representado
GRAFOS ORIENTADOS. PSfrag replacements. Figura 1: Exemplo de um grafo orientado.
Introdução à Teoria dos Grafos Bacharelado em Ciência da Computação UFMS, 2005 GRAFOS ORIENTAOS Resumo Existem ocasiões onde grafos não são apropriados para descrever certas situações. Por exemplo, um
Alguns probleminhas...
Introdução Vários problemas da computação, com aplicações em diversos problemas importantes, nasceram de jogos ou brincadeiras. Hoje veremos uma pequana amostra deste fato. Alguns probleminhas... Problema
Introdução à Teoria do Grafos Notas de aula. Socorro Rangel últimas atualizações: (2009), (2012)
Campus de São José do Rio Preto Introdução à Teoria do Grafos Notas de aula Socorro Rangel ([email protected]) últimas atualizações: (2009), (2012) Instituto de Biociências Letras e Ciências Exatas
Grafos AULA META. Introduzir noções elementares da teoria dos grafos. OBJETIVOS. Ao final da aula o aluno deverá ser capaz de:
Grafos META Introduzir noções elementares da teoria dos grafos. OBJETIVOS Ao final da aula o aluno deverá ser capaz de: Representar grafos por meio de matrizes e diagramas; Caracterizar uma árvore; Identificar
PERCURSOS. André Falcão, Carlos Augusto, Rafael Broédel e Lucas Dipré
PERCURSOS André Falcão, Carlos Augusto, Rafael Broédel e Lucas Dipré Serra 2011 Índice 1...O que é caminho e circuito 1.1...Caminho 1.2...Circuito 1.3...Classificação 2...Caminhos Eulerianos 2.1...Definição
MATEMÁTICA DISCRETA PARA ENGENHARIA DE COMPUTAÇÃO
MATEMÁTICA DISCRETA PARA ENGENHARIA DE COMPUTAÇÃO Profa. Kathya Collazos Linares *As aulas baseiam-se no material do Professor Antonio Alfredo Ferreira Loureiro; Jorge Figueiredo e Judith Gersting Árvore
Grafos: caminhos (matriz adjacência)
Grafos: caminhos (matriz adjacência) Algoritmos e Estruturas de Dados 2 Graça Nunes 1 O problema do menor caminho Um motorista deseja encontrar o caminho mais curto possível entre duas cidades do Brasil
CONCEITOS BÁSICOS EM GRAFOS
Um grafo (simples) G é formado por um conjunto de vértices, denotado por V(G), e um conjunto de arestas, denotado por E(G). Cada aresta é um par (não ordenado) de vértices distintos. Se xy é uma aresta,
MATEMÁTICA DISCRETA. Patrícia Ribeiro 2018/2019. Departamento de Matemática, ESTSetúbal 1 / 47
1 / 47 MATEMÁTICA DISCRETA Patrícia Ribeiro Departamento de Matemática, ESTSetúbal 2018/2019 2 / 47 1 Combinatória 2 Aritmética Racional 3 3 / 47 Capítulo 3 4 / 47 não orientados Um grafo não orientado
Matemática Discreta. Aula 06: Teoria dos Grafos. Tópico 01: Grafos e suas Representações. Observação
Aula 06: Teoria dos Grafos Tópico 01: Grafos e suas Representações Nesta aula nós passamos a estudar um outro assunto, mas que também tem muita aplicação na vida prática, a Teoria dos Grafos. Para esta
76) 1.1 Sim 1.2 Não 1.3 Não
6) 1.1 Sim 1.2 Não 1. Não 2.1 2.2 2.. Os grafos dos exercícios 2.1 e 2.2 são conexos, pois existe sempre uma sequência de arestas a unir quaisquer dois vértices. 4.1 Grafo I vértices: ; arestas: 2 Grafo
Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Departamento de Matemática Aplicada
Teoria dos Grafos Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo Departamento de Matemática Aplicada Capítulo 09: Representação de Grafos Preparado a partir do texto: Rangel, Socorro. Teoria
Noções da Teoria dos Grafos
Noções da Teoria dos Grafos André Arbex Hallack Índice 1 Introdução e definições básicas. Passeios eulerianos 1 2 Ciclos hamiltonianos 7 3 Árvores 11 4 Emparelhamento em grafos 15 5 Grafos planares: Colorindo
Instituto de Computação Universidade Federal Fluminense. Notas de Aula de Teoria dos Grafos. Prof. Fábio Protti Niterói, agosto de 2015.
