Matemática Complementos de Funções. Professor Marcelo Gonsalez Badin
|
|
|
- Ana Sofia Giovanna Oliveira Canedo
- 8 Há anos
- Visualizações:
Transcrição
1 Matemática Complementos de Funções Professor Marcelo Gonsalez Badin
2 Paridade Função PAR f (x) é chamada FUNÇÃO PAR se f ( x) = f (x) Exemplo: f (x) = x 4 f ( x) = ( x) 4 = x 4 = f (x) O gráfico de uma função par é simétrico em relação ao eixo y
3 Paridade Função ÍMPAR f (x) é chamada FUNÇÃO ÍMPAR se f ( x) = f (x) Exemplo: f (x) = senx f ( x) = sen( x) = senx = f (x) O gráfico de uma função ímpar é simétrico em relação à origem
4 f (x) = x 2 f (x) = x 3 Gráfico simétrico em relação ao eixo das ordenadas (eixo y) Gráfico simétrico em relação à origem (ponto (0; 0))
5 Classifique as funções a seguir em ( I ) Par ( II ) Ímpar ( III ) Nem par nem ímpar a) f (x) = x 3 f ( x) =( x) 3 = x 3 = f (x) f ( x) = f (x) Logo, f (x) é ímpar Classificação ( II ) c) f (x) = x 2 5x b) f (x) = cosx f ( x) = cos( x) = cosx = f (x) f ( x) = f (x) f (x) é par Classificação ( I ) d) f (x) = x 4 + 7x 2 f ( x) =( x) 2 5( x) f ( x) f ( x) e f ( x) f ( x) f (x) não tem paridade Classificação ( III ) = x 2 + 5x f ( x) =( x) 4 + 7( x) 2 = x 4 + 7x 2 f ( x) = f (x) f (x) é par Classificação ( I )
6 Função Composta É apenas uma notação: f Og(x) significa f (g(x)), isto é: f Og(x) = f (g(x)) Por exemplo: Sendo f (x) = 2x+1 e g(x) = x 2, temos: f Og(2) = f (g(2)) = f (4) = = 9 gof (2) = g(f (2)) = g(5) = 5 2 = 25
7 Sendo f (x) = 2x+1 e g(x) = x 2 f Og(x) = f (g(x)) = f (x 2 ) = 2x 2 +1 gof (x) = g(f (x)) = g(2x+1)= (2x+1) 2 = 4x 2 +4x+1 Em geral, f Og gof f g gof
8 h g f f OgOh
9 f (x) = 2x+1 f Of (x) f Of (x) = f (f (x)) = f (2x + 1) = 2(2x + 1) + 1 = 4x + 3 f Of Of (x) f Of Of (x) = f(f(f(x))) = f (4x + 3)= 2(4x + 3)+1= 8x + 7
10 1. Sendo f (x) = 3x +1 e g(x) = x 2 + 2x, obtenha: a) f Og(3) f Og(3) = f (g(3)) = f (15) = 46 b) gof (3) gof (3) = g(f (3)) = g(10) = 120 c) f Og(x) f Og(x) = f (g(x)) = f (x 2 +2x) = 3(x 2 + 2x) + 1 = 3x 2 + 6x + 1 d) gof (x) gof (x) = g(f (x)) = g(3x+1) = (3x + 1) 2 +2(3x + 1) = 9x x + 3 e) f Of (x) f Of(x) = f (f (x)) = f (3x + 1) = 3(3x + 1) + 1 = 9x + 4
11 2.(Unifor-CE) Sejam f e g funções de IR em IR definidas por f (x) = kx + 3 e g(x) = 2x. Se f (g( 3)) = 9, então a função gof é definida por: a) 4x + 3 f (g( 3)) = 9 b) 4x 3 f ( 6) = 9 c) 4x + 9 d) 4x 6 k( 6) + 3 = 9 e) 4x + 6 6k = 12 k = 2 \ f (x) = 2x + 3 gof = g(f (x)) = g(2x + 3) = 2(2x + 3) = 4x + 6
12 Função Domínio f : A B A f Contradomínio B Imagem A Função Injetora x x f ( x ) f ( x ) f : A B f B Im Função Sobrejetora Contradomínio = Imagem A f : A B f B Im Toda função estritamente crescente ou estritamente decrescente é injetora A Função Bijetora Injetora e Sobrejetora f : A B f B Im Qualquer função pode ser sobrejetora, basta restringir o contradomínio
13 Função Injetora Elementos distintos do domínio possuem imagens distintas x x f ( x ) f ( x ) Função Sobrejetora Contradomínio = Imagem Função Bijetora É simultaneamente Injetora e Sobrejetora f: {x/x é aluno desta sala} {y/y é carteira desta sala} f associa cada aluno a uma carteira desta sala f: {x/x é aluno desta sala} {y/y é um mês do ano} f associa cada aluno ao mês de seu aniversário f: {x/x é aluno desta sala} {y/y é um dia do ano} f associa cada aluno ao dia de seu aniversário
