Introdução à Teoria dos Grafos
|
|
|
- Catarina Natal Valgueiro
- 9 Há anos
- Visualizações:
Transcrição
1 Capítulo 1 Introdução à Teoria dos Grafos 1.1 História O primeiro problema cuja solução envolveu conceitos do que viria a ser teoria dos grafos, denominado "problema das pontes de Königsberg", foi resolvido por Euler em Tal problema consistia em percorrer todas as pontes passando uma única vez em cada uma delas (como mostra a gura). Figura 1.1: Pontes de Königsberg Na gura abaixo observamos o grafo correspondente ao problema das pontes de Königsberg:
2 Figura 1.2: Grafo associado ao problema das pontes de Königsberg Procurava-se uma sequência da forma R 0, P 1, R 1, P 2, R 2, P 3, R 3, P 4, R 4, P 5, R 5, P 6, R 6, P 7, R 7 onde: (i) R 0, R 1,..., R 7 são regiões (ii) P i é uma ponte ligando R i 1 a R i. (iii) P 0, P 1,..., P 7 são diferentes. Euler chegou a conclusão de que era impossível encontrar essa sequência. Ford e Fulkerson (1962) desenvolveram a teoria dos uxos em redes, um dos mais importantes resultados da teoria dos grafos, e muitas outras aplicações da teoria dos grafos então sendo desenvolvidas na área de Pesquisa Operacional. 1.2 Denições Básicas Grafos Denição 1.1 Um grafo G é uma tripla ordenada de conjuntos nitos disjuntos (V, E, V E), satisfazendo: 1 v V : (v, e) V E 2 para todo e E. Notação: Os elementos do conjunto V := V (G) são chamados de vértices de G e os elementos de E := E(G) são chamados de arestas de G. Denomina-se V E := (V E)(G) como a lei de incidência do grafo G. 2
3 Denição 1.2 É dito que a aresta e é incidente ao vértice v, quando (v, e) V E. Notação: Quando a aresta e for incidente a vértices distintos x e y, denota-se tal aresta por e = xy. Assim, x e y são chamados extremos desta aresta. Caso uma aresta e seja incidente a um único vértice x, denota-se tal aresta por e = xx, ou seja, uma aresta cujos extremos são representados pelo mesmo vértice. Neste caso, diz-se que e é um laço. Outra possibilidade, é que dois vértices sejam unidos por mais de uma aresta, chamadas de arestas em paralelo. Observe na Figura 1.3, f é um exemplo de laço, enquanto que g e h representam arestas em paralelo. Figura 1.3: Grafo G Denição 1.3 Um grafo simples é um grafo sem laços e arestas em paralelo. Denição 1.4 Em uma grafo G, um caminha γ é uma sequência v 0, e 1, v 1, e 2, v 2,..., v n 1, e n, v n, onde v 0, v 1, v 2,..., v n são vértices de G, e 1, e 2,..., e n são arestas de G e, para i 1, 2,..., n, os vértices de G incidentes com e i são v i 1 e v i. Em um grafo simples, podemos representar um caminho apenas como uma sequência de vértices, em que quaisquer dois consecutivos estão ligados por uma aresta e esta é única. Denição 1.5 Diremos que n é o comprimento de γ, que é denotado por γ. Chamaremos v 0 e v n de vértices terminais de γ e v 1, v 2,..., v n 1 de vértices interiores. 3
4 Diremos que γ liga v 0 a v n ou que é um v 0 v n -caminho. Dois tipos de caminhos receberão atenção especial nessas notas: quando os vértices v 0, v 1,..., v n são dois a dois distintos, diremos que o caminho é simples, e quando v 0 = v n, { v 1, v 2,..., v n } = {e 1, e 2,..., e n } = n, chamaremos o caminho de circuito. Denição 1.6 Um grafo é dito conexo se para todo par {x, y} de vértices distintos existe um caminho de x para y. Aplicação: Em uma cidade, uma companhia telefônica deseja substituir os cabos convencionais de sua malha por cabos de bra ótica. Na gura a seguir, representamos uma pequena parte desta rede, visando apenas auxiliar a argumentação subseqüente. Figura 1.4: Grafo G 1 Para a telefonia, podemos considerar que os cabos de bra ótica possui capacidade innita para realizar ligações. Por esta razão, é suciente substituir apenas alguns cabos, de forma que a companhia tenha o menor custo para essa mudança. Antes de tentarmos resolver esse problema, precisamos de mais algumas denições. Denição 1.7 Seja e uma aresta de um grafo G. Denotaremos por G\e o grafo tendo respectivamente V (G) e E(G) e como conjunto de vértices e arestas e a incidência herdada de G. Diremos que G \ e foi obtido de G removendo-se a aresta e. Ampliando a denição anterior, quando X E(G), digamos X = {e 1,..., e n }, denimos G \ X como (...((G \ e 1 ) \ e 2 )...) \ e n, e diremos que G \ X foi obtido a partir de G após a remoção do conjunto X de arestas, não importando a ordem em que as arestas foram removidas. 4
