Problema da Árvore Geradora Mínima
|
|
|
- Felipe Faro de Sousa
- 9 Há anos
- Visualizações:
Transcrição
1 Instituto Federal do Espírito Santo Campus Serra Problema da Árvore Geradora Mínima Diego Pasti Jefferson Rios
2 Sumário Apresentação do Problema da AGM...3 Raízes do Problema Definindo o Problema O Problema da AGM nos dias de hoje Algoritmo Geral...4 Apresentando Obtendo a Árvore Geradora Mínima Regra Prova Algoritmo de Kruskal...6 Apresentando o Algoritmo Algoritmo de Prim...7 Apresentando o Algoritmo Exercícios...8 Referências...9 2
3 Apresentação do Problema Alusão Histórica do Problema Com o aumento das atividades Fabris a partir da Revolução Industrial, e o crescimento das zonas urbanas, foi necessário desenvolver e aprimorar diversos serviços, por exemplo, rodovias, esgotos, linhas de energia. Dessa forma acabou surgindo à necessidade de atender esses serviços a todos os cantos das cidades o que levou a desenvolver métodos que garantissem os menores custos possíveis com tais empreendimentos. Descrição do Problema em si Gerar a partir de um Grafo não-direcional, conexo e com pesos em cada aresta, uma arvora acíclica que interligue todos os pontos (vértices) e que tenha o menor custo total. Aonde é usado atualmente O problema da árvore geradora mínima aparece em uma série de aplicações (Chunde, 1996;Chang & Lee, 1999; Raidl & Julstrom, 2003), por exemplo, na instalação de linhas telefônicas (ou elétricas) entre um conjunto de localidades, utilizando a infra-estrutura das rodovias com o menor uso de material. Outros casos como análise de clusters, armazenamento de informações, dentre outros, também podem ser resolvidos por essa modelagem, que possui eficientes algoritmos como Kruskal, Prim e Sollin (Ahuja et al., 1993). 3
4 Algoritmo Geral Apresentação do Algoritmo Considere um grafo conexo e não-direcionado G=(V,E), onde cada Aresta (u,v) pertence a E tem um custo w(u,v) associado a ela. Então desejamos encontra um subconjunto T pertence a E que conecte todos Vértices de G e cuja soma total do custo de suas Arestas definida por seja minimizada. Sabendo que T é acíclica e conecta todos os Vértices de G a consideramos uma Árvore, e como seu custo total é minimizado a chamamos de Árvore Geradora Mínima ou Árvore Espalhada Mínima. Obtendo a AGM Suponha que temos um grafo conexo e não orientado G= (V,E) com uma função de custo de w:, onde desejamos encontrar uma AGM para G através do Algoritmo Geral. O Algoritmo Geral constrói a AGM adicionando uma aresta por vez, ele administra um conjunto de arestas A, onde A é um subconjunto de alguma AGM. A cada etapa do processo o Algoritmo define uma aresta (u,v) para ser acrescentada a A sem violar assim sua estrutura, ou seja, a união de A com a aresta(u,v) é também um subconjunto de alguma AGM. Chamamos tal aresta de Aresta Segura para A. O Algoritmo geral é definido a seguir. Onde: AGM_GERAL(G,w) A 0 enquanto A não forma uma AGM faça: encontre uma aresta (u,v) que é segura para A A A U {(u,v)} retorne A i. Após a linha 1, o conjunto A satisfaz a propriedade do loop. ii. O loop nas linhas 2, 3 e 4 adiciona assim ao conjunto A apenas Arestas Seguras. iii. A linha 5 assim retorna uma árvore que deve ser uma AGM. Regra Trivialmente a parte de maior complexidade é encontrar as arestas seguras na linha 3, porem quando ela é executada a estrutura conclui que existe uma arvore geradora T, tal que, então deve haver uma aresta tal que sendo assim (u, v) é segura para A. 4