14 Função A f : A B f B Im A Função Injetora x x f ( x ) f ( x ) f : A B f B Im É função de A em B Não é função de B em A Função Sobrejetora Contradomínio = Imagem A f : A B f B Im É função de A em B Não é função de B em A Função Bijetora Injetora e Sobrejetora f : A B A f B Im É função de A em B Não é função de B em A É função de A em B É função de B em A
15 Dada uma Função Bijetora f (x), a função que faz a volta é chamada função inversa de f (x) e denotada por f 1 (x) 1 f : A B f : B A A f B É função de A em B É função de B em A f 1 Toda função do 1º grau é bijetora de IR em IR. Assim, toda função do 1º grau admite inversa.
16 3. A função inversa de f (x) = 5x + 13 é: 1 1 a) f ( x) = 5x b) f ( x) = 5x 13 1 x 13 c) f ( x) = 5 1 x 5 d) f ( x) = 13 e f x x 1 ) ( ) = f 23 I ) Isolar o x: y = 5x x = y 13 y 13 x = 5 II ) Trocar y por x e x por y x 13 y = 5 O novo y é f 1 (x) 1 x 13 f ( x) = 5 Se f (a) = b Então f 1 (b) = a f 1
17 Se f (x) = 5x + 13 f O f 1 (x) = Então f ( f 1 (x)) = f f x 1 x 13 ( x) = f O f 1 (x) = f 1 O f (x) = x f 1 x 13 = f = x f Of 1
18 4. Considere a função f (x) = 2x 1. a) Obtenha f 1 (x) y = 2x 1 2x = y + 1 y + 1 x = 2 1 x + 1 f ( x) = 2
19 b) Faça, num mesmo plano cartesiano, os gráficos das funções f (x) e f 1 (x). f (x) = 2x 1 x y = 2x (0; 1) ½ 0 ( ½; 0) y f f 1 f 1 x + 1 ( x) = 2 x + 1 x y = 2 0 ½ (0; ½) 1 0 ( 1; 0) 1 ½ 1 ½ x
20 Observe que os gráficos de f e f 1 são simétricos em relação à reta y = x (bissetriz dos quadrantes ímpares)
21 1 5. Considere a função bijetora f : IR 3 7 2x definida por f ( x) = 3x 1. Determine f 1 (x) 7 2x y = 3x 1 y(3x 1) = 7 2x 2 IR 3 Observe que o domínio da função f é igual a imagem da função inversa f 1 e vice-versa 3yx y = 7 2x 3yx + 2x = 7 + y x(3y + 2) = 7 + y 7 + y x = 3y f : A B f : B A f ( x) = x 3x
22 f : IR IR f (x) = x 2 y f : IR IR + f (x) = x 2 y x x Im = IR + Nem injetora nem sobrejetora Não admite inversa Im = IR + Somente sobrejetora Não admite inversa
23 f : IR + f (x) = x 2 y IR f : IR + IR + f (x) = x 2 y x x Im = IR + Somente injetora Não admite inversa Im = IR + Bijetora Admite inversa
24 f : IR + IR + f (x) = x 2 y = x 2 y = x 2 y = x x = ± y Como x 0 y = x x = y f 1 ( x) = x
25 Dada a função composta f(g(x)) e uma das funções (f ou g) determinar a outra função. Versão mais fácil: São dadas a composta e a de fora, determinar a de dentro. Exemplo: Sendo f(x) = 2x + 3 e f(g(x)) = 4x 2 6x + 5 determine g(x) f(g(x)) = 4x 2 6x + 5 2g(x) + 3 = 4x 2 6x + 5 2g(x) = 4x 2 6x + 2 g(x) = 2x 2 3x + 1
26 Versão mais difícil: São dadas a composta e a de dentro, determinar a de fora. Lembrando... Sendo f(x + 3) = x 2 3x então f(7) é igual a: a) 28 b) 18 c) 10 d) 4 e) 0 x + 3 = 7 x = 4 f(4 + 3) = f (7) = 4 Sendo f(g(x)) = x 2 3x e g(x) = x + 3, determine f(x) f(g(x)) = x 2 3x f(t) = (t 3) 2 3(t 3) f(x + 3) = x 2 3x f(t) = t 2 6t + 9 3t + 9 x + 3 = t x = t 3 f(t) = t 2 9t + 18 Observações: f(x) = x 2 9x + 18 I. Ao determinar f(t) encontramos f de uma letra sozinha, e essa letra pode ser qualquer uma, inclusive x II. Se depois de obter f(t) você substituir t por x + 3 voltará ao início III. f(t) = t 2 9t + 18 fi f(7) = = 4