5 Denição 1.8 Um grafo H é chamado subgrafo de G quando existe X E(G) tal que H = G \ X. Observação: Por denição, todo subgrafo de G tem o mesmo conjunto de vértices de G. Denição 1.9 Um grafo conexo G é dito minimalmente conexo quando G \ e não é conexo, para toda aresta e de G. Denição 1.10 Uma árvore é um grafo conexo que não possui circuito. Proposição 1.11 As seguintes armações sobre um grafo G são equivalentes: (i) G é minimalmente conexo. (ii) G é uma árvore. Prova. Esta proposição segue da seguinte observação sobre um grafo conexo: a remoção de uma aresta o desconecta se e somente se esta aresta não está em nenhum circuito. Figura 1.5: Subgrafo e árvore geradora de G 1 Para encontrar uma árvore geradora de G é fácil, basta eliminar todos os circuitos. Como um grafo conexo possui várias árvores geradoras, a companhia tinha várias opções para fazer a escolha daquela que iria utilizar. Então, vamos deixar o problema mais interessante, cada cabo tem um valor para substituição (os valores são diferentes entre si) e a companhia deseja a árvore geradora que tenha o menor custo. Para resolver tal 5
6 problema utilizaremos o algoritmo de Kruskal que será apresentado a seguir: Algoritmo Guloso (versão 1) Entrada: um grafo conexo G e uma função custo c. Saída: uma árvore geradora T de G com custo mínimo. (1) Escolha vértice v de G e faça V := {v} e E :=. (2) Se V = V (G), então faça T := G\[E(G) E] e pare. (3) Senão escolha aresta e de G incidente a um vértice em V e outro, w, em V (G) V possuindo custo mínimo. Faça V := V w e E := E e, onde w V (G) V e é incidente a e. Volte para a segunda etapa Vamos aplicar o Algoritmo Guloso no grafo ilustrado acima Lema 1.1 Se T é uma árvore com pelo menos dois vértices, então T possui pelo menos dois vértices terminais. 6
7 Prova. Se γ for um caminho simples de maior comprimento em T, então os vértices terminais de γ são terminais em T. A existência de vértices terminais nas árvores nos permite gerá-las indutivamente: uma árvore com n vértices é obtida a partir de uma árvore com n 1 vértices adicionando-se um vértice e uma aresta para conectar esse novo vértice a árvore. Dessa forma, E(T ) = V (T ) 1 Apresentaremos uma outra versão para o Algoritmo de Kruskal, mas anteriormente daremos mais uma denição. Denição 1.12 Uma oresta é um grafo sem ciclos, não necessariamente conexo. Note que cada componente conexa de uma oresta é uma árvore. A árvore serão assim construída. 1. Iniciar com os n vértices, sem nenhuma aresta. 2. Introduzir a aresta de menor valor e A cada etapa introduzir dentre as arestas restantes a de menor valor que não complete algum ciclo. 4. Parar quando o número k de arestas introduzidas for n 1. Algoritmo Guloso (versão 2) Entrada: um grafo conexo G e uma função custo c. Saída: uma árvore geradora T de G com custo mínimo. (1) Escolha a aresta e 1 de menor valor em G e faça V := V (G) e E := {e 1 }. (2) Se E = n 1, então faça T := G\[E(G) E] e pare. (3) Senão escolha aresta e 2 [E(G) E], de tal forma que possua custo mínimo e não forme ciclo. Faça V = V (G) e E := E e 2. Volte para a segunda etapa. Observe que na primeira versão do Algoritmo Guloso, em cada etapa, o grafo obtido tem uma única componente que tem arestas, enquanto que na segunda versão podemos 7
