Gênesis S. Araújo Pré-Cálculo
|
|
|
- Gilberto Brás Mendes
- 9 Há anos
- Visualizações:
Transcrição
1 Gênesis Soares Jaboatão, de de Estudante: PAR ORDENADO: Um par ordenado de números reais é o conjunto formado por dois números reais em determinada ordem. Os parênteses, em substituição às chaves, indicam que a ordem deve ser considerada. Dessa forma o símbolo (x, y) representa um par ordenado, em que o primeiro elemento é um número real x, chama- do abscissa, e o segundo, é um número real y denominado ordenada. Para x y, temos (x, y) (y, x). Representação de um par ordenado no plano cartesiano: Podemos representar um par ordenado através de um ponto em um plano. Esse ponto é chamado de imagem do par ordenado. Coordenadas Cartesianas: Os números do par ordenados são chamados coordenadas cartesianas. Exemplo: No par ordenado (1; 2) a abscissa é igual a 1 e a ordenada é 2; e no par ordenado (2; 1) a abscissa é 2 e a ordenada é 1. Esses dois pares ordenados são diferentes. Dois pares ordenados (x, y) e (r, s) são iguais somente se x = r e y = s. Exemplo: Denominamos de abscissa o 1º número do par ordenado, e ordenada, o 2º número desse par. Assim: Determine a e b para que se verifique a igualdade (a 1; b + 2) = (3; 4). Resolução: PLANO CARTESIANO: Geralmente representamos um par ordenado em um plano cartesiano. Esse plano é formado por duas retas, x e y, perpendiculares entre si.
2 A reta horizontal é o eixo das abscissas (eixo x). A reta vertical é o eixo das ordenadas (eixo y). O ponto comum dessas duas retas é denominado origem, que corresponde ao par ordenado (0, 0). C) (-2, -3) FUNÇÕES: Introdução: Localização de um ponto: Para localizar um ponto num plano cartesiano, utilizamos a sequencia prática: O 1º número do par ordenado deve ser localizado no eixo das abscissas. O 2º número do par ordenado deve ser localizado no eixo das ordenadas. No encontro das perpendiculares aos eixos x e y, por esses pontos, determinamos o ponto procurado. Localize os seguintes pontos no plano cartesiano abaixo: A) (4,3) B) (-1, +2) A ideia de função é de fundamental importância e de caráter unificador, praticamente, toda matemática constrói-se em torno do conceito de função. Os fenômenos da natureza não ocorrem de forma isolada, e sim em função da ocorrência de outros fenômenos. Encontramos a presença das funções nos mais variados assuntos, observe alguns exemplos: O preço a ser pago numa conta de luz depende da quantidade de energia consumida. Para cada quantidade de energia temos um único preço. O preço é função do consumo. Na tabela de preços de uma loja, a cada produto corresponde um único preço. O preço é função do produto. O número de bactérias de certa cultura se reproduz em função do tempo decorrido.
3 Podemos afirmar que o conceito básico de função é o seguinte: toda vez que temos dois conjuntos e algum tipo de associação entre eles, que faça corresponder a todo elemento do primeiro conjunto um único elemento do segundo, ocorre uma função. Observe, por exemplo, o diagrama das relações abaixo: A relação acima é uma função, pois todo elemento do conjunto A, está associado a somente um elemento do conjunto B. Definição: A relação acima não é uma função, pois existe o elemento 1 no conjunto A, que não está associado a nenhum elemento do conjunto B. Dados dois conjuntos, A e B, não vazios, denomina-se função de A em B, a uma relação f de A em B, em que cada elemento x A tem em correspondência um único elemento y B, com (x; y) pertencente à relação f. Funções são geralmente indicadas por letras minúsculas como f, g, h etc. Notação: Quando temos uma função de A em B, podemos representa-la da seguinte forma: A relação acima também não é uma função, pois existe o elemento 4 no conjunto A, que está associado a mais de um elemento do conjunto B. Agora preste atenção no próximo exemplo: f : A B (lê-se: função f de A em B) xy (lê-se: a cada valor de x A associase um só valor y B). As letras x e y são muito utilizadas para representar as variáveis de uma função, mas é claro que podemos utilizar outras letras. Seja f uma função de A em B. Se x é um elemento de A, então o único y de B associado a x denomina-se imagem de x pela função f e indica-se pela notação f(x), (lê-se f de x ). O símbolo f(x), tem o mesmo significado do y e pode simplificar a linguagem.
4 y = f(x) Resolução: O conjunto A denomina-se domínio de f, e indica-se pela notação D(f). O conjunto B denomina-se contradomínio de f, e indica-se pela notação CD(f). O conjunto formado por todos os elementos de B que são imagem de algum elemento de A chama-se conjunto imagem de f, e indica-se pela notação Im(f). Observação: O conjunto imagem de f é um subconjunto do contradomínio de f, isto é, Im(f) CD(f). Considere a função f{0; 1; 2; 3} {1;2;3;4;5;6;7;8}, definida pela sentença matemática f(x) = 2x+1. Determine: a) O domínio de f; b) O contradomínio de f; c) O conjunto imagem de f. Exemplo: Considere a função ilustrada pelo diagrama de flechas a seguir: Função real: Uma função é chamada de função real, quando o domínio e o contradomínio são subconjuntos, não vazios, do conjunto dos números reais. Determine: a) O domínio de f; b) O contradomínio de f; c) O conjunto imagem de f. PROPRIEDADES DE UMA FUNÇÃO: Função sobrejetora: Uma função f : A B é sobrejetora ou uma sobrejeção se, e somente se, o seu conjunto imagem for igual ao seu contradomínio, isto é, Im = B.
