Teoria dos Grafos. Conjuntos de Corte e Conectividade
|
|
|
- Bernadete Gomes Igrejas
- 8 Há anos
- Visualizações:
Transcrição
1 Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Silvio A. de Araujo Departamento de Matemática Aplicada Conjuntos de Corte e Conectividade Preparado a partir do texto: Rangel, Socorro. Teoria do Grafos, Notas de aula, IBILCE, Unesp,
2 Conjuntos de Corte
3 Definição e Exemplos Ao estudarmos árvores geradoras, estávamos interessados em um tipo especial de subgrafo de um grafo conexo: um subgrafo que mantivesse todos os vértices do grafo interligados. Neste tópico, estamos interessados em um outro tipo de situação: subgrafos cuja remoção do grafo separa alguns vértices de outros. Definição 1. Em grafo conexo G, um corte de arestas (ou simplesmente conjunto de corte) é um conjunto de arestas cuja remoção torna o grafo G desconexo, desde que nenhum subconjunto próprio destas arestas tenha a mesma propriedade Teoria dos Grafos (Antunes Rangel&Araujo) 3
4 Exemplo 1. Considere o grafo: Definição e Exemplos Aplicação 1: Suponha que os vértices representam 6 cidades interligadas por cabos de fibra ótica. Desejamos saber quais são os pontos fracos desta rede, isto é, pontos que necessitam de cabos adicionais. Estamos procurando, entre todos os cortes de arestas deste grafo, aquele com o menor número de arestas. Neste caso, a cidade v 3 necessita de mais cabos. Exemplo 2. Como são os corte de arestas de uma árvore? Teoria dos Grafos (Antunes Rangel&Araujo) 4
5 Propriedades Questão: Considere uma árvore geradora T em um grafo conexo G e um corte de arestas S qualquer deste grafo. Existe alguma aresta em comum entre T e S? Sim, pois caso contrário a remoção das arestas em S do grafo G não resultaria em um grafo desconexo. Teorema 1. Todo corte de arestas de um grafo conexo G contém pelo menos uma aresta em comum com qualquer árvore geradora de G. Exemplo 3. Verificar o teorema para a seguinte árvore geradora T: Teoria dos Grafos (Antunes Rangel&Araujo) 5
6 Propriedades Para identificar os pontos fracos de uma rede é necessário encontrar todos os cortes de aresta de G. Como fazer isso? Definição 2. Seja um grafo G e T uma árvore geradora de G. Um conjunto de corte fundamental relativo à arvore T, é um conjunto de corte de G que contém apenas uma aresta em comum com a árvore geradora T. Teoria dos Grafos (Antunes Rangel&Araujo) 6
7 Propriedades Exemplo 4. Seja G: Seja T: Teoria dos Grafos (Antunes Rangel&Araujo) 7
8 Propriedades Vamos considerar a aresta e. A remoção da aresta e de T particiona o conjunto de vértices de T em: Ou seja, {e} é um corte de arestas de T. Como determinar um corte de arestas fundamental de G relativo a T que contenha a aresta e? Basta encontrarmos o conjunto de arestas contendo o ramo {e} e que provoque a mesma partição no conjunto de vértices de G: {d,e,f} Teoria dos Grafos (Antunes Rangel&Araujo) 8
9 Propriedades Perguntas: 1. Quantos corte de arestas fundamentais existem? n 1, ou seja 5. Quais são eles? {a,b},{d,e,f},{a,c,d},{f,g,h},{f,h,k} 2. Qual é a relação entre cortes de aresta fundamentais e circuitos fundamentais? Podem ser obtidos a partir de uma árvore geradora de G. Todo elo de uma árvore geradora define um circuito fundamental. Todo ramo de uma árvore geradora define um corte de aresta fundamental. 3. Como obter todos os cortes de arestas de um grafo G? Teoria dos Grafos (Antunes Rangel&Araujo) 9
10 Propriedades Definição 3. A soma direta de dois cortes de arestas em um grafo é igual a um terceiro corte de arestas ou a união aresta-disjunta de dois cortes de arestas. Exemplo 5. Seja o grafo G e árvore T do Exemplo 4. {d,e,f} {f,g,h} = {d,e,g,h} é um corte de arestas mas não é fundamental {a,b} {b,c,e,f} = {a,c,e,f} é um corte de arestas mas não é fundamental {d,e,h,k} {f,g,h} = {d,e,f,g,k} não é um corte de arestas mas é união aresta-disjunta de dois cortes de aresta {d,e,f} {g,k}. Assim, é possível gerar todos os cortes de arestas de um grafo G a partir dos cortes de arestas fundamentais relativos a uma dada árvore geradora de G. Teoria dos Grafos (Antunes Rangel&Araujo) 10