8 ter várias componentes conexas possuindo arestas. Demonstração da corretura da versão 2 do Algoritmo Guloso. Para isso, chamaremos o grafo obtido de G n 1 = (V (G), E n 1 ), onde V (G) é o conjunto de vértices de G e E n 1 o conjunto de n 1 arestas, vale salientar que a lei de incidência de G n 1 é herdada de G. Suponha que G n 1 = (V (G), E n 1) é a verdadeira solução de custo mínimo e, mais, G n 1 G n 1. Ordenamos em G n 1 as arestas pela ordem crescente dos valores. Seja e 1 a primeira aresta que aparece em E n 1 mas não em E n 1 (tal aresta existe porque por hipótese G n 1 G n 1). Considere o grafo H 1 = (V (G), W 1 ), onde W 1 = E n 1 {e 1 }. Pela denição de árvore, W 1 contém um ciclo. Nesse ciclo existe uma aresta u que não gura em E n 1, porque G n 1 por construção não tem ciclo. O grafo H = (V (G), W ), onde W = (E n 1 {e 1 } u) é uma árvore. Por outro lado, a aresta u tem um valor maior do que o da aresta e 1, senão ela teria sido introduzida no lugar de e 1 durante a construção de G n 1. Segue-se, portanto, que H tem um valor total inferior ao de G n 1, o que contradiz a hipótese de ser G n 1 a solução de menor valor e diferente de G n 1. Assim, a árvore G n 1 é a solução procurada. A demonstração da corretura da versão 1 encontra-se em LEMOS [3], sem a restrição dos valores associados as arestas serem todos diferentes entre si. 8
9 Bibliograa [1] CRISTINO, Cláudio Tadeu, O Polinômio de Tutte. Dissertação de Mestrado. Recife, [2] FURTADO, Antonio Luz, Teoria dos Grafos: Algoritmos. Ed. Livros Técnicos e Cientícos. Rio de Janeiro, [3] LEMOS, Manoel, Interação entre Grafos e Matróides. Notas de Aula. Departamento de Matemática (UFPE). Recife. [4] NETTO, Paulo Oswaldo Boaventura, Teoria e Modelos de Grafos, Ed. Blücher. São Paulo, [5] WILSON, Robin J., Introdução a Teoria dos Grafos, Ed. Oliver e Boyd. Edinburg, 1972.
Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Departamento de Matemática Aplicada
Teoria dos Grafos Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo Departamento de Matemática Aplicada Capítulo 14: Conjuntos de Corte e Conectividade Preparado a partir do texto: Rangel,
Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada.
Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada [email protected], [email protected] Grafos Eulerianos Preparado a partir do texto: Rangel, Socorro.
Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Capítulo 16: Grafos Planares. Departamento de Matemática Aplicada
Teoria dos Grafos Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo Departamento de Matemática Aplicada Capítulo 16: Grafos Planares Preparado a partir do texto: Rangel, Socorro. Teoria do
x y Grafo Euleriano Figura 1
Grafo Euleriano Um caminho simples ou um circuito simples é dito euleriano se ele contém todas as arestas de um grafo. Um grafo que contém um circuito euleriano é um grafo euleriano. Um grafo que não contém
Árvores Árvores Geradoras de Custo Mínimo 0/16
Conteúdo 1 Árvores 2 Árvores Geradoras de Custo Mínimo Árvores Árvores Geradoras de Custo Mínimo 0/16 Árvores Definição (Grafo Acíclico) Um grafo acíclico é um grafo que não contém ciclos. Árvores Árvores
Introdução à Teoria dos Grafos (MAC-5770) IME-USP Depto CC Profa. Yoshiko. Capítulo 3
Introdução à Teoria dos Grafos (MAC-5770) IME-USP Depto CC Profa. Yoshiko Capítulo 3 Árvores Problema: Suponha que numa cidade haja n postos telefônicos. Para que seja sempre possível haver comunicação
Teoria dos Grafos. Edson Prestes
Edson Prestes Referências P. O. Boaventura Netto, Grafos: Teoria, Modelos e Algoritmos, São Paulo, E. Blucher 2001; R. J. Trudeau, Introduction to Graph Theory, New York, Dover Publications, 1993; Kaufmann,
Algoritmos de aproximação - Problema do caixeiro viajante
Algoritmos de aproximação - Problema do caixeiro viajante Marina Andretta ICMC-USP 30 de setembro de 2015 Baseado no livro Uma introdução sucinta a Algoritmos de Aproximação, de M. H. Carvalho, M. R. Cerioli,
Comunicação e redes. Aula 2: Teoria dos Grafos Conceitos básicos. Professor: Guilherme Oliveira Mota.