5 f é sobrejetora (não sobra elemento em B) Função bijetora: Dizemos que uma função f : A B é bijetora quando ela é injetora e sobrejetora ao mesmo tempo. Função injetora: Dizemos que uma função f : A B é injetora ou uma injeção se, e somente se, elementos distintos do domínio tiverem imagens distintas. f é bijetora(todos os elementos de B são flechados uma só vez)
6 Observação: Uma função f: A B pode não ser sobrejetora nem injetora. Exemplo: Dada a função f: R R, definida por f(x) = x² + 2x +1, determine: RAÍZES DE UMA FUNÇÃO: Dada uma função y=f(x), os valores, os valores de x para os quais f(x)=0 são chamados raízes de uma função. No gráfico cartesiano da função, as raízes são abscissas dos pontos onde o gráfico corta o eixo horizontal. FUNÇÃO CONSTANTE: Uma aplicação f de R em R recebe o nome de função constante quando a cada elemento xr associa sempre o mesmo elemento cr. Isto é: No gráfico acima temos: f(x 1 )=0, f(x 2 )=0 e f(x 3 )=0. Portanto x 1, x 2 e x 3 são raízes da função. f : R R x c O gráfico da função constante é uma reta paralela ao eixo dos x passando pelo ponto (0, c). A imagem é o conjunto Im =c. VALOR NUMÉRICO DE UMA FUNÇÃO: Para encontrar a imagem de um determinado valor do domínio, basta substituir x por esse valor na lei da função. FUNÇÃO PAR E FUNÇÃO ÍMPAR: Função Par: Seja f uma de A B para a qual se xa, então - xa. Dizemos que f é uma função par se: f(-x) =f(x), para todo xa.
7 Isto significa que valores simétricos do domínio possuem a mesma imagem. I) a função f: R R, definida por f(x) = x², é par, pois para valores simétricos de x temos f(x) = x² = (-x)² = f(-x) Observe o gráfico cartesiano desta função: Função Ímpar: Seja f uma de A B para a qual se xa, então - xa. Dizemos que f é uma função ímpar se, e somente se, f(-x) = - f(x), para todo xa. Isto significa que valores simétricos do domínio possuem também imagens simétricas. Perceba que, no gráfico, existe uma simetria em relação ao eixo vertical, isto é, para cada ponto do gráfico existe outro ponto posicionado nesse mesmo gráfico, de tal modo que ambos estão à mesma distância do eixo vertical e na mesma perpendicular a este eixo. I) a função f: R R, definida por f(x) = x³, é ímpar, pois para valores simétricos de x temos f(-x) = (-x)³ = -x³ = -f(x). Observe o gráfico cartesiano desta função: II) a função f(x) = x é uma função par, pois f(-x) = x = x =f(x) para todo xr. Observe que o gráfico cartesiano desta função é simétrico em relação ao eixo Oy: Note que, no gráfico existe uma simetria em relação à origem O, ou seja, para cada ponto do gráfico existe outro ponto no mesmo gráfico posicionado de tal modo que
8 ambos estão à mesma distância de O e alinhados com ele. II) A função f(x) = x é uma função ímpar, pois f(-x) =(-x) = - x = -f(x), para todo xr. Observe que o gráfico cartesiano desta função é simétrico em relação à origem do sistema cartesiano. COMPORTAMENTO DE FUNÇÕES: Sejam f : A B uma função numérica e I um conjunto tal que I A. Dizemos que a função f é: 1. Crescente em I se, e somente se, para dois valores quaisquer x 1 e x 2 pertencentes a I, onde x 1 x 2, tivermos f(x 1 ) f(x 2 ). Em símbolos, temos: x 1, x 2 I, x 1 x 2 f(x 1 ) f(x 2 ) Observações: 2. Decrescente em I se, e somente se, para dois valores quaisquer x 1 e x2 pertencentes a I, onde x 1 x 2, tivermos f(x 1 ) f(x 2 ). Em símbolos, temos: x 1, x 2 I, x 1 x 2 f(x 1 ) f(x 2 ) 3. Constante em I se, e somente se, para dois valores quaisquer x 1 e x 2 pertencentes a I, onde x 1 x 2, tivermos f(x 1 ) = f(x 2 ). Em símbolos, temos:
9 x 1, x 2 I, x 1 x 2 f(x 1 ) = f(x 2 ) Observe que a composta de g e f só está definida se CD(f) = D(g). Observações: I) Consideremos os conjuntos A = {-2, -1, 0, 1, 2} e B={-2, 1, 4, 7, 10} e C = {3, 0, 15, 48, 99}, e as funções f : A B definida por f(x) = 3x - 4 e g: B C definida por g(y) = y²-1. FUNÇÃO COMPOSTA: Dados três conjuntos A, B e C e as funções f:a B e g:b C, chama-se função composta de g e f à função h, se A em C, definida por h(x) = g[f(x)], para todo x A. A função h pode ser indicada por g o f (lemos: g composta com f ), portanto, podemos escrever (g o f) (x) = g[f(x)], para todo x A. Podemos visualizar essa função composta pelo esquema abaixo: Como nos mostra o diagrama acima, para todo x A temos um único y B tal que y = 3x 4, e para todo y B existe um único z C tal que z = y²-1, então concluímos que existe uma função h de A em C, definida por h(x) = z. Logo: h(x) =(3x - 4)² - 1 = (3x)²- 2.3x.4 + 4² -1 h(x) = 9x² - 24 x = 9x²- 24x A função h(x) é chamada função composta de g em f. Podemos indicá-la por g[f(x)] ou g o f.