11 Exercício Considere o Grafo: a) Determine uma árvore geradora deste grafo e liste todos os sete cortes de arestas fundamentais relativos a esta árvore. b) Usando a operação de soma direta, determine todos os outros cortes de arestas deste grafo. Teoria dos Grafos (Antunes Rangel&Araujo) 11
12 Conectividade
13 Definições e exemplos No estudo de conectividade, entre outros aspectos, estamos interessados em estudar a vulnerabilidade de um grafo. Podemos observar que cada corte de arestas tem um determinado número de arestas. Estamos interessados no corte de arestas que possui o menor número de elementos. Definição 4. O número de arestas no menor corte de arestas de um grafo G é chamado de Conectividade de Aresta (C A ). Teoria dos Grafos (Antunes Rangel&Araujo) 13
14 Definições e exemplos Exemplo 6. : 1. Qual é a conectividade de arestas de uma árvore? 2. Qual é a conectividade de arestas do grafo de exercício anterior? 3. Qual é a conectividade de arestas dos grafos dos dois exemplos anteriores? 4. Qual é a conectividade de arestas do grafo a seguir? Teoria dos Grafos (Antunes Rangel&Araujo) 14
15 Definições e exemplos Exemplo 7. : Observamos que não é possível obter um subgrafo desconexo removendo apenas 1 aresta de G. No entanto, é possível obter um subgrafo desconexo, através da remoção de um vértice. Assim, podemos definir a conectividade de vértices do grafo. Teoria dos Grafos (Antunes Rangel&Araujo) 15
16 Definições e exemplos Definição 5. Em um grafo conexo G, um corte de vértices é um conjunto de vértices cuja remoção torna o grafo G desconexo, desde que nenhum subconjunto próprio tenha a mesma propriedade. O número de vértices no menor corte de vértices é chamado de Conectividade de Vértices (C V ) Exemplo: A conectividade de vértices de cada um dos grafos do exemplo anterior é: a) árvore C V =1 b) C V =4 c) C V =1 e C V =2 d) C V =1 Teoria dos Grafos (Antunes Rangel&Araujo) 16
17 Definições e exemplos Definição 6. Um grafo conexo é separável se a conectividade de vértices é igual a 1. Exemplo 8. : O grafo item d do Exemplo anterior é separável. Aplicação: Suponha que existam n estações para serem ligadas através de m linhas (linhas de telefone, túneis, estradas, etc) tal que m (n 1). Qual é a melhor maneira de se fazer a conexão? Precisamos de um grafo com n vértices, m arestas e com o maior valor possível para C A e C V. O grafo do exemplo d tem 8 vértices e 16 arestas e C V =1 e C A =3. Ao passo que o grafo do exercício anterior tem C A =C V =4. Ou seja, este último grafo, representa uma forma melhor de se obter a conexão. É necessário destruir 4 estações ou 4 linhas para quebrar a comunicação entre as estações. Qual é o maior valor possível para C V e C A? Teoria dos Grafos (Antunes Rangel&Araujo) 17
18 Propriedades Teorema 2. A conectividade de arestas de um grafo é menor ou igual ao grau do vértice de grau mínimo do grafo. Prova: Seja v min o vértice de grau mínimo do grafo. Seja δ o grau deste vértice. Para separar este vértice dos demais vértices do grafo é necessário remover as δ arestas incidentes em v i. Portanto, C A δ. Teorema 3. A conectividade de vértices em um grafo G é menor ou igual à conectividade de arestas. Teoria dos Grafos (Antunes Rangel&Araujo) 18
19 Propriedades Usando os Teoremas 3 e 4 temos podemos estabelecer a seguinte relação: C V C A δ Mais ainda, é possível mostrar que C V C A 2m/n. Exercício Determine a conectividade vértices e de arestas do grafo abaixo. Observe que a desigualdade acima é satisfeita estritamente. Para obter um grafo com o maior valor possível para C V, inicialmente construa um grafo regular de grau 2m/n, em seguida acrescente as arestas restantes. Teoria dos Grafos (Antunes Rangel&Araujo) 19