Comunicação e redes Aula 2: Teoria dos Grafos Conceitos básicos Professor: Guilherme Oliveira Mota [email protected] Aula passada Redes complexas Grafo G: Conjunto de pontos e linhas ligando esses pontos
Noções da Teoria dos Grafos. André Arbex Hallack
Noções da Teoria dos Grafos André Arbex Hallack Junho/2015 Índice 1 Introdução e definições básicas. Passeios eulerianos 1 1.1 Introdução histórica..................................... 1 1.2 Passeios
Parte B Teoria dos Grafos
45 Parte B Teoria dos Grafos B. Grafos e Subgrafos Um grafo G é uma tripla ordenada (V(G), E(G), ), constituindo de um conjunto não vazio V(G) de vértices, um conjunto disjunto E(G) das arestas e uma função
Lista de Exercícios 9 (Extra): Soluções Grafos
UFMG/ICEx/DCC DCC111 Matemática Discreta Lista de Exercícios 9 (Extra): Soluções Grafos Ciências Exatas & Engenharias 1 o Semestre de 018 Para cada uma das seguintes armações, diga se é verdadeira ou falsa
Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Departamento de Matemática Aplicada
Teoria dos Grafos Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo Departamento de Matemática Aplicada Capítulo 18: Coloração de Arestas Preparado a partir do texto: Rangel, Socorro. Teoria
CONCEITOS BÁSICOS EM GRAFOS
Um grafo (simples) G é formado por um conjunto de vértices, denotado por V(G), e um conjunto de arestas, denotado por E(G). Cada aresta é um par (não ordenado) de vértices distintos. Se xy é uma aresta,
Matemática Discreta. Aula 06: Teoria dos Grafos. Tópico 01: Grafos e suas Representações. Observação
Aula 06: Teoria dos Grafos Tópico 01: Grafos e suas Representações Nesta aula nós passamos a estudar um outro assunto, mas que também tem muita aplicação na vida prática, a Teoria dos Grafos. Para esta
Teoria dos Grafos Introdu c ao
Teoria dos Grafos Introdução Referências P. O. Boaventura Netto, Grafos: Teoria, Modelos e Algoritmos, São Paulo, E. Blucher 001; R. J. Trudeau, Introduction to Graph Theory, New York, Dover Publications,
01 Grafos: parte 1 SCC0503 Algoritmos e Estruturas de Dados II
01 Grafos: parte 1 SCC0503 Algoritmos e Estruturas de Dados II Prof. Moacir Ponti Jr. www.icmc.usp.br/~moacir Instituto de Ciências Matemáticas e de Computação USP 2011/1 Moacir Ponti Jr. (ICMCUSP) 01
Teorema 1 - Todo corte de arestas de um grafo conexo G contém pelo menos uma aresta em comum com qualquer árvore geradora de G. Exemplo 2 - Seja T:
12 - Conjuntos de Corte o estudarmos árvores geradoras, nós estávamos interessados em um tipo especial de subgrafo de um grafo conexo: um subgrafo que mantivesse todos os vértices do grafo interligados.
Teoria dos Grafos. Grafos Planares
Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Silvio A. de Araujo Departamento de Matemática Aplicada [email protected], [email protected], [email protected] Grafos Planares
Teoria dos Grafos. Conjuntos de Corte e Conectividade
Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Silvio A. de Araujo Departamento de Matemática Aplicada [email protected], [email protected], [email protected] Conjuntos de
GRAFOS. Prof. André Backes. Como representar um conjunto de objetos e as suas relações?