5 Definiremos a seguir alguns conceitos para mais tarde fornecermos uma regra de reconhecimento de arestas seguras para A. I. Corte (S, S-V) é uma partição de V em um grafo não direcionado G=(V,E). II. Uma aresta(u,v) Cruza o Corte quando um de seus pontos extremos está em S e o outro em S-V. III. Um corte Respeita o conjunto A de arestas se nenhuma aresta em A cruza o Corte. IV. Aresta Leve ou Aresta Mínima é aquela que tem o menor custo entre as arestas que cruzam o corte. Com os conceitos apresentados podermos assim estabelecer nossa Regra para reconhecer Arestas Seguras através do seguinte Teorema: Seja G = (V,E) um grafo conexo não-direcionado com função de custo. Seja A um subconjunto de E que está incluído em alguma Árvore Geradora Mínima de G e seja (S,V - S) qualquer corte de G que respeita A. Seja (u,v) uma aresta leve atravessando o corte (S,V - S). Então, a aresta (u,v) é segura para A. Prova Seja T uma árvore geradora mínima tal que A pertence T, e assuma que T não contém a aresta leve (u,v). A aresta (u,v) forma um ciclo com as arestas pertencentes ao caminho p de u para v em T. Supondo que u e v estão em lados opostos do corte (S,V - S), existe ao menos uma aresta no caminho p que também cruza o corte. Seja (x,y) essa aresta. A aresta (x,y) não pertence a A porque o corte respeita A. Como (x,y) está no caminho de u para v em T, ao removemos (x,y) dividimos T em duas partes. Adicionando (u,v), as partes de T são reconectadas formando uma nova árvore T = (T (x,y)) + {(u,v)}. Como (u,v) é uma aresta leve cruzando o corte (S,V - S) e (x,y) também cruza este corte, w(u,v) w(x,y). Então: w(t ) = w(t) w(x,y) + w(u,v) w(t). Porém, T é uma AGM então w(t) w(t ). Desta forma T também deve ser uma AGM. Resta mostrar que (u,v) é realmente uma aresta segura para A. Temos que A subconjunto T, pois A U T e (x,y) pertence A. Então A U {(u,v)} pertence T. Conseqüentemente, como T é AGM, (u,v) é segura para A. 5
6 Algoritmo de Kruskal Apresentação do Algoritmo Seu funcionamento é mostrado a seguir: - Crie uma floresta F (um conjunto de árvores). - - Crie um conjunto S contendo todas as arestas(pesos) do grafo. -Enquanto S for não-vazio, faça: - Remova uma aresta com peso mínimo de S - Se essa aresta conecta duas árvores diferentes, adicione-a à floresta, combinando duas árvores numa única árvore parcial - Do contrário, descarte a aresta Ao fim do algoritmo, a floresta tem apenas um componente e forma uma árvore geradora mínima do grafo. Representação do Algoritmo de Kruskal em Execução: Com o uso de uma estrutura de dados aceitável, o algoritmo de Kruskal pode ser demonstrado que executa em tempo: O (Aresta * log Vértices). 6
7 Algoritmo de Prim Apresentação do Algoritmo Dado um Grafo G, com n vértices e (n-1) aresta com determinados pesos. Seu funcionamento dá-se da seguinte forma: - Cria-se uma arvore A sem elementos. - Um vértice é selecionado. - Enquanto num. de elem. de A for menor que num. de Vértices faça: - Procura-se um vértice mais próximo aos elementos que já estão na Arvore A. - Ao encontrá-lo anexamos este vértice a arvore A. Ao fim teremos uma Arvore com o menor custo total. Representação do Algoritmo de Prim em Execução: A ordem de complexidade para o algoritmo de Prim é: O( Arestas * log Vértices ) 7