Instituto de Computação Universidade Federal Fluminense Notas de Aula de Teoria dos Grafos Niterói, agosto de 2015. Conteúdo 1 Conceitos Básicos 5 1.1 Grafos, vértices, arestas..................... 5 1.2
Algoritmos de aproximação - Problema do caixeiro viajante
Algoritmos de aproximação - Problema do caixeiro viajante Marina Andretta ICMC-USP 30 de setembro de 2015 Baseado no livro Uma introdução sucinta a Algoritmos de Aproximação, de M. H. Carvalho, M. R. Cerioli,
Cap. 2 Conceitos Básicos em Teoria dos Grafos
Teoria dos Grafos e Aplicações 8 Cap. 2 Conceitos Básicos em Teoria dos Grafos 2.1 Grafo É uma noção simples, abstrata e intuitiva, usada para representar a idéia de alguma espécie de relação entre os
Circuitos Eulerianos Ciclos Hamiltonianos O Problema do Caixeiro Viajante CAMINHAMENTOS BASEADO EM TOWNSEND (1987), CAP. 7.
Matemática Discreta Capítulo 7 SUMÁRIO CAMINHAMENTOS BASEADO EM TOWNSEND (1987), CAP. 7 Circuitos Eulerianos Ciclos Hamiltonianos O Problema do Caixeiro Viajante Newton José Vieira 30 de julho de 2007
Aula nº / Outubro/ 07. Problema do carteiro chinês
ula nº 10 2011/ Outubro/ 07 Problema do carteiro chinês efinição: Um ciclo de Hamilton (ou circuito de Hamilton) num grafo, é um ciclo que passa por todos os vértices desse grafo. efinição: Um grafo de
Problemas de otimização
Problemas de otimização Problemas de decisão: Existe uma solução satisfazendo certa propriedade? Resultado: sim ou não Problemas de otimização: Entre todas as soluções satisfazendo determinada propriedade,
Teoria dos Grafos. Maria Claudia Silva Boeres. UFES. Teoria dos Grafos
Maria Claudia Silva Boeres [email protected] Motivação Por que estudar grafos? Importante ferramenta matemática com aplicação em diversas áreas do conhecimento Utilizados na definição e/ou resolução de
UNIP - Ciência da Computação e Sistemas de Informação. Estrutura de Dados. AULA 8 Grafos. Estrutura de Dados 1
UNIP - Ciência da Computação e Sistemas de Informação Estrutura de Dados AULA 8 Grafos Estrutura de Dados 1 Grafos - Motivação Muitas aplicações em computação necessitam considerar conjunto de conexões
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE MATEMÁTICA
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE MATEMÁTICA Grafos no Ensino Médio Uma Inserção Possível PRODUTO DA DISSERTAÇÃO SEQUÊNCIA DIDÁTICA
Grafos IFRN. Prof.Robinson Alves
Grafos IFRN Prof.Robinson Alves Caminhos É uma seqüência de arestas onde o vértice final de uma aresta é o vértice inicial da próxima v c c3 c1 c6 c4 {c1,c,c4,c5,c6} {c,c3,c4,c5} {,v,,,v5} {v,,,v5,} c5
Comunicação e redes. Aula 2: Teoria dos Grafos Conceitos básicos. Professor: Guilherme Oliveira Mota.