27 (Mack) No esquema a seguir, f e g são funções, respectivamente, c) g(x) = 3x + 2 x d) f(x) = 8x + 6 de A em B e de B em C. Então: a) g(x) = 6x + 5 b) f(x) = 6x + 5 A f B 2x + 1 g C 6x + 5 g(x) =? e) g(x) = (x 1) 2 f(x) = 2x + 1 g(2x + 1) = 6x + 5 t 1 2x + 1 = t x = 2 g(2x + 1) = 6x + 5 t 1 g(t) = g(t) = 3(t 1) + 5 g(t) = 3t + 2 g(x) = 3x + 2
28 Sendo f(g(x)) = 3x + 5 e g(x) = 2x 7, determine f(x) f(g(x)) = 3x + 5 t + 7 f(t) = f(2x 7) = 3x t + 7 2x 7 = t x = 2 f(t) = 3t t = 2 2 3t + 31 f (t) = 2 3x + 11 f (x) = 2
FUNÇÕES. Prof.ª Adriana Massucci
FUNÇÕES Prof.ª Adriana Massucci Introdução: Muitas grandezas com as quais lidamos no nosso cotidiano dependem uma da outra, isto é, a variação de uma delas tem como consequência a variação da outra. Exemplo:
Gênesis S. Araújo Pré-Cálculo
Gênesis Soares Jaboatão, de de 2016. Estudante: PAR ORDENADO: Um par ordenado de números reais é o conjunto formado por dois números reais em determinada ordem. Os parênteses, em substituição às chaves,
MATEMÁTICA. Função Composta e Função Inversa. Professor : Dêner Rocha. Monster Concursos 1
MATEMÁTICA Função Composta e Função Inversa Professor : Dêner Rocha Monster Concursos 1 Função Composta A função composta pode ser entendida pela determinação de uma terceira função C, formada pela junção
1 FUNÇÃO - DEFINIÇÃO. Chama-se função do 1. grau toda função definida de por f(x) = ax + b com a, b e a 0.
MATEMÁTICA ENSINO MÉDIO FUNÇÃO - DEFINIÇÃO FUNÇÃO - DEFINIÇÃO Chama-se função do 1. grau toda função definida de por f(x) = ax + b com a, b e a 0. EXEMPLOS: f(x) = 5x 3, onde a = 5 e b = 3 (função afim)
Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Módulo I: Cálculo Diferencial e Integral Fundamentos e tópicos de revisão
Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo Módulo I: Cálculo Diferencial e Integral Fundamentos e tópicos de revisão Professora Renata Alcarde Sermarini Notas de aula do professor
{ } { } { } { } { } Professor: Erivaldo. Função Composta SUPERSEMI. 01)(Aman 2013) Sejam as funções reais ( ) 2
Centro de Estudos Matemáticos Florianópolis Professor: Erivaldo Santa Catarina Função Composta SUPERSEMI 01)(Aman 013) Sejam as funções reais ( ) f x = x + 4x e gx ( ) = x 1. O domínio da função f(g(x))
CÁLCULO I. Efetuar transformações no gráco de uma função. Aplicando esse teste às seguintes funções, notamos que
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 03: Funções Inversas e Compostas.Transformações no Gráco de uma Função. Objetivos da Aula Denir função bijetora e função
MÓDULO 41. Funções II. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA
Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA MÓDULO 41 Funções II 1. (OPM) Seja f uma função de domínio dada por x x + 1 f(x) =. Determine o conjunto-imagem x + x + 1 da função.. Considere
A idéia de função. O conceito de função é um dos mais importantes em toda a Matemática. https://ueedgartito.wordpress.com.