8/0/06 GRAFOS Prof. André Backes Definição Como representar um conjunto de objetos e as suas relações? Diversos tipos de aplicações necessitam disso Um grafo é um modelo matemático que representa as relações
Problemas de Fluxo em Redes
CAPÍTULO 7 1. Conceitos fundamentais de grafos Em muitos problemas que nos surgem, a forma mais simples de o descrever, é representá-lo em forma de grafo, uma vez que um grafo oferece uma representação
Cap. 2 Conceitos Básicos em Teoria dos Grafos
Teoria dos Grafos e Aplicações 8 Cap. 2 Conceitos Básicos em Teoria dos Grafos 2.1 Grafo É uma noção simples, abstrata e intuitiva, usada para representar a idéia de alguma espécie de relação entre os
Grafos Eulerianos e o Problema do Carteiro Chinês
Prof. Ademir A. Constantino DIN - UEM 1 Grafos Eulerianos e o Problema do Carteiro Chinês Prof. Ademir Constantino Departamento de Informática Universidade Estadual de Maringá Prof. Ademir A. Constantino
Noções da Teoria dos Grafos
Noções da Teoria dos Grafos André Arbex Hallack Índice 1 Introdução e definições básicas. Passeios eulerianos 1 2 Ciclos hamiltonianos 7 3 Árvores 11 4 Emparelhamento em grafos 15 5 Grafos planares: Colorindo
Teoria dos Grafos. Profa. Alessandra Martins Coelho
Teoria dos Grafos Profa. Alessandra Martins Coelho fev/2014 Avaliação 2 Provas 30 pontos cada; 3 Implementações 10 pontos cada; 1 Seminário 10 pontos; Listas de exercícios Listas não valem nota, entretanto...
15 - Coloração Considere cada um dos grafos abaixo:
15 - Coloração Considere cada um dos grafos abaixo: a) Quantas cores são necessárias para colorir os vértices de um grafo de maneira que dois vértices adjacentes não recebam a mesma cor? b) Qual é o número
Teoria dos Grafos. Fluxo Máximo em Redes
Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Silvio A. de Araujo Departamento de Matemática Aplicada [email protected], [email protected], [email protected] Fluxo Máximo
Noções da Teoria dos Grafos. André Arbex Hallack
Noções da Teoria dos Grafos André Arbex Hallack Junho/2015 Índice 1 Introdução e definições básicas. Passeios eulerianos 1 2 Ciclos hamiltonianos 5 3 Árvores 7 4 Emparelhamento em grafos 11 5 Grafos planares:
Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Capítulo 11: Grafos Eulerianos. Departamento de Matemática Aplicada
Teoria dos Grafos Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo Departamento de Matemática Aplicada Capítulo 11: Grafos Eulerianos Preparado a partir do texto: Rangel, Socorro. Teoria do
As Pontes de Königsberg
As Pontes de Königsberg Anderson Freitas Ferreira e Lívia Minami Borges 13 de junho de 2015 Resumo A teoria de grafos teve seu início em 1736, quando Euler utilizou uma estrutura para resolver o Problema
Circuitos Eulerianos Ciclos Hamiltonianos O Problema do Caixeiro Viajante CAMINHAMENTOS BASEADO EM TOWNSEND (1987), CAP. 7.