Comunicação e redes Aula 2: Teoria dos Grafos Conceitos básicos Professor: Guilherme Oliveira Mota [email protected] Aula passada Redes complexas Grafo G: Conjunto de pontos e linhas ligando esses pontos
Teoria dos Grafos AULA 3
Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada [email protected], [email protected] AULA 3 Trajetos, Caminhos, Circuitos, Grafos Conexos Preparado
Volmir Eugênio Wilhelm Departamento de Engenharia de Produção UFPR 45
Volmir Eugênio Wilhelm Departamento de Engenharia de Produção UFPR 45 Introdução a Grafos Muitos problemas de otimização podem ser analisados utilizando-se uma estrutura denominada grafo ou rede. Problemas
Teoria dos Grafos Aula 2
Teoria dos Grafos Aula 2 Aula passada Logística Objetivos Grafos, o que são? Formando pares Aula de hoje Mais problemas reais Definições importantes Algumas propriedades Objetivos da Disciplina Grafos
15 - Coloração Considere cada um dos grafos abaixo:
15 - Coloração Considere cada um dos grafos abaixo: a) Quantas cores são necessárias para colorir os vértices de um grafo de maneira que dois vértices adjacentes não recebam a mesma cor? b) Qual é o número
Matemática Discreta 10
Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta 10 Prof. Jorge Cavalcanti [email protected] - www.univasf.edu.br/~jorge.cavalcanti 1 Muitas
Introdução à Teoria dos Grafos. Isomorfismo
Isomorfismo Um isomorfismo entre dois grafos G e H é uma bijeção f : V (G) V (H) tal que dois vértices v e w são adjacentes em G, se e somente se, f (v) e f (w) são adjacentes em H. Os grafos G e H são
Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Capítulo 11: Grafos Eulerianos. Departamento de Matemática Aplicada
Teoria dos Grafos Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo Departamento de Matemática Aplicada Capítulo 11: Grafos Eulerianos Preparado a partir do texto: Rangel, Socorro. Teoria do
Noções da Teoria dos Grafos. André Arbex Hallack
Noções da Teoria dos Grafos André Arbex Hallack Junho/2015 Índice 1 Introdução e definições básicas. Passeios eulerianos 1 2 Ciclos hamiltonianos 5 3 Árvores 7 4 Emparelhamento em grafos 11 5 Grafos planares:
Estrutura de Dados e Algoritmos e Programação e Computadores II. Aula 10: Introdução aos Grafos
Estrutura de Dados e Algoritmos e Programação e Computadores II Aula 10: Introdução aos Grafos História O assunto que se constitui no marco inicial da teoria de grafos é na realidade um problema algorítmico.
Pesquisa Operacional II. Professor João Soares de Mello
Pesquisa Operacional II Professor João Soares de Mello http://www.uff.br/decisao/notas.htm Ementa Teoria dos grafos (pré-requisitos: PO I, Álgebra Linear) Programação não linear (pré-requisitos: PO I,
Instituto de Computação - Universidade Federal Fluminense Teoria dos Grafos - Lista de exercícios
Instituto de Computação - Universidade Federal Fluminense Teoria dos Grafos - Lista de exercícios 1 Conceitos 1. Prove o Teorema da Amizade: em qualquer festa com pelo menos seis pessoas, ou três se conhecem
As Pontes de Königsberg
As Pontes de Königsberg Anderson Freitas Ferreira e Lívia Minami Borges 13 de junho de 2015 Resumo A teoria de grafos teve seu início em 1736, quando Euler utilizou uma estrutura para resolver o Problema