Matemática Básica Unidade 5 Estudo de Funções RANILDO LOPES Slides disponíveis no nosso SITE: O conceito de função é um dos mais importantes em toda a Matemática. https://ueedgartito.wordpress.com A idéia
Notas de aula: Cálculo e Matemática Aplicados à Notas de aula: Gestão Ambiental
Notas de aula: Cálculo e Matemática Aplicados à Notas de aula: Gestão Ambiental 1 Funções Definição: Sejam A e B, dois conjuntos, A /0, B /0. Uma função definida em A com valores em B é uma lei que associa
CÁLCULO I. Aula n o 02: Funções. Determinar o domínio, imagem e o gráco de uma função; Reconhecer funções pares, ímpares, crescentes e decrescentes;
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 02: Funções Objetivos da Aula Denir e reconhecer funções; Determinar o domínio, imagem e o gráco de uma função; Reconhecer funções pares,
CÁLCULO I. 1 Funções. Objetivos da Aula. Aula n o 01: Funções. Denir função e conhecer os seus elementos; Reconhecer o gráco de uma função;
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 01: Funções. Objetivos da Aula Denir função e conhecer os seus elementos; Reconhecer o gráco de uma função; Denir funções compostas e inversas.
MATEMÁTICA 3. Professor Renato Madeira. MÓDULO 4 Função injetora, sobrejetora, bijetora, par, ímpar, crescente, decrescente, limitada e periódica
MATEMÁTICA 3 Professor Renato Madeira MÓDULO 4 Função injetora, sobrejetora, bijetora, par, ímpar, crescente, decrescente, limitada e periódica SUMÁRIO 1. Funções monotônicas (crescente ou decrescente)
UFJF ICE Departamento de Matemática Cálculo I Primeira Avaliação Primeiro Semestre Letivo de /04/2014 FILA A Aluno (a): Matrícula: Turma:
UFJF ICE Departamento de Matemática Cálculo I Primeira Avaliação Primeiro Semestre Letivo de 014 6/04/014 FILA A Aluno (a): Matrícula: Turma: Instruções Gerais: 1- A prova pode ser feita a lápis, exceto
Aula 2 Função_Uma Ideia Fundamental
1 Tecnólogo em Construção de Edifícios Aula 2 Função_Uma Ideia Fundamental Professor Luciano Nóbrega 2 NOÇÃO FUNDAMENTAL DE FUNÇÃO A função é como uma máquina onde entram elementos que são transformados
1. Resolva a desigualdade e exprima a solução em termos de intervalos, quando possível. (f) x + 3 < 0, 01. (g) 3x 7 5.
Lista de Exercícios de Cálculo I - Funções de uma variável Real 1. Resolva a desigualdade e exprima a solução em termos de intervalos, quando possível. (a) 2x + 5 < 3x 7 3 2x 3 5 7 (c) x 2 x 6 < 0 (d)
Lista 6 - Bases Matemáticas
Lista 6 - Bases Matemáticas Funções - Parte 1 Conceitos Básicos e Generalidades 1 Sejam dados A e B conjuntos não vazios. a) Defina rigorosamente o conceito de função de A em B. b) Defina rigorosamente
FUNÇÕES Disciplina: Lógica Aplicada Prof. Rafael Dias Ribeiro. Autoria: Prof. Denise Candal
FUNÇÕES Disciplina: Lógica Aplicada Prof. Rafael Dias Ribeiro Autoria: Prof. Denise Candal Plano Cartesiano Fixando em um plano dois eixos reais Ox e Oy, perpendiculares entre si no ponto O, podemos determinar
Função Inversa. f(x) é invertível. Assim,
Função Inversa. (Eear 07) Sabe-se que a função a) b) 4 c) 6 d) x f(x) é invertível. Assim, 5 f () é. (Espm 07) O conjunto imagem de uma função inversível é igual ao domínio de sua x inversa. Sendo f :
Aula 1 Revendo Funções
Tecnólogo em Análise e Desenvolvimentos de Sistemas _ TADS 1 Aula 1 Revendo Funções Professor Luciano Nóbrega 2 SONDAGEM 1 Calcule o valor das expressões abaixo. Dê as respostas de todas as formas possíveis
CÁLCULO I Aula 01: Funções.