10 II) Sejam as funções reais f e g definidas respectivamente por f(x) = x+1 e g(x) = 2x² - 3. Determine: a) f[g(x)] e g[f(x)] Consideremos os conjuntos A = {0, 2, 4, 6, 8} e B = {1, 3, 5, 7, 9} e a função f:a B definida por y = x + 1. A função f está representada no diagrama abaixo: Temos que: f[g(x)] = f(2x²-3) = 2x² = 2x²- 2 g[f(x)] = g(x+1) = 2(x+1)² - 3 = 2(x²+2x+1)-3 g[f(x)] = 2x² + 4x - 1 b) os valores de x para que se tenha f[g(x)] = g[f(x)]. f[g(x)] = g[f(x)] 2x² - 2 = 2x² + 4x 1-2 = 4x = 4x - 1 = 4x Observe que f é uma função bijetora, pois a cada elemento x de A, está associado um único elemento y de B, de modo que y = x + 1. Como f é bijetora, a cada elemento y de B está associado um único elemento x de A, de modo que x = y 1; portanto temos outra função g:b A, de modo que x = y 1 ou g(y)=y 1. Essa função está representada no diagrama abaixo: 1 x = 4 Observações: Pelo que acabamos de observar, a função f leva x até y enquanto a função g leva y até x. A função g:b A recebe o nome de função inversa de f e é indicada por f -1. Função Inversível: Dizemos que uma função f de A em B é inversível se, e somente se, a relação inversa de f, indica-se por f -1, é uma função de B em A. FUNÇÃO INVERSA: Se a função f de A em B é inversível, então a função f -1 de B em A é denominada de função inversa de f.
11 Propriedades: Observe o seguinte diagrama: Exemplo: Concluímos que: O domínio da função f -1 é a imagem da função f, isto é, D(f -1 ) = Im(f). A imagem da função f -1 é o domínio da função f, isto é, Im(f -1 ) = D(f). Propriedade geométrica da função inversa: Seja f uma função real de variável real e bijetora. Se (a, b) f, então (b, a) f -1. Representando esses pontos num sistema cartesiano, temos: A função inversa da função f -1 é a própria função f, isto é, (f -1 ) -1 = f. Determinação da função inversa: Quando queremos, a partir da sentença y = f(x), obter a sentença de f -1 (x), podemos seguir os passos abaixo: 1.º) Isolamos x na sentença y = f(x) 2.º) Pelo fato de ser usual a letra x como símbolo da variável independente, trocamos x por y e y por x. Se repetirmos o mesmo raciocínio para todos os pares ordenados de f, concluímos que: os gráficos da função f e de sua inversa f -1 são simétricos em relação à bissetriz dos quadrantes ímpares.
12 Observações:
Função Inversa. 1.Função sobrejetora 2.Função injetora 3.Função bijetora 4.Função inversa
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Função Inversa Prof.: Rogério
1 FUNÇÃO - DEFINIÇÃO. Chama-se função do 1. grau toda função definida de por f(x) = ax + b com a, b e a 0.
MATEMÁTICA ENSINO MÉDIO FUNÇÃO - DEFINIÇÃO FUNÇÃO - DEFINIÇÃO Chama-se função do 1. grau toda função definida de por f(x) = ax + b com a, b e a 0. EXEMPLOS: f(x) = 5x 3, onde a = 5 e b = 3 (função afim)
CÁLCULO I. 1 Funções. Objetivos da Aula. Aula n o 01: Funções. Denir função e conhecer os seus elementos; Reconhecer o gráco de uma função;
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 01: Funções. Objetivos da Aula Denir função e conhecer os seus elementos; Reconhecer o gráco de uma função; Denir funções compostas e inversas.
A idéia de função. O conceito de função é um dos mais importantes em toda a Matemática. https://ueedgartito.wordpress.com.
Matemática Básica Unidade 5 Estudo de Funções RANILDO LOPES Slides disponíveis no nosso SITE: O conceito de função é um dos mais importantes em toda a Matemática. https://ueedgartito.wordpress.com A idéia
FUNÇÕES. Prof.ª Adriana Massucci
FUNÇÕES Prof.ª Adriana Massucci Introdução: Muitas grandezas com as quais lidamos no nosso cotidiano dependem uma da outra, isto é, a variação de uma delas tem como consequência a variação da outra. Exemplo:
Notas de Aula Disciplina Matemática Tópico 03 Licenciatura em Matemática Osasco -2010
1. Funções : Definição Considere dois sub-conjuntos A e B do conjunto dos números reais. Uma função f: A B é uma regra que define uma relação entre os elementos de A e B, de tal forma que a cada elemento
Capítulo 3. Fig Fig. 3.2
Capítulo 3 3.1. Definição No estudo científico e na engenharia muitas vezes precisamos descrever como uma quantidade varia ou depende de outra. O termo função foi primeiramente usado por Leibniz justamente
CÁLCULO I Aula 01: Funções.