Matemática Discreta Capítulo 7 SUMÁRIO CAMINHAMENTOS BASEADO EM TOWNSEND (1987), CAP. 7 Circuitos Eulerianos Ciclos Hamiltonianos O Problema do Caixeiro Viajante Newton José Vieira 30 de julho de 2007
TEORIA DOS GRAFOS TECNOLOGIA EM ANÁLISE E DESENVOLVIMENTO DE SISTEMAS MATEMÁTICA DISCRETA II PROFº MARCOS NASCIMENTO
TEORIA DOS GRAFOS TECNOLOGIA EM ANÁLISE E DESENVOLVIMENTO DE SISTEMAS MATEMÁTICA DISCRETA II PROFº MARCOS NASCIMENTO Por que estudar grafos? Importante ferramenta matemática com aplicação em diversas áreas
14 Coloração de vértices Considere cada um dos grafos abaixo:
14 Coloração de vértices Considere cada um dos grafos abaixo: a) Quantas cores são necessárias para colorir os vértices de um grafo de maneira que dois vértices adjacentes não recebam a mesma cor? b) Qual
Teoria dos Grafos Aula 2
Teoria dos Grafos Aula 2 Aula passada Logística, regras Objetivos Grafos, o que são? Formando pares Encontrando caminhos Aula de hoje Outro problema real Definições importantes Algumas propriedades Grafo
GRAFOS. Introdução Conceitos Fundamentais
GRAFOS Introdução Conceitos Fundamentais Uma aplicação do produto de matrizes Agora é a sua vez... Considere o diagrama seguinte Determine, o número de formas diferentes de ir de a 1 até e 2 e de a 2
Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Capítulo 5: Grafos Conexos. Departamento de Matemática Aplicada
Teoria dos Grafos Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo Departamento de Matemática Aplicada Capítulo 5: Grafos Conexos Preparado a partir do texto: Rangel, Socorro. Teoria do Grafos,
Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Departamento de Matemática Aplicada
Teoria dos Grafos Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo Departamento de Matemática Aplicada Capítulo 20: Decomposições de Arestas Preparado a partir da ref.: J.M. Aldous, R. Wilson,
Teoria dos Grafos. Maria Claudia Silva Boeres. UFES. Teoria dos Grafos
Maria Claudia Silva Boeres [email protected] Motivação Por que estudar grafos? Importante ferramenta matemática com aplicação em diversas áreas do conhecimento Utilizados na definição e/ou resolução de
Teoria dos Grafos. Coloração de Vértices
Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Silvio A. de Araujo Departamento de Matemática Aplicada [email protected], [email protected], [email protected] Coloração de
Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada.
Teoria dos Grafos Valeriano A de Oliveira Socorro Rangel Departamento de Matemática Aplicada antunes@ibilceunespbr, socorro@ibilceunespbr Grafos Hamiltonianos Preparado a partir do texto: Rangel, Socorro
Teoria dos Grafos AULA 3
Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada [email protected], [email protected] AULA 3 Trajetos, Caminhos, Circuitos, Grafos Conexos Preparado
Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Departamento de Matemática Aplicada
Teoria dos Grafos Valeriano A de Oliveira, Socorro Rangel, Silvio A de Araujo Departamento de Matemática Aplicada Capítulo 12: Grafos Hamiltonianos Preparado a partir do texto: Rangel, Socorro Teoria do
PCC173 - Otimização em Redes
PCC173 - Otimização em Redes Marco Antonio M. Carvalho Departamento de Computação Instituto de Ciências Exatas e Biológicas Universidade Federal de Ouro Preto 27 de abril de 2016 Marco Antonio M. Carvalho
Instituto de Computação Universidade Federal Fluminense. Notas de Aula de Teoria dos Grafos. Prof. Fábio Protti Niterói, agosto de 2015.
Instituto de Computação Universidade Federal Fluminense Notas de Aula de Teoria dos Grafos Niterói, agosto de 2015. Conteúdo 1 Conceitos Básicos 5 1.1 Grafos, vértices, arestas..................... 5 1.2
Introdução a Grafos Letícia Rodrigues Bueno
Introdução a Grafos Letícia Rodrigues Bueno UFABC Teoria dos Grafos - Motivação Objetivo: aprender a resolver problemas; Como: usando grafos para modelar os problemas; Grafos: ferramenta fundamental de
Pesquisa Operacional. Teoria dos Grafos
Pesquisa Operacional Teoria dos Grafos 1 Sumário Introdução Histórico Aplicações de modelos em grafos Conceitos e Notação Representações de um grafo G Tipos de grafos Algoritmos Algoritmo de Djisktra Algoritmo
Teoria dos Grafos AULA 2
Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada [email protected], [email protected] AULA 2 Subgrafos, Operações com Grafos Preparado a partir
MATEMÁTICA DISCRETA PARA ENGENHARIA DE COMPUTAÇÃO
MATEMÁTICA DISCRETA PARA ENGENHARIA DE COMPUTAÇÃO Profa. Kathya Collazos Linares *As aulas baseiam-se no material do Professor Antonio Alfredo Ferreira Loureiro; Jorge Figueiredo e Judith Gersting Árvore
Otimização em Grafos
Otimização em Grafos Luidi G. Simonetti PESC/COPPE 2017 Luidi Simonetti (PESC) EEL857 2017 1 / 35 Teoria dos Grafos - Relembrando Árvore Um grafo G é uma árvore se é conexo e não possui ciclos (acíclico).