Inversa CÁLCULO I Aula 01: Funções. Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará Inversa 1 Funções e seus 2 Inversa 3 Funções Funções e seus Inversa Consideremos A e B dois
O ESTUDO DAS FUNÇÕES INTRODUÇÃO
O ESTUDO DAS FUNÇÕES INTRODUÇÃO DEFINIÇÃO As funções explicitam relações matemáticas especiais entre duas grandezas. As grandezas envolvidas nessas relações são conhecidas como variável dependente
Funções de duas (ou mais)
Lista 5 - CDI II Funções de duas (ou mais) variáveis. Seja f(x, y) = x+y x y, calcular: f( 3, 4) f( 2, 3 ) f(x +, y ) f( x, y) f(x, y) 2. Seja g(x, y) = x 2 y, obter: g(3, 5) g( 4, 9) g(x + 2, 4x + 4)
ÁLGEBRA. Aula 4 _ Classificação das Funções Professor Luciano Nóbrega. Maria Auxiliadora
1 ÁLGEBRA Aula 4 _ Classificação das Funções Professor Luciano Nóbrega Maria Auxiliadora 2 FUNÇÃO INJETORA É quando quaisquer dois elementos diferentes do conjunto A têm imagens diferentes no conjunto
Unidade 2 Funções Trigonométricas Inversas. Introdução Função Arco Seno Função Arco Cosseno Função Arco Tangente
Unidade 2 Funções Trigonométricas Inversas Introdução Função Arco Seno Função Arco Cosseno Função Arco Tangente Introdução Imagine que dois barcos saiam de um mesmo porto, simultaneamente e em linha reta,
Capítulo 3. Fig Fig. 3.2
Capítulo 3 3.1. Definição No estudo científico e na engenharia muitas vezes precisamos descrever como uma quantidade varia ou depende de outra. O termo função foi primeiramente usado por Leibniz justamente
Representação no Plano Cartesiano INTRODUÇÃO A FUNÇÃO
INTRODUÇÃO A FUNÇÃO Def: Dado dois conjuntos que tenham uma relação, chama-se função quando todo elemento do primeiro tiver associado um único elemento do segundo conjunto. Ou seja, f é função de A em
CÁLCULO I. Gabarito - Lista Semanal 01. Questão 1. Esboce as seguintes regiões, no plano xy:
CÁLCULO I Prof. Marcel Bertolini Prof. Tiago Coelho Gabarito - Lista Semanal 01 Questão 1. Esboce as seguintes regiões, no plano xy: a) R = {x, y) y x} Solução: Note que a região R representa o conjunto
Matemática Discreta Parte 11
Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta Parte 11 Prof. Jorge Cavalcanti [email protected] - www.univasf.edu.br/~jorge.cavalcanti
- Cálculo 1: Lista de exercícios 1 -
- Cálculo : Lista de exercícios - UFOP - Professora Jussara Moreira. Resolver as inequações: (a) x(x ) > 0 {x R/x < 0 ou x > }; (b) (x )(x + ) < 0 {x R/ < x < }; (c) x x {x R/x ou x }; x (x ) 0 {x R/x
1) Sejam as funções f e g de R em R tais que f(x) = 2 x + 1 e f(g(x)) = 2 x - 9, o valor de g(- 2) é igual a:
COLÉGIO PEDRO II UNIDADE ESCOLAR SÃO CRISTÓVÃO III NOTA: PROFESSORES: Eduardo/ Vicente DATA: NOME: Nº: NOME: Nº: NOME: N : NOME: N : TURMA: GRUPO I: Alunos 1 ; 2 ; 3 ; 4. 1) Sejam as funções f e g de R
EXERCÍCIOS REVISIONAIS SOBRE FUNÇÕES - 1ª PARTE
QUESTÃO 1: Sabendo-se que o diagrama a seguir representa uma função f de A em B, responda: A) Qual é o domínio da função f?? B) Qual é o contradomínio da função f? C) Qual é o conjunto imagem da função