20 Definição Definição 7. Um grafo G é k-conexo em arestas (ou vértices) quando sua conectividade de arestas (ou vértices) é k. Exercícios: verificar a conectividade de arestas e vértices dos grafos a seguir Teoria dos Grafos (Antunes Rangel&Araujo) 20
21 Propriedades Teorema 4. Um grafo G é k-conexo se e somente se existem pelo menos k caminhos disjuntos (exceto nos extremos) entre cada par de vértices de G. Exemplo 9. Exemplo: No grafo de exemplo anterior (item d) temos: {u,(u,v),v,(v,x),x} e {u,(u,w),w,(w,x),x} entre os vértices u e x. Aplicação: Considere que mensageiros devem ser enviados entre duas cidades a e b. Como algumas estradas podem estar bloqueadas, queremos que cada mensageiro use estradas diferentes. Quantos mensageiros podem ser enviados? Considere um grafo onde os vértices são as cidades e as arestas representam estradas. O número de mensageiros que podem ser enviados é igual ao número de caminhos aresta-disjuntos entre os vértices a e b. Este número pode ser determinado usando os resultados acima. Teoria dos Grafos (Antunes Rangel&Araujo) 21
22 Exercício Seja o grafo: 1. Encontre 3 caminhos aresta-disjuntos entre s e t. 2. Encontre um corte de arestas contendo 3 arestas que separe s e t. 3. Qual é o maior número possível de caminhos disjuntos entre s e t? Teoria dos Grafos (Antunes Rangel&Araujo) 22
Teorema 1 - Todo corte de arestas de um grafo conexo G contém pelo menos uma aresta em comum com qualquer árvore geradora de G. Exemplo 2 - Seja T:
12 - Conjuntos de Corte o estudarmos árvores geradoras, nós estávamos interessados em um tipo especial de subgrafo de um grafo conexo: um subgrafo que mantivesse todos os vértices do grafo interligados.
Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Departamento de Matemática Aplicada
Teoria dos Grafos Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo Departamento de Matemática Aplicada Capítulo 14: Conjuntos de Corte e Conectividade Preparado a partir do texto: Rangel,
Teoria dos Grafos. Árvores
Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Silvio A. de Araujo Departamento de Matemática Aplicada [email protected], [email protected], [email protected] Preparado a partir
Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Capítulo 5: Grafos Conexos. Departamento de Matemática Aplicada
Teoria dos Grafos Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo Departamento de Matemática Aplicada Capítulo 5: Grafos Conexos Preparado a partir do texto: Rangel, Socorro. Teoria do Grafos,
Teoria dos Grafos. Coloração de Vértices
Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Silvio A. de Araujo Departamento de Matemática Aplicada [email protected], [email protected], [email protected] Coloração de
Teoria dos Grafos. Cobertura, Coloração de Arestas, Emparelhamento
Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Silvio A. de Araujo Departamento de Matemática Aplicada [email protected], [email protected], [email protected] Cobertura, Coloração
Teoria dos Grafos AULA 3
Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada [email protected], [email protected] AULA 3 Trajetos, Caminhos, Circuitos, Grafos Conexos Preparado
Teoria dos Grafos AULA 2
Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada [email protected], [email protected] AULA 2 Subgrafos, Operações com Grafos Preparado a partir
Teoria dos Grafos. Grafos Planares
Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Silvio A. de Araujo Departamento de Matemática Aplicada [email protected], [email protected], [email protected] Grafos Planares
Teoria dos Grafos. Fluxo Máximo em Redes
Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Silvio A. de Araujo Departamento de Matemática Aplicada [email protected], [email protected], [email protected] Fluxo Máximo
Teoria dos Grafos. Árvores Geradoras
Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Silvio A. de Araujo Departamento de Matemática Aplicada [email protected], [email protected], [email protected] Preparado a partir
Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada.
Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada [email protected], [email protected] Grafos Eulerianos Preparado a partir do texto: Rangel, Socorro.
Teoria dos Grafos AULA 1
Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Silvio A. de Araujo Departamento de Matemática Aplicada [email protected], [email protected], [email protected] AULA 1 Introdução,
Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Capítulo 16: Grafos Planares. Departamento de Matemática Aplicada
Teoria dos Grafos Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo Departamento de Matemática Aplicada Capítulo 16: Grafos Planares Preparado a partir do texto: Rangel, Socorro. Teoria do
Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Departamento de Matemática Aplicada
Teoria dos Grafos Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo Departamento de Matemática Aplicada Capítulo 20: Decomposições de Arestas Preparado a partir da ref.: J.M. Aldous, R. Wilson,
Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada.
Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada [email protected], [email protected] Grafos direcionados (Digrafos) Preparado a partir do texto:
Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada.
Teoria dos Grafos Valeriano A de Oliveira Socorro Rangel Departamento de Matemática Aplicada antunes@ibilceunespbr, socorro@ibilceunespbr Grafos Hamiltonianos Preparado a partir do texto: Rangel, Socorro
Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada.
Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada [email protected], [email protected] Preparado a partir do texto: Rangel, Socorro. Teoria do Grafos,
Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Departamento de Matemática Aplicada
Teoria dos Grafos Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo Departamento de Matemática Aplicada Capítulo 18: Coloração de Arestas Preparado a partir do texto: Rangel, Socorro. Teoria
Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Departamento de Matemática Aplicada
Teoria dos Grafos Valeriano A de Oliveira, Socorro Rangel, Silvio A de Araujo Departamento de Matemática Aplicada Capítulo 12: Grafos Hamiltonianos Preparado a partir do texto: Rangel, Socorro Teoria do
Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Departamento de Matemática Aplicada
Teoria dos Grafos Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo Departamento de Matemática Aplicada Capítulo 09: Representação de Grafos Preparado a partir do texto: Rangel, Socorro. Teoria
14 Coloração de vértices Considere cada um dos grafos abaixo:
14 Coloração de vértices Considere cada um dos grafos abaixo: a) Quantas cores são necessárias para colorir os vértices de um grafo de maneira que dois vértices adjacentes não recebam a mesma cor? b) Qual
UNIVERSIDADE FEDERAL DO RIO DE JANEIRO DEPARTAMENTO DE CIÊNCIAS DA COMPUTAÇÃO. 5 a Lista de Exercícios
UNIVERSIDADE FEDERAL DO RIO DE JANEIRO DEPARTAMENTO DE CIÊNCIAS DA COMPUTAÇÃO MATEMÁTICA COMBINATÓRIA 5 a Lista de Exercícios 1. O grafo de intersecção de uma coleção de conjuntos A 1,..., A n é o grafo
A resposta para este problema envolve a partição do conjunto de arestas de tal forma que arestas adjacentes não pertençam a um mesmo conjunto.