8 Exercícios Gerais Questão 1: Suponhamos que uma empresa que faça instalação de fibra ótica necessite interligar os bairros abaixo representados: A partir de um estudo meticuloso, os dados relevantes á instalação da fibra ótica, pode ser resumidas ao Grafo mostrado acima. Com posse deste, resolva os exercícios proposto. Gere a Árvore Geradora Mínima para este caso, usando a idéia do Algoritmo de Kruskal e de Prim. Questão 2: Use o Algoritmo de Prim para resolver a Árvore Geradora Mínima para o Grafo indicado.( Fundamentos Matemáticos para a Ciência da Computação, Quinta Edição, Exercício 19 pagina 361) 8
9 Questão 3: Dado a seguinte matriz de adjacência, gere a arvore geradora mínima usando Prim ou Kruskal. Respostas: Referências: Fundamentos Matemáticos para a Ciência da Computação, Quinta Edição, Judith L. Gerstring. Algoritmos, Teoria e Prática, Thomas H. Cormen. Além dos sites das Universidades UFRJ,USP,IME,UNICAMP... dentre outros. 9
Grafos: árvores geradoras mínimas. Graça Nunes
Grafos: árvores geradoras mínimas Graça Nunes 1 Motivação Suponha que queremos construir estradas para interligar n cidades Cada estrada direta entre as cidades i e j tem um custo associado Nem todas as
Grafos. Exemplo de árvore geradora mínima. Notas. Notas. Notas. Notas. Árvores espalhadas mínimas. Como construir uma árvore geradora miníma
Grafos Árvores espalhadas mínimas Conteúdo Introdução Como construir uma árvore geradora miníma Algoritmos Referências Introdução Dado um grafo conectado não orientado G = (V, E) e uma função peso w :
Grafos: componentes fortemente conexos, árvores geradoras mínimas
Grafos: componentes fortemente conexos, árvores geradoras mínimas SCE-183 Algoritmos e Estruturas de Dados 2 Thiago A. S. Pardo Maria Cristina 1 Componentes fortemente conexos Um componente fortemente
Introdução à Teoria dos Grafos (MAC-5770) IME-USP Depto CC Profa. Yoshiko. Capítulo 3
Introdução à Teoria dos Grafos (MAC-5770) IME-USP Depto CC Profa. Yoshiko Capítulo 3 Árvores Problema: Suponha que numa cidade haja n postos telefônicos. Para que seja sempre possível haver comunicação
Problema da Árvore Geradora Mínima (The Minimum Spanning Tree Problem-MST)
Volmir Eugênio Wilhelm Departamento de Engenharia de Produção UFPR 45 Problema da Árvore Geradora Mínima (The Minimum Spanning Tree Problem-MST) Alguns problemas de otimização combinatória podem ser formulados
Árvores Árvores Geradoras de Custo Mínimo 0/16
Conteúdo 1 Árvores 2 Árvores Geradoras de Custo Mínimo Árvores Árvores Geradoras de Custo Mínimo 0/16 Árvores Definição (Grafo Acíclico) Um grafo acíclico é um grafo que não contém ciclos. Árvores Árvores
Otimização em Grafos
Otimização em Grafos Luidi G. Simonetti PESC/COPPE 2017 Luidi Simonetti (PESC) EEL857 2017 1 / 35 Teoria dos Grafos - Relembrando Árvore Um grafo G é uma árvore se é conexo e não possui ciclos (acíclico).
GRAFOS Aula 08 Árvore Geradora Mínima: Algoritmos de Kruskal e Prim-Jarnik Max Pereira
Ciência da Computação GRAFOS Aula 08 Árvore Geradora Mínima: Algoritmos de Kruskal e Prim-Jarnik Max Pereira Árvore Geradora (spanning tree) É um subconjunto de um grafo G que possui todos os vértices
ESTRUTURAS DE DADOS. prof. Alexandre César Muniz de Oliveira. 1. Introdução 2. Pilhas 3. Filas 4. Listas 5. Árvores 6. Ordenação 7. Busca 8.