Função Inversa. 1.Função sobrejetora 2.Função injetora 3.Função bijetora 4.Função inversa
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Função Inversa Prof.: Rogério
Aula 13 mtm B TRIGONOMETRIA
Aula 13 mtm B TRIGONOMETRIA Definição Função Seno: f(x) = a ± b.sen(mx + n) Função Cosseno: f(x) = a ± b.cos(mx + n) a - Parâmetro aditivo da função. b - Parâmetro multiplicativo da função. m Parâmetro
FUNÇÃO. Exemplo: Dado os conjuntos A = { -2, -1, 0, 1, 2} e B = {0, 1, 2, 3, 4, 5} São funções de A em B as relações a) R 1 = {(x,y) AXB/ y = x + 2}
Sistemas de Informação e Tecnologia em Proc. de Dados Matemática Ms. Carlos Roberto da Silva/ Ms. Lourival Pereira Martins FUNÇÃO Definição: Dados dois conjuntos e define-se como função de em a toda relação
FUNÇÕES. Carlos Eurico Galvão Rosa UNIVERSIDADE FEDERAL DO PARANÁ UFPR CAMPUS AVANÇADO DE JANDAIA DO SUL LICENCIATURAS UFPR JCE001 GALVÃO ROSA,C.E.
UNIVERSIDADE FEDERAL DO PARANÁ UFPR CAMPUS AVANÇADO DE JANDAIA DO SUL LICENCIATURAS Injetiva FUNÇÕES Sobrejetiva Bijetiva Carlos Eurico Galvão Rosa UFPR 1 / 33 de Injetiva Sobrejetiva Bijetiva : Dados
ÁLGEBRA. Aula 4 _ Classificação das Funções Professor Luciano Nóbrega. Maria Auxiliadora
1 ÁLGEBRA Aula 4 _ Classificação das Funções Professor Luciano Nóbrega Maria Auxiliadora 2 FUNÇÃO INJETORA É quando quaisquer dois elementos diferentes do conjunto A têm imagens diferentes no conjunto
Universidade Federal de Pelotas. Instituto de Física e Matemática Pró-reitoria de Ensino. Módulo de Funções. Aula 01. Projeto GAMA
Universidade Federal de Pelotas Instituto de Física e Matemática Pró-reitoria de Ensino Atividades de Reforço em Cálculo Módulo de Funções Aula 0 08/ Projeto GAMA Grupo de Apoio em Matemática Definição
Revisão de Função. Inversa e Composta. Professor Gaspar. f : 1,,3, f(x) x 2x 2 e. g(x) x 2x 4. Para qual valor de x tem f(g(x)) g(f(x))? g(x) 2x.
Revisão de Função. (Espcex (Aman) 05) Considere a função bijetora f :,,, definida por f(x) x x e seja (a,b) o ponto de intersecção de f com sua inversa. O valor numérico da expressão a b é a). b) 4. c)
3º Bimestre. Álgebra. Autor: Leonardo Werneck
3º Bimestre Autor: Leonardo Werneck SUMÁRIO CAPÍTULO 01 RELAÇÕES E FUNÇÕES... 6 1. O Plano Cartesiano... 6 2. Produto Cartesiano... 7 2.1. Gráfico de um Produto Cartesiano... 8 2.2. O produto ℝ ℝ ou ℝ𝟐...
FUNÇÕES. a < 0. a = 0. a > 0. b < 0 b = 0 b > 0
FUNÇÕES As principais definições, teorias e propriedades sobre funções podem ser encontradas em seu livro-teto (Guidorizzi, vol1, Stewart vol1...); Assim, não vamos aqui nos alongar na teoria que pode
Para mais exemplos veja o vídeo:
Resumo de matemática: Frente 1: Critério 01: Função: Função é uma relação do conjunto A para o conjunto B, em que os elementos do conjunto A sempre serão x e os elementos do conjunto B sempre serão y (ou
Exercícios para a Prova 3 de Matemática 1 Trimestre. 3. Os números naturais a e b, com a > b, são tais que a² - b² = 7.