7 - Coloração de Arestas e Emparelhamentos Considere o seguinte problema: Problema - Ao final do ano acadêmico, cada estudante deve fazer um exame oral com seus professores. Suponha que existam 4 estudantes
15 - Coloração Considere cada um dos grafos abaixo:
15 - Coloração Considere cada um dos grafos abaixo: a) Quantas cores são necessárias para colorir os vértices de um grafo de maneira que dois vértices adjacentes não recebam a mesma cor? b) Qual é o número
Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Capítulo 11: Grafos Eulerianos. Departamento de Matemática Aplicada
Teoria dos Grafos Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo Departamento de Matemática Aplicada Capítulo 11: Grafos Eulerianos Preparado a partir do texto: Rangel, Socorro. Teoria do
Instituto de Computação - Universidade Federal Fluminense Teoria dos Grafos - Lista de exercícios
Instituto de Computação - Universidade Federal Fluminense Teoria dos Grafos - Lista de exercícios 1 Conceitos 1. Prove o Teorema da Amizade: em qualquer festa com pelo menos seis pessoas, ou três se conhecem
Grafos: árvores geradoras mínimas. Graça Nunes
Grafos: árvores geradoras mínimas Graça Nunes 1 Motivação Suponha que queremos construir estradas para interligar n cidades Cada estrada direta entre as cidades i e j tem um custo associado Nem todas as
Teoria dos Grafos AULA 1
Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada [email protected], [email protected] AULA 1 Introdução, Conceitos Iniciais, Isomorfismo Preparado
Introdução à Teoria dos Grafos (MAC-5770) IME-USP Depto CC Profa. Yoshiko. Capítulo 3
Introdução à Teoria dos Grafos (MAC-5770) IME-USP Depto CC Profa. Yoshiko Capítulo 3 Árvores Problema: Suponha que numa cidade haja n postos telefônicos. Para que seja sempre possível haver comunicação
Instituto de Computação - Universidade Federal Fluminense Teoria dos Grafos - Lista de exercícios
Instituto de Computação - Universidade Federal Fluminense Teoria dos Grafos - Lista de exercícios 1 Conceitos 1. Prove o Teorema da Amizade: em qualquer festa com pelo menos seis pessoas, ou três se conhecem
Introdução à Teoria dos Grafos. Isomorfismo
Isomorfismo Um isomorfismo entre dois grafos G e H é uma bijeção f : V (G) V (H) tal que dois vértices v e w são adjacentes em G, se e somente se, f (v) e f (w) são adjacentes em H. Os grafos G e H são
GRAFOS Aula 08 Árvore Geradora Mínima: Algoritmos de Kruskal e Prim-Jarnik Max Pereira
Ciência da Computação GRAFOS Aula 08 Árvore Geradora Mínima: Algoritmos de Kruskal e Prim-Jarnik Max Pereira Árvore Geradora (spanning tree) É um subconjunto de um grafo G que possui todos os vértices
Algoritmos em Grafos COM11087-Tópicos Especiais em Programação I
Algoritmos em Grafos COM11087-Tópicos Especiais em Programação I [email protected] Introdução Teoria dos Grafos é o estudo das propriedades e estruturas dos grafos. O objetivo é, após modelar um problema
R.J. Wilson and J.J. Watkins, Graphs An Introductory approach, J. Wiley, 1990.
Departamento de Matemática Aplicada - UNESP/IBILCE Teoria dos Grafos Profs. Valeriano Oliveira, Sílvio Araújo, Socorro Rangel Lista de Exercícios N o. 6 Lista baseada na referência R.J. Wilson and J.J.
Gabriel Coutinho DCC035 - Pesquisa Operacional Lista 6
Lista 6 Exercício. O objetivo deste exercício é modelar o problema de emparelhamento em um grafo bipartido como um problema de fluxo, e verificar que o Teorema de Konig é essencialmente o Teorema de Fluxo
A resposta para este problema envolve a partição do conjunto de arestas de tal forma que arestas adjacentes não pertençam a um mesmo conjunto.