Inversa CÁLCULO I Aula 01: Funções. Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará Inversa 1 Funções e seus 2 Inversa 3 Funções Funções e seus Inversa Consideremos A e B dois
Equação de 1º Grau. ax = -b
Introdução Equação é toda sentença matemática aberta que exprime uma relação de igualdade. A palavra equação tem o prefixo equa, que em latim quer dizer "igual". Exemplos: 2x + 8 = 0 5x - 4 = 6x + 8 3a
UNIDADE III INTRODUÇÃO AO ESTUDO DE FUNÇÃO PARTE 2 de 2
UNIDADE III INTRODUÇÃO AO ESTUDO DE FUNÇÃO PARTE de 3.0. IMAGEM DE UM ELEMENTO ATRAVÉS DO DIAGRAMA DE FLECHAS 3.. IMAGEM DE UM ELEMENTO ATRAVÉS DE Y = F(X) 3.. IMAGEM DE UM ELEMENTO ATRAVÉS DO GRÁFICO
Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Cálculo Aula 1 Professor: Carlos Sérgio. Revisão de Funções
Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Cálculo - 01. Aula 1 Professor: Carlos Sérgio Revisão de Funções Sistema cartesiano ortogonal O Sistema de Coordenadas Cartesianas,
CÁLCULO I. Aula n o 02: Funções. Determinar o domínio, imagem e o gráco de uma função; Reconhecer funções pares, ímpares, crescentes e decrescentes;
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 02: Funções Objetivos da Aula Denir e reconhecer funções; Determinar o domínio, imagem e o gráco de uma função; Reconhecer funções pares,
MATEMÁTICA. Conceito de Funções. Professor : Dêner Rocha
MATEMÁTICA Conceito de Funções Professor : Dêner Rocha Monster Concursos 1 Noção de Função 1º) Dados A = {-, -1, 0, 1, } e B = {-8, -6, -4, -3, 0, 3, 6, 7} e a correspondência entre A e B dada pela fórmula
FUNÇÕES I- PRÉ-REQUISITOS PARA O ESTUDO DAS FUNÇÕES
FUNÇÕES I- PRÉ-REQUISITOS PARA O ESTUDO DAS FUNÇÕES 1- PRODUTO CARTESIANO 1.1- Par Ordenado - Ao par de números reais a e b, dispostos em uma certa ordem, denominamos par ordenado e indicamos por: (a,
E-books PCNA. Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 FUNÇÕES
E-books PCNA Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 FUNÇÕES 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 SUMÁRIO Apresentação -------------------------------------------------------2 Capítulo 3 ------------------------------------------------------
FUNÇÕES Disciplina: Lógica Aplicada Prof. Rafael Dias Ribeiro. Autoria: Prof. Denise Candal
FUNÇÕES Disciplina: Lógica Aplicada Prof. Rafael Dias Ribeiro Autoria: Prof. Denise Candal Plano Cartesiano Fixando em um plano dois eixos reais Ox e Oy, perpendiculares entre si no ponto O, podemos determinar
Matemática Complementos de Funções. Professor Marcelo Gonsalez Badin
Matemática Complementos de Funções Professor Marcelo Gonsalez Badin Paridade Função PAR f (x) é chamada FUNÇÃO PAR se f ( x) = f (x) Exemplo: f (x) = x 4 f ( x) = ( x) 4 = x 4 = f (x) O gráfico de uma
MATEMÁTICA. Função Composta e Função Inversa. Professor : Dêner Rocha. Monster Concursos 1
MATEMÁTICA Função Composta e Função Inversa Professor : Dêner Rocha Monster Concursos 1 Função Composta A função composta pode ser entendida pela determinação de uma terceira função C, formada pela junção
CÁLCULO I. Efetuar transformações no gráco de uma função. Aplicando esse teste às seguintes funções, notamos que
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 03: Funções Inversas e Compostas.Transformações no Gráco de uma Função. Objetivos da Aula Denir função bijetora e função
FUNÇÕES PROFESSOR: JARBAS
FUNÇÕES PROFESSOR: JARBAS Aplicação do conceito O conceito de função é um dos mais importantes da Matemática e ocupa lugar em destaque em vários de seus ramos, bem como em outras áreas do conhecimento.
Matemática I Capítulo 06 Propriedades das Funções
Nome: Nº Curso: Mineração Integrado Disciplina: Matemática I 1 Ano Prof. Leonardo Data: / /016 Matemática I Capítulo 06 Propriedades das Funções 6.1 Paridade das Funções 6.1.1 - Função par Dada uma função
Plano Cartesiano. Relação Binária
Plano Cartesiano O plano cartesiano ortogonal é constituído por dois eixos x e y perpendiculares entre si que se cruzam na origem. O eixo horizontal é o eixo das abscissas (eixo OX) e o eixo vertical é
FUNÇÕES. Carlos Eurico Galvão Rosa UNIVERSIDADE FEDERAL DO PARANÁ UFPR CAMPUS AVANÇADO DE JANDAIA DO SUL LICENCIATURAS UFPR JCE001 GALVÃO ROSA,C.E.