ESTRUTURAS DE DADOS prof. Alexandre César Muniz de Oliveira 1. Introdução 2. Pilhas 3. Filas 4. Listas 5. Árvores 6. Ordenação 7. Busca 8. Grafos Sugestão bibliográfica: ESTRUTURAS DE DADOS USANDO C Aaron
Teorema 1 - Todo corte de arestas de um grafo conexo G contém pelo menos uma aresta em comum com qualquer árvore geradora de G. Exemplo 2 - Seja T:
12 - Conjuntos de Corte o estudarmos árvores geradoras, nós estávamos interessados em um tipo especial de subgrafo de um grafo conexo: um subgrafo que mantivesse todos os vértices do grafo interligados.
Noções da Teoria dos Grafos. André Arbex Hallack
Noções da Teoria dos Grafos André Arbex Hallack Junho/2015 Índice 1 Introdução e definições básicas. Passeios eulerianos 1 1.1 Introdução histórica..................................... 1 1.2 Passeios
Introdução à Teoria dos Grafos. Isomorfismo
Isomorfismo Um isomorfismo entre dois grafos G e H é uma bijeção f : V (G) V (H) tal que dois vértices v e w são adjacentes em G, se e somente se, f (v) e f (w) são adjacentes em H. Os grafos G e H são
Projeto e Análise de Algoritmos Aula 8: Algoritmos Gulosos (5)
1 Projeto e Análise de Algoritmos Aula 8: Algoritmos Gulosos (5) DECOM/UFOP 2012/2 5º. Período Anderson Almeida Ferreira Adaptado do material de Andréa Iabrudi Tavares BCC241/2012-2 3 Algoritmos Gulosos
Árvores: Conceitos Básicos e Árvore Geradora
Árvores: Conceitos Básicos e Árvore Geradora Grafos e Algoritmos Computacionais Prof. Flávio Humberto Cabral Nunes [email protected] 1 Introdução No dia a dia aparecem muitos problemas envolvendo árvores:
Projeto e Análise de Algoritmos. Método Guloso
Projeto e Análise de Algoritmos Método Guloso Altigran Soares da Silva Universidade Federal do Amazonas Departamento de Ciência da Computação Árvore Geradora Um árvore geradora de um grafo G é um subgrafo
Teoria dos Grafos. Conjuntos de Corte e Conectividade
Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Silvio A. de Araujo Departamento de Matemática Aplicada [email protected], [email protected], [email protected] Conjuntos de
Algoritmos em Grafos
Algoritmos em Grafos Baseado em: The Algorithm Design Manual Steven S. Skiena IF64C Estruturas de Dados 2 Engenharia da Computação Prof. João Alberto Fabro - Slide 1/42 Introdução (1) Um grafo G=(V,E)
Instituto de Computação - Universidade Federal Fluminense Teoria dos Grafos - Lista de exercícios
Instituto de Computação - Universidade Federal Fluminense Teoria dos Grafos - Lista de exercícios 1 Conceitos 1. Prove o Teorema da Amizade: em qualquer festa com pelo menos seis pessoas, ou três se conhecem
Introdução a Grafos Letícia Rodrigues Bueno
Introdução a Grafos Letícia Rodrigues Bueno UFABC Teoria dos Grafos - Motivação Objetivo: aprender a resolver problemas; Como: usando grafos para modelar os problemas; Grafos: ferramenta fundamental de
Parte B Teoria dos Grafos
45 Parte B Teoria dos Grafos B. Grafos e Subgrafos Um grafo G é uma tripla ordenada (V(G), E(G), ), constituindo de um conjunto não vazio V(G) de vértices, um conjunto disjunto E(G) das arestas e uma função
Projeto e Análise de Algoritmos Aula 8: Algoritmos Gulosos (DPV 5; CLRS 4)