2. Desenhe o grafo orientado G = (X, Γ) para: 3. Em cada alínea dois grafos são iguais. Identifique-os. (a) (b) (c)
1. Desenhe o grafo não orientado G = (X, Γ) para: (a) X = {a, b, c, d} e Γ = {{a, b}, {b, c}, {c, d}}. (b) X = {a, b, c, d} e Γ = φ. (c) X = {1, 2, 3, 4, 5, 6, 7, 8} e Γ = {{1, 2}, {2, 2}, {2, 3}, {3,
AULA 11 PROJETO E ANÁLISE DE ALGORITMOS. Conceitos básicos e representação de grafos Karina Valdivia Delgado
AULA 11 PROJETO E ANÁLISE DE ALGORITMOS Conceitos básicos e representação de grafos Karina Valdivia Delgado Roteiro Motivação Conceitos básicos Representação Motivação Um grafo é uma abstração que permite
ANÁLISE COMBINATÓRIA
Nome Nota ANÁLISE COMBINATÓRIA 1) De quantas maneiras diferentes 11 homens e 8 mulheres podem se sentar em uma fila se os homens sentam juntos e as mulheres também? 2!*11!*8! 2) O controle de qualidade
Noções da Teoria dos Grafos. André Arbex Hallack
Noções da Teoria dos Grafos André Arbex Hallack Junho/2015 Índice 1 Introdução e definições básicas. Passeios eulerianos 1 1.1 Introdução histórica..................................... 1 1.2 Passeios
1 Trajeto Euleriano. > Trajeto Euleriano 0/20
Conteúdo 1 Trajeto Euleriano > Trajeto Euleriano 0/20 Um trajeto Euleriano em um grafo G é um trajeto que utiliza todas as arestas do grafo. Definição Um grafo G é Euleriano se e somente se possui um trajeto
MATEMÁTICA DISCRETA GRAFOS (1/4) Carlos Luz. EST Setúbal / IPS. 28 Maio - 3 Junho 2012
MATEMÁTICA DISCRETA GRAFOS (1/4) Carlos Luz EST Setúbal / IPS 28 Maio - 3 Junho 2012 Carlos Luz (EST Setúbal / IPS) Grafos (1/4) 28 Maio - 3 Junho 2012 1 / 34 Noção de Grafo De nição Um grafo não orientado
Teoria dos Grafos. Coloração de Vértices
Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Silvio A. de Araujo Departamento de Matemática Aplicada [email protected], [email protected], [email protected] Coloração de
Teoria dos Grafos Introdu c ao
Teoria dos Grafos Introdução Referências P. O. Boaventura Netto, Grafos: Teoria, Modelos e Algoritmos, São Paulo, E. Blucher 001; R. J. Trudeau, Introduction to Graph Theory, New York, Dover Publications,
MODELAGEM MATEMÁTICA E A CONTEXTUALIZAÇÃO DO ESTUDO DE GRAFOS E MATRIZES NO ENSINO MÉDIO
MODELAGEM MATEMÁTICA E A CONTEXTUALIZAÇÃO DO ESTUDO DE GRAFOS E MATRIZES NO ENSINO MÉDIO RESUMO Maria Eliana Barreto Druzian Dr. MarcioViolante Ferreira Este trabalho aborda a teoria de grafos e pretende
UNIVERSIDADE FEDERAL DO RIO DE JANEIRO DEPARTAMENTO DE CIÊNCIAS DA COMPUTAÇÃO. 5 a Lista de Exercícios
UNIVERSIDADE FEDERAL DO RIO DE JANEIRO DEPARTAMENTO DE CIÊNCIAS DA COMPUTAÇÃO MATEMÁTICA COMBINATÓRIA 5 a Lista de Exercícios 1. O grafo de intersecção de uma coleção de conjuntos A 1,..., A n é o grafo
Instituto de Computação - Universidade Federal Fluminense Teoria dos Grafos - Lista de exercícios
Instituto de Computação - Universidade Federal Fluminense Teoria dos Grafos - Lista de exercícios 1 Conceitos 1. Prove o Teorema da Amizade: em qualquer festa com pelo menos seis pessoas, ou três se conhecem
TEORIA DOS GRAFOS UMA APLICAÇÃO DE LOGÍSTICA PARA O ENSINO MÉDIO. Profº M. Sc. Marcelo Mazetto Moala