6 - oloração de restas e Emparelhamentos onsidere o seguinte problema: Problema - o final do ano acadêmico, cada estudante deve fazer um exame oral com seus professores. Suponha que existam 4 estudantes
Introdução à Teoria dos Grafos
Capítulo 1 Introdução à Teoria dos Grafos 1.1 História O primeiro problema cuja solução envolveu conceitos do que viria a ser teoria dos grafos, denominado "problema das pontes de Königsberg", foi resolvido
Lista de Exercícios 9 (Extra): Soluções Grafos
UFMG/ICEx/DCC DCC111 Matemática Discreta Lista de Exercícios 9 (Extra): Soluções Grafos Ciências Exatas & Engenharias 1 o Semestre de 018 Para cada uma das seguintes armações, diga se é verdadeira ou falsa
Árvores: Conceitos Básicos e Árvore Geradora
Árvores: Conceitos Básicos e Árvore Geradora Grafos e Algoritmos Computacionais Prof. Flávio Humberto Cabral Nunes [email protected] 1 Introdução No dia a dia aparecem muitos problemas envolvendo árvores:
PCC173 - Otimização em Redes
PCC173 - Otimização em Redes Marco Antonio M. Carvalho Departamento de Computação Instituto de Ciências Exatas e Biológicas Universidade Federal de Ouro Preto 27 de abril de 2016 Marco Antonio M. Carvalho
MATEMÁTICA DISCRETA. Patrícia Ribeiro 2018/2019. Departamento de Matemática, ESTSetúbal 1 / 47
1 / 47 MATEMÁTICA DISCRETA Patrícia Ribeiro Departamento de Matemática, ESTSetúbal 2018/2019 2 / 47 1 Combinatória 2 Aritmética Racional 3 3 / 47 Capítulo 3 4 / 47 não orientados Um grafo não orientado
Teoria dos Grafos Aula 2
Teoria dos Grafos Aula 2 Aula passada Logística, regras Objetivos Grafos, o que são? Formando pares Encontrando caminhos Aula de hoje Outro problema real Definições importantes Algumas propriedades Grafo
Volmir Eugênio Wilhelm Departamento de Engenharia de Produção UFPR 45
Volmir Eugênio Wilhelm Departamento de Engenharia de Produção UFPR 45 Introdução a Grafos Muitos problemas de otimização podem ser analisados utilizando-se uma estrutura denominada grafo ou rede. Problemas
Grafos: componentes fortemente conexos, árvores geradoras mínimas
Grafos: componentes fortemente conexos, árvores geradoras mínimas SCE-183 Algoritmos e Estruturas de Dados 2 Thiago A. S. Pardo Maria Cristina 1 Componentes fortemente conexos Um componente fortemente
Grafos e Algoritmos Raimundo Macêdo. Teorema de Hall (Prova por Indução)
Grafos e Algoritmos Raimundo Macêdo Teorema de Hall (Prova por Indução) Teorema de Hall (teorema do casamento, 1935) Seja G uma grafo bipartide V = X U Y, então G contém um emparelhamento que satura todos
Teoria dos Grafos Aula 6
Teoria dos Grafos Aula 6 Aula passada Busca em grafos Busca em largura (BFS Breadth First Search) Propriedades Aula de hoje BFS implementação Complexidade Busca em profundidade (DFS) Conectividade, componentes
GRAFOS. Introdução Conceitos Fundamentais
GRAFOS Introdução Conceitos Fundamentais Uma aplicação do produto de matrizes Agora é a sua vez... Considere o diagrama seguinte Determine, o número de formas diferentes de ir de a 1 até e 2 e de a 2
Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Departamento de Matemática Aplicada
Teoria dos Grafos Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo Departamento de Matemática Aplicada Capítulo 17: Coloração de Vértices Preparado a partir do texto: Rangel, Socorro. Teoria
Teoria dos Grafos Aula 2
Teoria dos Grafos Aula 2 Aula passada Logística Objetivos Grafos, o que são? Formando pares Aula de hoje Mais problemas reais Definições importantes Algumas propriedades Objetivos da Disciplina Grafos
Matemática Discreta. Aula 06: Teoria dos Grafos. Tópico 01: Grafos e suas Representações. Observação
Aula 06: Teoria dos Grafos Tópico 01: Grafos e suas Representações Nesta aula nós passamos a estudar um outro assunto, mas que também tem muita aplicação na vida prática, a Teoria dos Grafos. Para esta
TEORIA DOS GRAFOS TECNOLOGIA EM ANÁLISE E DESENVOLVIMENTO DE SISTEMAS MATEMÁTICA DISCRETA II PROFº MARCOS NASCIMENTO
TEORIA DOS GRAFOS TECNOLOGIA EM ANÁLISE E DESENVOLVIMENTO DE SISTEMAS MATEMÁTICA DISCRETA II PROFº MARCOS NASCIMENTO Por que estudar grafos? Importante ferramenta matemática com aplicação em diversas áreas
Problema da Árvore Geradora Mínima
Instituto Federal do Espírito Santo Campus Serra Problema da Árvore Geradora Mínima Diego Pasti Jefferson Rios Sumário Apresentação do Problema da AGM...3 Raízes do Problema Definindo o Problema O Problema
Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada.
Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada [email protected], [email protected] Grafos e Algoritmos Preparado a partir do texto: Rangel, Socorro.
Fábio Protti - UFF Loana T. Nogueira - UFF Sulamita Klein UFRJ
Fábio Protti - UFF Loana T. Nogueira - UFF Sulamita Klein UFRJ Suponha que temos um grupo de pessoas (funcionário de uma empresa) que serão submetidos a um treinamento. Queremos identificar os grupos de
Teoria dos Grafos Caminhos. Profª. Alessandra Martins Coelho
Teoria dos Grafos Caminhos Profª. Alessandra Martins Coelho junho/2014 Conexidade Em grande parte de aplicações do modelo em grafos, as relações que envolvem os vértices formam uma estrutura contínua;
GRAFOS: UMA INTRODUÇÃO
GRAFOS: UMA INTRODUÇÃO Vilmar Trevisan -Instituto de Matemática - UFRGS Junho de 2006 Grafos: uma introdução Informalmente, um grafo é um conjunto de pontos no plano ligados entre por flechas ou por segmentos
Otimização em Grafos
Otimização em Grafos Luidi G. Simonetti PESC/COPPE 2017 Luidi Simonetti (PESC) EEL857 2017 1 / 35 Teoria dos Grafos - Relembrando Árvore Um grafo G é uma árvore se é conexo e não possui ciclos (acíclico).
Algoritmos de aproximação - Problema do caixeiro viajante
Algoritmos de aproximação - Problema do caixeiro viajante Marina Andretta ICMC-USP 30 de setembro de 2015 Baseado no livro Uma introdução sucinta a Algoritmos de Aproximação, de M. H. Carvalho, M. R. Cerioli,
Aulas 10 e 11 / 18 e 20 de abril
1 Conjuntos Aulas 10 e 11 / 18 e 20 de abril Um conjunto é uma coleção de objetos. Estes objetos são chamados de elementos do conjunto. A única restrição é que em geral um mesmo elemento não pode contar
x y Grafo Euleriano Figura 1
Grafo Euleriano Um caminho simples ou um circuito simples é dito euleriano se ele contém todas as arestas de um grafo. Um grafo que contém um circuito euleriano é um grafo euleriano. Um grafo que não contém
Grafos Eulerianos e o Problema do Carteiro Chinês
Prof. Ademir A. Constantino DIN - UEM 1 Grafos Eulerianos e o Problema do Carteiro Chinês Prof. Ademir Constantino Departamento de Informática Universidade Estadual de Maringá Prof. Ademir A. Constantino
Problemas de Fluxo em Redes
CAPÍTULO 7 1. Conceitos fundamentais de grafos Em muitos problemas que nos surgem, a forma mais simples de o descrever, é representá-lo em forma de grafo, uma vez que um grafo oferece uma representação
Árvores Árvores Geradoras de Custo Mínimo 0/16
Conteúdo 1 Árvores 2 Árvores Geradoras de Custo Mínimo Árvores Árvores Geradoras de Custo Mínimo 0/16 Árvores Definição (Grafo Acíclico) Um grafo acíclico é um grafo que não contém ciclos. Árvores Árvores
MATEMÁTICA DISCRETA PARA ENGENHARIA DE COMPUTAÇÃO
MATEMÁTICA DISCRETA PARA ENGENHARIA DE COMPUTAÇÃO Profa. Kathya Collazos Linares *As aulas baseiam-se no material do Professor Antonio Alfredo Ferreira Loureiro; Jorge Figueiredo e Judith Gersting Árvore
Comunicação e redes. Aula 2: Teoria dos Grafos Conceitos básicos. Professor: Guilherme Oliveira Mota.