1 Projeto e Análise de Algoritmos Aula 8: Algoritmos Gulosos (DPV 5; CLRS 4) DECOM/UFOP 2013/1 5º. Período Anderson Almeida Ferreira Adaptado do material de Andréa Iabrudi Tavares BCC241/2012-2 3 Comparação
Matemática Discreta 10
Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta 10 Prof. Jorge Cavalcanti [email protected] - www.univasf.edu.br/~jorge.cavalcanti 1 Muitas
Teoria dos Grafos. Edson Prestes
Edson Prestes Grafos Enumeração de Passeios/Caminhos O processo associado à enumeração de caminhos de um grafo/dígrafo é semelhante ao processo de contagem com a diferença de que usaremos uma matriz de
x y Grafo Euleriano Figura 1
Grafo Euleriano Um caminho simples ou um circuito simples é dito euleriano se ele contém todas as arestas de um grafo. Um grafo que contém um circuito euleriano é um grafo euleriano. Um grafo que não contém
SCC603 Algoritmos e Estruturas de Dados II Prof.a Rosane Minghim 1o sem. 2013
SCC603 Algoritmos e Estruturas de Dados II Prof.a Rosane Minghim 1o sem. 2013 Lista de Exercícios 1 1) Escrever em C funções para: a) Obter todos os nós adjacentes (vizinhos) a um nó do grafo, dado que
TGR BCC Representação Computacional de Grafos. Prof. Ricardo José Pfitscher
TGR BCC Representação Computacional de Grafos Prof. Ricardo José Pfitscher Cronograma Representação Matriz de djacências Lista de djacências Matriz de Incidências Representação Como podemos representar
MATEMÁTICA DISCRETA PARA ENGENHARIA DE COMPUTAÇÃO
MATEMÁTICA DISCRETA PARA ENGENHARIA DE COMPUTAÇÃO Profa. Kathya Collazos Linares *As aulas baseiam-se no material do Professor Antonio Alfredo Ferreira Loureiro; Jorge Figueiredo e Judith Gersting Árvore
Teoria dos Grafos. Edson Prestes
Edson Prestes Árvores Sabemos que com um ou dois vértices apenas uma árvore pode ser formada. Entretanto com três vértices podemos formar três árvores. Com quatro vértices temos quatro estrelas e doze
ESTRUTURAS DISCRETAS (INF 1631) GRAFOS. 1. O que é um grafo? Defina um grafo orientado. Defina um grafo não-orientado.
PUC-Rio Departamento de Informática Profs. Marcus Vinicius S. Poggi de Aragão Período: 0. Horário: as-feiras e as-feiras de - horas de maio de 0 ESTRUTURAS DISCRETAS (INF 6) a Lista de Exercícios Procure
Teoria dos Grafos Aula 6
Teoria dos Grafos Aula 6 Aula passada Busca em grafos Busca em largura (BFS Breadth First Search) Propriedades Aula de hoje BFS implementação Complexidade Busca em profundidade (DFS) Conectividade, componentes
Prova Didática Grafos: Árvores Geradoras e Caminhos Mínimos, Análise de Complexidade
Prova Didática Grafos: Árvores Geradoras e Caminhos Mínimos, Análise de Complexidade Gustavo E.A.P.A. Batista 25 de janeiro de 2005 1 Contextualização 2 Caminhos Mínimos Caminhos Mínimos de uma Origem
MATEMÁTICA DISCRETA. Patrícia Ribeiro 2018/2019. Departamento de Matemática, ESTSetúbal 1 / 47
1 / 47 MATEMÁTICA DISCRETA Patrícia Ribeiro Departamento de Matemática, ESTSetúbal 2018/2019 2 / 47 1 Combinatória 2 Aritmética Racional 3 3 / 47 Capítulo 3 4 / 47 não orientados Um grafo não orientado
Instituto de Computação - Universidade Federal Fluminense Teoria dos Grafos - Lista de exercícios