UNIVERSIDADE FEDERAL DO PARANÁ UFPR CAMPUS AVANÇADO DE JANDAIA DO SUL LICENCIATURAS Injetiva FUNÇÕES Sobrejetiva Bijetiva Carlos Eurico Galvão Rosa UFPR 1 / 33 de Injetiva Sobrejetiva Bijetiva : Dados
Em Matemática existem situações em que há necessidade de distinguir dois pares pela ordem dos elementos. Por exemplo, no sistema de equações
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Relações Prof.: Rogério Dias
ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI
ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA INTRODUÇÃO AO ESTUDO DAS FUNÇÕES NOME: N O : blog.portalpositivo.com.br/capitcar 1 FUNÇÃO IDÉIA INTUITIVA DE FUNÇÃO O conceito de função é um
APLICAÇÕES IMAGEM DIRETA - IMAGEM INVERSA. Professora: Elisandra Bär de Figueiredo
Professora: Elisandra Bär de Figueiredo APLICAÇÕES DEFINIÇÃO 1 Seja f uma relação de E em F. Dizemos que f é uma aplicação de E em F se (i) D(f) = E; (ii) dado a D(f), existe um único b F tal que (a, b)
eixo das ordenadas y eixo das abscissas Origem 1º quadrante 2º quadrante O (0, 0) x 4º quadrante 3º quadrante
PLANO CARTESIANO eixo das ordenadas y 2º quadrante 1º quadrante eixo das abscissas O (0, 0) x Origem 3º quadrante 4º quadrante y ordenado do ponto P 4 P P(3, 4) O 3 x abscissa do ponto P No caso, 3 e 4
Universidade Federal de Pelotas. Instituto de Física e Matemática Pró-reitoria de Ensino. Módulo de Funções. Aula 01. Projeto GAMA
Universidade Federal de Pelotas Instituto de Física e Matemática Pró-reitoria de Ensino Atividades de Reforço em Cálculo Módulo de Funções Aula 0 08/ Projeto GAMA Grupo de Apoio em Matemática Definição
Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 RELAÇÕES e FUNÇÕES
PAR ORDENADO... 2 PRODUTO CARTESIANO... 3 REPRESENTAÇÃO GRÁFICA... 4 RELAÇÃO... 8 DOMÍNIO E IMAGEM... 12 CONTRA-DOMÍNIO... 13 RELAÇÃO INVERSA... 17 PROPRIEDADES DA RELAÇÃO INVERSA... 18 FUNÇÕES... 22 IMAGEM
Capítulo 2. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas.
Capítulo 2 Funções Sejam A e B conjuntos não vazios. Uma função com domínio A e contradomínio B é uma regra f que a cada elemento em A associa um único elemento em B. A notação usual para uma função f
Aula 2 Função_Uma Ideia Fundamental
1 Tecnólogo em Construção de Edifícios Aula 2 Função_Uma Ideia Fundamental Professor Luciano Nóbrega 2 NOÇÃO FUNDAMENTAL DE FUNÇÃO A função é como uma máquina onde entram elementos que são transformados
Capítulo 2. f : A B. 3. A regra em (3) não define uma função de A em B porque 4 A está associado a mais de um. elemento de B.
Departamento de Matemática Disciplina MAT154 - Cálculo 1 Capítulo 2 Funções 2.1 Definição Sejam A e B conjuntos não vazios. Uma função com domínio A e contradomínio B é uma regra f que a cada elemento
Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES. FUNÇÕES Parte A
Universidade Federal do Rio Grande FURG Instituto de Matemática, Estatística e Física IMEF Edital 5 CAPES FUNÇÕES Parte A Prof. Antônio Maurício Medeiros Alves Profª Denise Maria Varella Martinez UNIDADE
Introdução às Funções
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Introdução às Funções Prof.:
Capítulo 1. Funções e grácos
Capítulo 1 Funções e grácos Denição 1. Sejam X e Y dois subconjuntos não vazios do conjunto dos números reais. Uma função de X em Y ou simplesmente uma função é uma regra, lei ou convenção que associa
Capítulo 1. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas.
Capítulo 1 Funções Sejam A e B conjuntos não vazios. Uma função com domínio A e contradomínio B é uma regra f que a cada elemento em A associa um único elemento em B. A notação usual para uma função f
Chamamos de funções numéricas aquelas cujas variáveis envolvidas são números reais. Isso é funções denidas sobre R ou uma parte de R e a valor em R.
Capítulo 2 Funções e grácos 2.1 Funções númericas Chamamos de funções numéricas aquelas cujas variáveis envolvidas são números reais. Isso é funções denidas sobre R ou uma parte de R e a valor em R. Denição
A noção intuitiva de função
Funções A noção intuitiva de função Situação 1 João vai escolher um plano de saúde entre duas opções: A e B Veja as condições dos planos: Plano A: cobra um valor fixo mensal de R$ 140,00 e R$ 20,00 por
ÁLGEBRA. Aula 4 _ Classificação das Funções Professor Luciano Nóbrega. Maria Auxiliadora
1 ÁLGEBRA Aula 4 _ Classificação das Funções Professor Luciano Nóbrega Maria Auxiliadora 2 FUNÇÃO INJETORA É quando quaisquer dois elementos diferentes do conjunto A têm imagens diferentes no conjunto
Aula 1 Revendo Funções
Tecnólogo em Análise e Desenvolvimentos de Sistemas _ TADS 1 Aula 1 Revendo Funções Professor Luciano Nóbrega 2 SONDAGEM 1 Calcule o valor das expressões abaixo. Dê as respostas de todas as formas possíveis
Notas de aula: Cálculo e Matemática Aplicados à Notas de aula: Gestão Ambiental
Notas de aula: Cálculo e Matemática Aplicados à Notas de aula: Gestão Ambiental 1 Funções Definição: Sejam A e B, dois conjuntos, A /0, B /0. Uma função definida em A com valores em B é uma lei que associa
A noção intuitiva de função
Funções A noção intuitiva de função Situação 1 João vai escolher um plano de saúde entre duas opções: A e B. Veja as condições dos planos: Plano A: cobra um valor fixo mensal de R$ 140,00 e R$ 20,00 por
MÓDULO 41. Funções II. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA
Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA MÓDULO 41 Funções II 1. (OPM) Seja f uma função de domínio dada por x x + 1 f(x) =. Determine o conjunto-imagem x + x + 1 da função.. Considere
Esboço de Plano de Aula. Conteúdo específico: O uso do software WXMaxima nas equações do 1º Grau.