Comunicação e redes Aula 2: Teoria dos Grafos Conceitos básicos Professor: Guilherme Oliveira Mota [email protected] Aula passada Redes complexas Grafo G: Conjunto de pontos e linhas ligando esses pontos
CONCEITOS BÁSICOS EM GRAFOS
Um grafo (simples) G é formado por um conjunto de vértices, denotado por V(G), e um conjunto de arestas, denotado por E(G). Cada aresta é um par (não ordenado) de vértices distintos. Se xy é uma aresta,
CAP4. ELEMENTOS DA TEORIA DE GRAFOS. Grafo [graph]. Estrutura que consiste num par ordenado de conjuntos, G ( V, E) , sendo:
Matemática Discreta ESTiG\IPB Cap4. Elementos da Teoria de Grafos pg 1 CAP4. ELEMENTOS DA TEORIA DE GRAFOS Grafo [graph]. Estrutura que consiste num par ordenado de conjuntos, G ( V, E), sendo: Exemplos
Pesquisa Operacional
Faculdade de Engenharia - Campus de Guaratinguetá Pesquisa Operacional Livro: Introdução à Pesquisa Operacional Capítulo 3 - Teoria dos Grafos Fernando Marins [email protected] Departamento de Produção
Noções da Teoria dos Grafos. André Arbex Hallack
Noções da Teoria dos Grafos André Arbex Hallack Junho/2015 Índice 1 Introdução e definições básicas. Passeios eulerianos 1 1.1 Introdução histórica..................................... 1 1.2 Passeios
4.1 Preliminares. No exemplo acima: Dom(R 1 ) = e Im(R 1 ) = Dom(R 2 ) = e Im(R 2 ) = Dom(R 3 ) = e Im(R 3 ) = Diagrama de Venn
4 Relações 4.1 Preliminares Definição 4.1. Sejam A e B conjuntos. Uma relação binária, R, de A em B é um subconjunto de A B. (R A B) Dizemos que a A está relacionado com b B sss (a, b) R. Notação: arb.
Instituto de Computação Universidade Federal Fluminense. Notas de Aula de Teoria dos Grafos. Prof. Fábio Protti Niterói, agosto de 2015.
Instituto de Computação Universidade Federal Fluminense Notas de Aula de Teoria dos Grafos Niterói, agosto de 2015. Conteúdo 1 Conceitos Básicos 5 1.1 Grafos, vértices, arestas..................... 5 1.2
Introdução a Grafos Letícia Rodrigues Bueno
Introdução a Grafos Letícia Rodrigues Bueno UFABC Teoria dos Grafos - Motivação Objetivo: aprender a resolver problemas; Como: usando grafos para modelar os problemas; Grafos: ferramenta fundamental de
Noções da Teoria dos Grafos
Noções da Teoria dos Grafos André Arbex Hallack Índice 1 Introdução e definições básicas. Passeios eulerianos 1 2 Ciclos hamiltonianos 7 3 Árvores 11 4 Emparelhamento em grafos 15 5 Grafos planares: Colorindo
v 4 v 6 v 5 b) Como são os corte de arestas de uma árvore?
12 - Conjuntos d Cort o studarmos árors gradoras, nós stáamos intrssados m um tipo spcial d subgrafo d um grafo conxo: um subgrafo qu mantiss todos os értics do grafo intrligados. Nst tópico, nós stamos
GRAFOS. Prof. André Backes. Como representar um conjunto de objetos e as suas relações?
8/0/06 GRAFOS Prof. André Backes Definição Como representar um conjunto de objetos e as suas relações? Diversos tipos de aplicações necessitam disso Um grafo é um modelo matemático que representa as relações
Projeto de Algoritmos por Indução
Projeto de Algoritmos por Indução Profa. Sheila Morais de Almeida DAINF-UTFPR-PG junho - 2018 Sheila Almeida (DAINF-UTFPR-PG) Projeto de Algoritmos por Indução junho - 2018 1 / 40 Este material é preparado
Parte B Teoria dos Grafos
45 Parte B Teoria dos Grafos B. Grafos e Subgrafos Um grafo G é uma tripla ordenada (V(G), E(G), ), constituindo de um conjunto não vazio V(G) de vértices, um conjunto disjunto E(G) das arestas e uma função