Instituto de Computação - Universidade Federal Fluminense Teoria dos Grafos - Lista de exercícios 1 Conceitos 1. Prove o Teorema da Amizade: em qualquer festa com pelo menos seis pessoas, ou três se conhecem
Grafos: algoritmos de busca
busca em grafos como caminhar no grafo de modo a percorrer todos os seus vértices evitando repetições desnecessárias do mesmo vértice? e por onde começar? solução: necessidade de recursos adicionais que
Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Departamento de Matemática Aplicada
Teoria dos Grafos Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo Departamento de Matemática Aplicada Capítulo 14: Conjuntos de Corte e Conectividade Preparado a partir do texto: Rangel,
2006/2007 Análise e Síntese de Algoritmos 2
Análise e Síntese de Algoritmos Árvores Abrangentes de Menor Custo CLRS, Cap. 23 Resumo Árvores Abrangentes de Menor Custo Minimum-Spanning Trees (MSTs) Algoritmo (greedy) genérico Prova de optimalidade
UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Pato Branco ENGENHARIA DE COMPUTAÇÃO. Prova Parcial 1 Matemática Discreta para Computação
Prova Parcial 1 2011-2 Aluno(a): Data: 08/09/2011 1. (3p) Usando regras de inferência, prove que os argumentos são válidos. Use os símbolos proposicionais indicados: a. A Rússia era uma potência superior,
Algoritmos em Grafos COM11087-Tópicos Especiais em Programação I
Algoritmos em Grafos COM11087-Tópicos Especiais em Programação I [email protected] Introdução Teoria dos Grafos é o estudo das propriedades e estruturas dos grafos. O objetivo é, após modelar um problema
Grafos: aplicações. Grafos: árvore geradora mínima
árvore geradora mínima caminhos mínimos problemas tipo 1 desejase conectar todos os computadores em um prédio usando a menor quantidade possível de cabos uma companhia aérea deseja voar para algumas cidades
Noções da Teoria dos Grafos
Noções da Teoria dos Grafos André Arbex Hallack Índice 1 Introdução e definições básicas. Passeios eulerianos 1 2 Ciclos hamiltonianos 7 3 Árvores 11 4 Emparelhamento em grafos 15 5 Grafos planares: Colorindo
Noções da Teoria dos Grafos. André Arbex Hallack
Noções da Teoria dos Grafos André Arbex Hallack Junho/2015 Índice 1 Introdução e definições básicas. Passeios eulerianos 1 2 Ciclos hamiltonianos 5 3 Árvores 7 4 Emparelhamento em grafos 11 5 Grafos planares:
Busca em Largura. Adaptado de Humberto C. B. Oliveira
Busca em Largura Adaptado de Humberto C. B. Oliveira Últimas aulas Introdução: História Aplicações Conceitos Básicos: Grafo simples Grafo completo/vazio Grafo não orientado: Arestas laço Arestas paralelas
Grafos Eulerianos e o Problema do Carteiro Chinês
Prof. Ademir A. Constantino DIN - UEM 1 Grafos Eulerianos e o Problema do Carteiro Chinês Prof. Ademir Constantino Departamento de Informática Universidade Estadual de Maringá Prof. Ademir A. Constantino
TEORIA DOS GRAFOS TECNOLOGIA EM ANÁLISE E DESENVOLVIMENTO DE SISTEMAS MATEMÁTICA DISCRETA II PROFº MARCOS NASCIMENTO
TEORIA DOS GRAFOS TECNOLOGIA EM ANÁLISE E DESENVOLVIMENTO DE SISTEMAS MATEMÁTICA DISCRETA II PROFº MARCOS NASCIMENTO Por que estudar grafos? Importante ferramenta matemática com aplicação em diversas áreas