Esboço de Plano de Aula Bolsista: Rafael de Oliveira. Duração: 120 minutos. Conteúdo: Equações do 1º Grau. Conteúdo específico: O uso do software WXMaxima nas equações do 1º Grau. Objetivo geral: Permitir
Função Inversa. f(x) é invertível. Assim,
Função Inversa. (Eear 07) Sabe-se que a função a) b) 4 c) 6 d) x f(x) é invertível. Assim, 5 f () é. (Espm 07) O conjunto imagem de uma função inversível é igual ao domínio de sua x inversa. Sendo f :
O ESTUDO DAS FUNÇÕES INTRODUÇÃO
O ESTUDO DAS FUNÇÕES INTRODUÇÃO DEFINIÇÃO As funções explicitam relações matemáticas especiais entre duas grandezas. As grandezas envolvidas nessas relações são conhecidas como variável dependente
Todos os exercícios sugeridos nesta apostila se referem ao volume 1.
CONCEITO DE FUNÇÃO... 2 IMAGEM DE UMA FUNÇÃO... 8 IMAGEM A PARTIR DE UM GRÁFICO... 12 DOMÍNIO DE UMA FUNÇÃO... 15 DETERMIAÇÃO DO DOMÍNIO... 15 DOMÍNIO A PARTIR DE UM GRÁFICO... 17 GRÁFICO DE UMA FUNÇÃO...
LISTA DE REVISÃO DE ÁLGEBRA 3ºANO
LISTA DE REVISÃO DE ÁLGEBRA 3ºANO. (Espcex (Aman)) Considerando a função real definida por a) 8 b) 0 c) d) e) 4 x 3, se x, x x, se x o valor de f(0) f(4) é. (Enem) Após realizar uma pesquisa de mercado,
FUNÇÃO. Exemplo: Dado os conjuntos A = { -2, -1, 0, 1, 2} e B = {0, 1, 2, 3, 4, 5} São funções de A em B as relações a) R 1 = {(x,y) AXB/ y = x + 2}
Sistemas de Informação e Tecnologia em Proc. de Dados Matemática Ms. Carlos Roberto da Silva/ Ms. Lourival Pereira Martins FUNÇÃO Definição: Dados dois conjuntos e define-se como função de em a toda relação
UFJF ICE Departamento de Matemática Cálculo I Primeira Avaliação Primeiro Semestre Letivo de /04/2014 FILA A Aluno (a): Matrícula: Turma:
UFJF ICE Departamento de Matemática Cálculo I Primeira Avaliação Primeiro Semestre Letivo de 014 6/04/014 FILA A Aluno (a): Matrícula: Turma: Instruções Gerais: 1- A prova pode ser feita a lápis, exceto
Matemática Aplicada à Informática
Matemática Aplicada à Informática Unidade 9.0 Construindo Gráfico de uma Função Curso Técnico em Informática Aline Maciel Zenker SUMÁRIO SUMÁRIO... 2 GRÁFICOS DE FUNÇÃO DE 1º GRAU... 3 1 CARACTERÍSTICAS
MATEMÁTICA 3. Professor Renato Madeira. MÓDULO 4 Função injetora, sobrejetora, bijetora, par, ímpar, crescente, decrescente, limitada e periódica
MATEMÁTICA 3 Professor Renato Madeira MÓDULO 4 Função injetora, sobrejetora, bijetora, par, ímpar, crescente, decrescente, limitada e periódica SUMÁRIO 1. Funções monotônicas (crescente ou decrescente)
REVISÃO - DESIGUALDADE, MÓDULO E FUNÇÕES
REVISÃO - DESIGUALDADE, MÓDULO E FUNÇÕES Marina Vargas R. P. Gonçalves a a Departamento de Matemática, Universidade Federal do Paraná, [email protected], http:// www.estruturas.ufpr.br 1 REVISÃO
3º Bimestre. Álgebra. Autor: Leonardo Werneck
3º Bimestre Autor: Leonardo Werneck SUMÁRIO CAPÍTULO 01 RELAÇÕES E FUNÇÕES... 6 1. O Plano Cartesiano... 6 2. Produto Cartesiano... 7 2.1. Gráfico de um Produto Cartesiano... 8 2.2. O produto ℝ ℝ ou ℝ𝟐...