TEORIA DOS GRAFOS UMA APLICAÇÃO DE LOGÍSTICA PARA O ENSINO MÉDIO [email protected] Breve Histórico Leonhard Euler (Matemático Suíço) - Pai da Teoria dos Grafos Nascimento de abril de 77 / 8 de setembro
Teoria dos Grafos. Árvores
Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Silvio A. de Araujo Departamento de Matemática Aplicada [email protected], [email protected], [email protected] Preparado a partir
CES-11. Algoritmos e Estruturas de Dados. Carlos Alberto Alonso Sanches
CES-11 Algoritmos e Estruturas de Dados Carlos Alberto Alonso Sanches Juliana de Melo Bezerra CES-11 Grafos Conceitos gerais e representações Algoritmos em grafos Exploração sistemática em largura Caminhos
Teoria dos Grafos Aula 1 - Introdução
Teoria dos Grafos Aula 1 - Introdução Profa. Sheila Morais de Almeida Mayara Omai Universidade Tecnológica Federal do Paraná - Ponta Grossa 2018 Sheila Almeida e Mayara Omai (UTFPR-PG) Teoria dos Grafos
Percursos em um grafo
Percursos em um grafo Definição Um percurso ou cadeia é uma seqüência de arestas sucessivamente adjacentes, cada uma tendo uma extremidade adjacente à anterior e a outra a subsequente (à exceção da primeira
GRAFOS. Introdução Conceitos Fundamentais
GRAFOS Introdução Conceitos Fundamentais Uma aplicação do produto de matrizes Agora é a sua vez... Considere o diagrama seguinte Determine, o número de formas diferentes de ir de a 1 até e 2 e de a 2
Teoria dos Grafos. Teoria dos Grafos. Profa. Sheila Morais de Almeida DAINF-UTFPR-PG. agosto
Teoria dos Grafos Introdução Profa. Sheila Morais de Almeida DAINF-UTFPR-PG agosto - 2017 O que é Grafo? Definição formal Um grafo G = (V (G), E(G)) é uma estrutura matemática que consiste de dois conjuntos:
ESTRUTURAS DE DADOS. prof. Alexandre César Muniz de Oliveira. 1. Introdução 2. Pilhas 3. Filas 4. Listas 5. Árvores 6. Ordenação 7. Busca 8.
ESTRUTURAS DE DADOS prof. Alexandre César Muniz de Oliveira 1. Introdução 2. Pilhas 3. Filas 4. Listas 5. Árvores 6. Ordenação 7. Busca 8. Grafos Sugestão bibliográfica: ESTRUTURAS DE DADOS USANDO C Aaron
Estruturas de Dados Grafos
Estruturas de Dados Grafos Prof. Eduardo Alchieri (introdução) Grafo é um conjunto de pontos e linhas que conectam vários pontos Formalmente, um grafo G(V,A) é definido pelo par de conjuntos V e A, onde:
Teoria do Grafos. Prof. Luiz Fernando L. Nascimento
Teoria do Grafos Prof. Luiz Fernando L. Nascimento Versão 3.0-2015 Introdução aos Grafos - A história das pontes é de 300 anos atrás. Königsberg foi uma importante cidade da Prússia, localizada ao norte
14 Coloração de vértices Considere cada um dos grafos abaixo:
14 Coloração de vértices Considere cada um dos grafos abaixo: a) Quantas cores são necessárias para colorir os vértices de um grafo de maneira que dois vértices adjacentes não recebam a mesma cor? b) Qual
Redes Complexas Aula 2
Redes Complexas Aula 2 Aula passada Logística Redes e Grafos Exemplos Redes Complexas Aula de hoje Redes e classes Estrutura e características Grau, distância, clusterização Rede (ou Grafo) Abstração que
Probabilidade. Contagem
Probabilidade Contagem Problema da Contagem no Estudo da Probabilidade Conforme definição clássica, podemos determinar uma probabilidade calculando a relação entre o total de eventos de sucesso e o total