Alg l ori r t i m t os e E str t u r tu t ra r s d e D ados I I Intr t o r duçã ç o ã a a Gr G a r f a o f s P of o a. M. C r C ist s ina n a /
Algoritmos e Estruturas de Dados II Introdução a Grafos Profa. M. Cristina / Profa. Rosane (2012) Baseado no material de aula original: Profª. Josiane M. Bueno Divisão do arquivo 1ª parte: Motivação Definição:
Aula 19 Conjuntos disjuntos (Union-find)
MC3305 Algoritmos e Estruturas de Dados II Aula 19 Conjuntos disjuntos (Union-find) Prof. Jesús P. Mena-Chalco [email protected] 2Q-2015 1 Números de Ackermann 2 3 Ackermann A função de Ackermann
Estruturas de Dados Grafos
Estruturas de Dados Grafos Prof. Eduardo Alchieri (introdução) Grafo é um conjunto de pontos e linhas que conectam vários pontos Formalmente, um grafo G(V,A) é definido pelo par de conjuntos V e A, onde:
Grafos parte 2. Percorrendo um grafo. Correção. Eficiência. Percorrendo um Grafo. Percorrendo um Grafo. Percorrendo um Grafo
Percorrendo um grafo Grafos parte 2 SCC-203 Algoritmos e Estruturas de Dados 2 Rosane 2010 Baseado em material de professores dos anos anteriores Percorrendo um Grafo Percorrer um grafo é um problema fundamental
Estruturas de Dados para Conjuntos Disjuntos: Union-find Letícia Rodrigues Bueno
Estruturas de Dados para Conjuntos Disjuntos: Union-find Letícia Rodrigues Bueno UFABC Estruturas de Dados para Conjuntos Disjuntos: Introdução Estruturas de Dados para Conjuntos Disjuntos: Introdução
Teoria dos Grafos Aula 5
Teoria dos Grafos Aula Aula passada Explorando grafos Mecanismos genéricos Ideias sobre BFS, DFS Aula de hoje Busca em grafos Busca em largura (BFS Breadth First Search) Propriedades Busca em Grafos Problema
Teoria dos Grafos Aula 8
Teoria dos Grafos Aula 8 Aula passada Grafos com pesos, caminhos e distâncias Ideia e algoritmo de Dijkstra Dijkstra o próprio Aula de hoje Corretude de Dijkstra Fila de prioridades e Heap Dijkstra eficiente
Algoritmos e Estruturas de Dados II Introdução a Grafos. Divisão do arquivo
Algoritmos e Estruturas de Dados II Introdução a Profa. M. Cristina / Profa. Rosane (2010/11) Baseado no material de aula original: Profª. Josiane M. Bueno Divisão do arquivo 1ª parte: Motivação Definição:
Grafos - Introdução. Pedro Ribeiro 2014/2015 DCC/FCUP. Pedro Ribeiro (DCC/FCUP) Grafos - Introdução 2014/ / 32
Grafos - Introdução Pedro Ribeiro DCC/FCUP 2014/2015 Pedro Ribeiro (DCC/FCUP) Grafos - Introdução 2014/2015 1 / 32 Conceito Definição de Grafo Formalmente, um grafo é: Um conjunto de nós/vértices (V).
Grafos Parte 2. SCC-603 Algoritmos e Estruturas de Dados II. Profª. Rosane Minghim / Baseado em material de professores dos anos anteriores
Grafos Parte 2 SCC-603 Algoritmos e Estruturas de Dados II Profª. Rosane Minghim / 2012 Baseado em material de professores dos anos anteriores Percorrendo um grafo Percorrendo um Grafo Percorrer um grafo
Ciclos hamiltonianos e o problema do caixeiro viajante
Ciclos hamiltonianos e o problema do caixeiro viajante Algoritmos em Grafos Marco A L Barbosa cba Este trabalho está licenciado com uma Licença Creative Commons - Atribuição-CompartilhaIgual 4.0 Internacional.