Matemática Discreta Capítulo 3 Versão preliminar
Matemática Discreta Capítulo 3 Versão preliminar Henri Anciaux e Derek Hacon October 25, 2007 1 Generalidades sobre grafos Um grafo G é simplesmente um par de dois conjuntos V e A, o segundo sendo constituído
Grafos: componentes fortemente conexos, árvores geradoras mínimas
Grafos: componentes fortemente conexos, árvores geradoras mínimas SCE-183 Algoritmos e Estruturas de Dados 2 Thiago A. S. Pardo Maria Cristina 1 Componentes fortemente conexos Um componente fortemente
Introdução à Teoria dos Grafos. Isomorfismo
Isomorfismo Um isomorfismo entre dois grafos G e H é uma bijeção f : V (G) V (H) tal que dois vértices v e w são adjacentes em G, se e somente se, f (v) e f (w) são adjacentes em H. Os grafos G e H são
CÁLCULO I. 1 Funções. Objetivos da Aula. Aula n o 01: Funções. Denir função e conhecer os seus elementos; Reconhecer o gráco de uma função;
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 01: Funções. Objetivos da Aula Denir função e conhecer os seus elementos; Reconhecer o gráco de uma função; Denir funções compostas e inversas.
Estrutura de Dados e Algoritmos e Programação e Computadores II. Aula 10: Introdução aos Grafos
Estrutura de Dados e Algoritmos e Programação e Computadores II Aula 10: Introdução aos Grafos História O assunto que se constitui no marco inicial da teoria de grafos é na realidade um problema algorítmico.
Matemática Discreta. Aula nº 22 Francisco Restivo
Matemática Discreta Aula nº 22 Francisco Restivo 2006-05-26 Definição: Um grafo cujos vértices são pontos no plano e cujos lados são linhas no plano que só se encontram nos vértices do grafo são grafos
MATEMÁTICA DISCRETA. Patrícia Ribeiro 2018/2019. Departamento de Matemática, ESTSetúbal 1 / 47
1 / 47 MATEMÁTICA DISCRETA Patrícia Ribeiro Departamento de Matemática, ESTSetúbal 2018/2019 2 / 47 1 Combinatória 2 Aritmética Racional 3 3 / 47 Capítulo 3 4 / 47 não orientados Um grafo não orientado
Grafos AULA META. Introduzir noções elementares da teoria dos grafos. OBJETIVOS. Ao final da aula o aluno deverá ser capaz de:
Grafos META Introduzir noções elementares da teoria dos grafos. OBJETIVOS Ao final da aula o aluno deverá ser capaz de: Representar grafos por meio de matrizes e diagramas; Caracterizar uma árvore; Identificar
Instituto de Computação - Universidade Federal Fluminense Teoria dos Grafos - Lista de exercícios
Instituto de Computação - Universidade Federal Fluminense Teoria dos Grafos - Lista de exercícios 1 Conceitos 1. Prove o Teorema da Amizade: em qualquer festa com pelo menos seis pessoas, ou três se conhecem
CAP4. ELEMENTOS DA TEORIA DE GRAFOS. Grafo [graph]. Estrutura que consiste num par ordenado de conjuntos, G ( V, E) , sendo:
Matemática Discreta ESTiG\IPB Cap4. Elementos da Teoria de Grafos pg 1 CAP4. ELEMENTOS DA TEORIA DE GRAFOS Grafo [graph]. Estrutura que consiste num par ordenado de conjuntos, G ( V, E), sendo: Exemplos
Definição 1.1 : Uma árvore é um grafo simples conexo e sem ciclos.
1 Árvores Definição 1.1 : Uma árvore é um grafo simples conexo e sem ciclos. Um grafo simples sem ciclos mas não conexo (em que cada componente conexa é portanto uma árvore) chama-se uma floresta. Numa
Grafo planar: Definição
Grafo planar Considere o problema de conectar três casas a cada uma de três infraestruturas (gás, água, energia) como mostrado na figura abaixo. É possível fazer essas ligações sem que elas se cruzem?