4. AS FUNÇÕES EXPONENCIAL E LOGARÍTMICA
43 4. AS FUNÇÕES EXPONENCIAL E LOGARÍTMICA 4.1. A FUNÇÃO EXPONENCIAL Vimos no capítulo anterior que dado a R +, a potência a pode ser definida para qualquer número R. Portanto, fiando a R +, podemos definir
Capítulo 2. Funções. 2.1 Funções
Capítulo Funções Ao final deste capítulo você deverá: Recordar o conceito de função, domínio e imagem; Enunciar e praticar as operações com funções; Identificar as funções elementares, calcular função
Unidade 2 Conceito de Funções
Unidade 2 Conceito de Funções Conceito Sistema Cartesiano Ortogonal Estudo do domínio, contradomínio e imagem de função Representações de funções por meio de tabelas, gráficos e fórmulas Conceito de Função
1º) Esboce o gráfico das funções, calcule e marque os interceptos: a) f(x) = x b) f(x) = - 3x + 2
1º) Esboce o gráfico das funções, calcule e marque os interceptos: a) f() = b) f() = - 3 + 2 (0,0) (0,2) no eio (,0) no eio c) f() = + 3 d) f() = 2-3 (0,3) no (0,-3) no (-3,0) no (1,5;0) no 2º) Determine
Unidade 3. Funções de uma variável
Unidade 3 Funções de uma variável Funções Um dos conceitos mais importantes da matemática é o conceito de unção. Em muitas situações práticas, o valor de uma quantidade pode depender do valor de uma segunda.
MATEMÁTICA Prof.: Alexsandro de Sousa
E. E. DONA ANTÔNIA VALADARES MATEMÁTICA Prof.: Alexsandro de Sousa Introdução ao conceito de funções FERNANDO FAVORETTO/CID A ideia de função no cotidiano Relação entre duas grandezas Quantidade de pães
Lista 6 - Bases Matemáticas
Lista 6 - Bases Matemáticas Funções - Parte 1 Conceitos Básicos e Generalidades 1 Sejam dados A e B conjuntos não vazios. a) Defina rigorosamente o conceito de função de A em B. b) Defina rigorosamente
ÁLGEBRA. Aula 4 _ Classificação das Funções Professor Luciano Nóbrega. Maria Auxiliadora
1 ÁLGEBRA Aula 4 _ Classificação das Funções Professor Luciano Nóbrega Maria Auxiliadora 2 FUNÇÃO INJETORA É quando quaisquer dois elementos diferentes do conjunto A têm imagens diferentes no conjunto
Função. Definição formal: Considere dois conjuntos: o conjunto X com elementos x e o conjunto Y com elementos y. Isto é:
Função Toda vez que temos dois conjuntos e algum tipo de associação entre eles, que faça corresponder a todo elemento do primeiro conjunto um único elemento do segundo, ocorre uma função. Definição formal:
CÁLCULO I. Aula n o 02: Funções. Denir função e conhecer os seus elementos; Listar as principais funções e seus grácos.
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 02: Funções. Objetivos da Aula Denir função e conhecer os seus elementos; Reconhecer o gráco de uma função; Listar as
EXERCÍCIOS 2006 APOSTILA MATEMÁTICA
EXERCÍCIOS 2006 APOSTILA MATEMÁTICA Professor: LUIZ ANTÔNIO 1 >>>>>>>>>> PROGRESSÃO ARITMÉTICA P. A.
AXB = {(x, y) x A e y B}
CENTRO UNIVERSITÁRIO DO NORTE PAULISTA LÓGICA E MATEMÁTICA DISCRETA 2010 1 Produto Cartesiano Par ordenado: são dois elementos em uma ordem fixa, (x,y) Produto Cartesiano: Dados dois conjuntos A e B, não
Notas de aulas. álgebra abstrata
1 Notas de aulas de álgebra abstrata UEMA LICENCIATURA EM MATEMATICA Elaborada por : Raimundo Merval Morais Gonçalves Licenciado em Matemática/UFMA Professor Assistente/UEMA Especialista em Ensino de Ciências/UEMA
Observamos então que as aplicações de plano cartesiano, produto cartesiano, relações e funções estão presentes no nosso cotidiano.
Relações e Funções Ao lermos um jornal ou uma revista, diariamente nos deparamos com gráficos, tabelas e ilustrações. Estes, são instrumentos muito utilizados nos meios de comunicação. Um texto com ilustrações,
Matemática Básica Relações / Funções
Matemática Básica Relações / Funções 04 1. Relações (a) Produto cartesiano Dados dois conjuntos A e B, não vazios, denomina-se produto cartesiano de A por B ao conjunto A B cujos elementos são todos os
LTDA APES PROF. RANILDO LOPES SITE:
Matemática Aplicada - https://ranildolopes.wordpress.com/ - Prof. Ranildo Lopes - FACET 1 Faculdade de Ciências e Tecnologia de Teresina Associação Piauiense de Ensino Superior LTDA APES PROF. RANILDO
É um sistema formado por dois eixos, x e y, perpendiculares entre si. Origem. Continua
RELAÇÕES É um sistema formado por dois eixos, x e y, perpendiculares entre si. Origem Continua Continuação O eixo x é denominado eixo das abscissas e o eixo y é o eixo das ordenadas. Esses eixos dividem
Aula 04 Funções. Professor Marcel Merlin dos Santos Página 1
PARIDADE Define-se como paridade o estudo das características do que é igual ou semelhante, ou seja, é uma comparação para provar que uma coisa pode ser igual ou semelhante à outra. Função Par Define-se
Relações. Relações. {1, 2} = {2, 1}, {3, -1} = {-1, 3}, {a, b} = {b, a}.