Doutorado em Ciência da Computação. Algoritmos e Grafos. Raimundo Macêdo LaSiD/DCC/UFBA
Doutorado em Ciência da Computação Algoritmos e Grafos Raimundo Macêdo LaSiD/DCC/UFBA Grafo Completo Grafo simples cujos vértices são dois a dois adjacentes. Usa-se a notação K n para um grafo completo
GRAFOS Aula 10 Fluxo em Redes Max Pereira
Ciência da Computação GRAFOS Aula 10 Max Pereira É a transferência de algum tipo de recurso quantificável e sujeito a restrições de equilíbrio, de um local (origem) para outro (destino) através de uma
Definição 1.1 : Uma árvore é um grafo simples conexo e sem ciclos.
1 Árvores Definição 1.1 : Uma árvore é um grafo simples conexo e sem ciclos. Um grafo simples sem ciclos mas não conexo (em que cada componente conexa é portanto uma árvore) chama-se uma floresta. Numa
Algoritmos de aproximação
Algoritmos de aproximação prof Marcio Delamaro ICC II Um pouco de teoria Existem algoritmos que podem ser executados em tempo polinomial Dado problema de tamanho n, temo O(n k ) A maioria dos algoritmos
Indução Matemática. George Darmiton da Cunha Cavalcanti CIn - UFPE
Indução Matemática George Darmiton da Cunha Cavalcanti CIn - UFPE Introdução Qual é a fórmula para a soma dos primeiros n inteiros ímpares positivos? Observando os resultados para um n pequeno, encontra-se
Doutorado em Ciência da Computação. Algoritmos e Grafos. Raimundo Macêdo LaSiD/DCC/UFBA
Doutorado em Ciência da Computação Algoritmos e Grafos Raimundo Macêdo LaSiD/DCC/UFBA Grafo Completo Grafo simples cujos vértices são dois a dois adjacentes. Usa-se a notação K n para um grafo completo
Teoria dos Grafos. Árvores Geradoras
Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Silvio A. de Araujo Departamento de Matemática Aplicada [email protected], [email protected], [email protected] Preparado a partir
Grafos parte 2* Algoritmos e Estruturas de Dados II SCC-203 Rosane 2010/2011. *Baseado em material de professores dos anos anteriores
Grafos parte 2* Algoritmos e Estruturas de Dados II SCC-203 Rosane 2010/2011 *Baseado em material de professores dos anos anteriores Divisão do Arquivo 1ª parte Percorrendo um grafo Eficiência, Correção
Teoria dos Grafos. Coloração de Vértices
Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Silvio A. de Araujo Departamento de Matemática Aplicada [email protected], [email protected], [email protected] Coloração de
Teoria dos Grafos. Edson Prestes
Edson Prestes Árvores Algoritmo de Kruskal O algoritmo de Kruskal permite determinar a spanning tree de custo mínimo. Este custo corresponde à soma dos pesos (distância, tempo, qualidade,...) associados
01 Grafos: parte 1 SCC0503 Algoritmos e Estruturas de Dados II
01 Grafos: parte 1 SCC0503 Algoritmos e Estruturas de Dados II Prof. Moacir Ponti Jr. www.icmc.usp.br/~moacir Instituto de Ciências Matemáticas e de Computação USP 2011/1 Moacir Ponti Jr. (ICMCUSP) 01
O estudo utilizando apenas este material não é suficiente para o entendimento do conteúdo. Recomendamos a leitura das referências no final deste
O estudo utilizando apenas este material não é suficiente para o entendimento do conteúdo. Recomendamos a leitura das referências no final deste material e a resolução (por parte do aluno) de todos os
Teoria dos Grafos. Árvores
Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Silvio A. de Araujo Departamento de Matemática Aplicada [email protected], [email protected], [email protected] Preparado a partir
ACH2043 INTRODUÇÃO À TEORIA DA COMPUTAÇÃO. Aula 25
ACH2043 INTRODUÇÃO À TEORIA DA COMPUTAÇÃO Aula 25 Cap 7.2 A classe P Profa. Ariane Machado Lima [email protected] 1 Cap 7.2 A classe P 2 Tempo polinomial e exponencial Ex: Máquina de tempo n 3 (tempo