Gabriel Coutinho DCC035 - Pesquisa Operacional Lista 6
Lista 6 Exercício. O objetivo deste exercício é modelar o problema de emparelhamento em um grafo bipartido como um problema de fluxo, e verificar que o Teorema de Konig é essencialmente o Teorema de Fluxo
Ciência da Computação Engenharia de Computação Mestrado em Informática. Teoria dos Grafos. Maria Claudia Silva Boeres.
Ciência da Computação Engenharia de Computação Mestrado em Informática Maria Claudia Silva Boeres [email protected] Programa 1.Conceitos Básicos 2.Grafos Eulerianos e Hamiltonianos 3.Caminhos, Ciclos
Problema da Árvore Geradora Mínima (The Minimum Spanning Tree Problem-MST)
Volmir Eugênio Wilhelm Departamento de Engenharia de Produção UFPR 45 Problema da Árvore Geradora Mínima (The Minimum Spanning Tree Problem-MST) Alguns problemas de otimização combinatória podem ser formulados
Teoria dos Grafos. Árvores
Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Silvio A. de Araujo Departamento de Matemática Aplicada [email protected], [email protected], [email protected] Preparado a partir
Teoria dos Grafos Caminhos. Profª. Alessandra Martins Coelho
Teoria dos Grafos Caminhos Profª. Alessandra Martins Coelho junho/2014 Conexidade Em grande parte de aplicações do modelo em grafos, as relações que envolvem os vértices formam uma estrutura contínua;
Problemas em Teoria dos Grafos Relatório
Problemas em Teoria dos Grafos Relatório Tiago Fassoni Alves dos Alencar Leite 15 de setembro de 2006 1 Introdução A proposta deste projeto foi estudar vários tópicos presentes no livro Combinatorial Problems
Instituto de Computação - Universidade Federal Fluminense Teoria dos Grafos - Lista de exercícios
Instituto de Computação - Universidade Federal Fluminense Teoria dos Grafos - Lista de exercícios 1 Conceitos 1. Prove o Teorema da Amizade: em qualquer festa com pelo menos seis pessoas, ou três se conhecem
Circuitos Hamiltorianos
Circuitos Hamiltorianos Vimos que o teorema de euler resolve o problema de caracterizar grafos que tenham um circuito em que cada aresta apareça exatamente uma vez. Vamos estudar aqui uma questão relacionada.
Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada.
Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada [email protected], [email protected] Grafos direcionados (Digrafos) Preparado a partir do texto:
Matemática Discreta 10
Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta 10 Prof. Jorge Cavalcanti [email protected] - www.univasf.edu.br/~jorge.cavalcanti 1 Muitas
UNIVERSIDADE FEDERAL DO RIO DE JANEIRO DEPARTAMENTO DE CIÊNCIAS DA COMPUTAÇÃO. 5 a Lista de Exercícios
UNIVERSIDADE FEDERAL DO RIO DE JANEIRO DEPARTAMENTO DE CIÊNCIAS DA COMPUTAÇÃO MATEMÁTICA COMBINATÓRIA 5 a Lista de Exercícios 1. O grafo de intersecção de uma coleção de conjuntos A 1,..., A n é o grafo
CI065 CI755 Algoritmos e Teoria dos Grafos
CI065 CI755 Algoritmos e Teoria dos Grafos Exercícios 11 de outubro de 2017 1 Fundamentos 1. Seja S = {S 1,..., S n } uma família de conjuntos. O grafo intercessão de S é o grafo G S cujo conjunto de vértices
Percursos em um grafo
Percursos em um grafo Definição Um percurso ou cadeia é uma seqüência de arestas sucessivamente adjacentes, cada uma tendo uma extremidade adjacente à anterior e a outra a subsequente (à exceção da primeira
GRAFOS: UMA INTRODUÇÃO
GRAFOS: UMA INTRODUÇÃO Vilmar Trevisan -Instituto de Matemática - UFRGS Junho de 2006 Grafos: uma introdução Informalmente, um grafo é um conjunto de pontos no plano ligados entre por flechas ou por segmentos