UNIVERSIDDE DO ESTDO DE MTO GROSSO CMPUS UNIVERSITÁRIO DE SINOP FCULDDE DE CIÊNCIS EXTS E TECNOLÓGICS CURSO DE ENGENHRI CIVIL DISCIPLIN: FUNDMENTOS DE MTEMÁTIC Relações. Par ordenado Em Matemática eistem
CÁLCULO I. Reconhecer, através do gráco, a função que ele representa; (f + g)(x) = f(x) + g(x). (fg)(x) = f(x) g(x). f g
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 03: Operações com funções. Funções Polinominais, Racionais e Trigonométricas Objetivos da Aula Denir operações com funções; Apresentar algumas
Só Matemática O seu portal matemático http://www.somatematica.com.br FUNÇÕES
FUNÇÕES O conceito de função é um dos mais importantes em toda a matemática. O conceito básico de função é o seguinte: toda vez que temos dois conjuntos e algum tipo de associação entre eles, que faça
ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI
ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA INTRODUÇÃO AO ESTUDO DAS FUNÇÕES NOME: N O : blog.portalpositivo.com.br/capitcar 1 FUNÇÃO IDÉIA INTUITIVA DE FUNÇÃO O conceito de função é um
Capítulo 1. Conjuntos e Relações. 1.1 Noção intuitiva de conjuntos. Notação dos conjuntos
Conjuntos e Relações Capítulo Neste capítulo você deverá: Identificar e escrever os tipos de conjuntos, tais como, conjunto vazio, unitário, finito, infinito, os conjuntos numéricos, a reta numérica e
Referenciais Cartesianos
Referenciais Cartesianos René Descartes (1596-1650) Filósofo e Matemático Francês. Do seu trabalho enquanto Matemático, destaca-se o estabelecimento da relação entre a Álgebra e a Geometria. Nasceu assim
MATEMÁTICA I FUNÇÕES REAIS DE UMA VARIÁVEL REAL MATEMÁTICA I - PROF. EDÉZIO 1
MATEMÁTICA I FUNÇÕES REAIS DE UMA VARIÁVEL REAL MATEMÁTICA I - PROF. EDÉZIO 1 EMENTA Funções Reais de uma Variável Real Principais Funções Elementares e suas Aplicações Matrizes Livro Teto: Leithold, Louis.
Capítulo 2- Funções. Dado dois conjuntos não vazios e e uma lei que associa a cada elemento de um único elemento de, dizemos que é uma função de em.
Conceitos Capítulo 2- Funções O termo função foi primeiramente usado para denotar a dependência entre uma quantidade e outra. A função é usualmente denotada por uma única letra,,,... Definição: Dado dois
PLANO DE AULA. Objetivos Específicos: Apresentar atividades que utilizam padrões (figuras) em que os estudantes deverão encontrar a lei para resolver.
PLANO DE AULA PIBID- Subprojeto Matemática Campus: Caçapava do Sul Bolsistas: Valéria Perceval Conceitos/Conteúdos: Funções Objetivos geral: Introduzirr o conceito de funções; Objetivos Específicos: Apresentar
Funções. Pré-Cálculo. O que é uma função? O que é uma função? Humberto José Bortolossi. Parte 2. Definição
Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Funções Parte 2 Parte 2 Pré-Cálculo 1 Parte 2 Pré-Cálculo 2 O que é uma função? O que é uma função?
Notas de Aula Disciplina Matemática Tópico 05 Licenciatura em Matemática Osasco -2010
1. Função Afim Uma função f: R R definida por uma expressão do tipo f x = a. x + b com a e b números reais constantes é denominada função afim ou função polinomial do primeiro grau. A função afim está
A ordem em que os elementos se apresentam em um conjunto não é levada em consideração. Há
1 Produto Cartesiano Par Ordenado A ordem em que os elementos se apresentam em um conjunto não é levada em consideração. Há casos entretanto em que a ordem é importante. Daí a necessidade de se introduzir
O gráfico da função constante é uma reta paralela ao eixo dos x passando pelo ponto (0, c). A imagem é o conjunto Im = {c}.
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Funções do 1 o Grau Prof.:
Lista de Exercícios 01
OBS: O exercícios marcados com "*" devem ser entregues na aula seguinte Conjunto: representa uma coleção de objetos. Elemento: é um dos componentes de um conjunto. Lista de Exercícios 01 Pertinência: é
CURSO ALCANCE UFPR Matemática 13/08/2016 Página 1 de 6
CURSO ALCANCE UFPR Matemática 13/08/2016 Página 1 de 6 Introdução à funções Uma função é determinada por dois conjuntos e uma regra de associação entre os elementos destes conjuntos. Os conjuntos são chamados
ALUNO(A): Prof.: André Luiz Acesse: 02/05/2012
1. FUNÇÃO 1.1. DEFINIÇÃO Uma função é um conjunto de pares ordenados de números (x,y) no qual duas duplas ordenadas distintas não podem ter o mesmo primeiro número, ou seja, garante que y seja único para
Revisão de Função. Inversa e Composta. Professor Gaspar. f : 1,,3, f(x) x 2x 2 e. g(x) x 2x 4. Para qual valor de x tem f(g(x)) g(f(x))? g(x) 2x.
Revisão de Função. (Espcex (Aman) 05) Considere a função bijetora f :,,, definida por f(x) x x e seja (a,b) o ponto de intersecção de f com sua inversa. O valor numérico da expressão a b é a). b) 4. c)