Exercícios para a Prova 3 de Matemática 1 Trimestre 1. Sendo n um número natural, a expressão. é igual a a) 1 b) 3 n b) 2 n d) 6 n 2. Fatore a² + b² - c² + 2ab 3. Os números naturais a e b, com a > b,
Funções. Para começarmos, precisamos de algumas definições: Dessa forma, já temos conteúdo suficiente para definirmos o assunto principal:
Funções 1 Introdução Para começarmos, precisamos de algumas definições: Par ordenado: conjunto de dois números reais em que a ordem dos elementos importa, ou seja, (1, 2) (2, 1). Utilizaremos essa definição
REVISÃO - DESIGUALDADE, MÓDULO E FUNÇÕES
REVISÃO - DESIGUALDADE, MÓDULO E FUNÇÕES Marina Vargas R. P. Gonçalves a a Departamento de Matemática, Universidade Federal do Paraná, [email protected], http:// www.estruturas.ufpr.br 1 REVISÃO
AXB = {(x, y) x A e y B}
CENTRO UNIVERSITÁRIO DO NORTE PAULISTA LÓGICA E MATEMÁTICA DISCRETA 2010 1 Produto Cartesiano Par ordenado: são dois elementos em uma ordem fixa, (x,y) Produto Cartesiano: Dados dois conjuntos A e B, não
2. (Ufpe 96) Seja A um conjunto com 3 elementos e B um conjunto com 5 elementos. Quantas funções injetoras de A em B existem?
1. (Unirio 99) Sejam as funções f : IR ë IR x ë y= I x I e g : IR ë IR x ë y = x - 2x - 8 Faça um esboço gráfico da função fog. 2. (Ufpe 96) Seja A um conjunto com 3 elementos e B um conjunto com 5 elementos.
Perceber que os valores positivos de g(x) acontecem com o oposto dos valores de x em f(x), ou seja, g(x) = f (- x).
MAT 6A AULA 16 16.01 A função pedida é uma translação horizontal da função f(x) = x. Essa translação será de duas unidades para a DIREITA, ou seja, é necessário SUBTRAIR duas unidades da variável. Assim
Ana Carolina Boero. Página: Sala Bloco A - Campus Santo André
Funções de uma variável real a valores reais E-mail: [email protected] Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Funções de uma variável real a valores
É um sistema formado por dois eixos, x e y, perpendiculares entre si. Origem. Continua
RELAÇÕES É um sistema formado por dois eixos, x e y, perpendiculares entre si. Origem Continua Continuação O eixo x é denominado eixo das abscissas e o eixo y é o eixo das ordenadas. Esses eixos dividem
Lista Função - Ita Carlos Peixoto
Lista Função - Ita Carlos Peixoto. (Ita 07) Sejam X e Y dois conjuntos finitos com X Y e X Y. Considere as seguintes afirmações: I. Existe uma bijeção f : X Y. II. Existe uma função injetora g: Y X. III.
Chamamos de funções numéricas aquelas cujas variáveis envolvidas são números reais. Isso é funções denidas sobre R ou uma parte de R e a valor em R.
Capítulo 2 Funções e grácos 2.1 Funções númericas Chamamos de funções numéricas aquelas cujas variáveis envolvidas são números reais. Isso é funções denidas sobre R ou uma parte de R e a valor em R. Denição
MATEMÁTICA - SEMI/NOITE PROF. FELIPE HEY 20/04/ Assinale V para as afirmativas verdadeiras e F para as falsas. a) ( ) -8 = 8 b) ( ) 5 = ±5
MATEMÁTICA - SEMI/NOITE PROF. FELIPE HEY 20/04/2016 Aula 04 FUNÇÃO MODULAR 01.01. Assinale V para as afirmativas verdadeiras e F para as falsas. a) ( ) -8 = 8 b) ( ) 5 = ±5 c) ( ) x² d) ( ) 3 ² 3 e) (
INSTITUTO FEDERAL CATARINENSE CAMPUS AVANÇADO SOMBRIO
INSTITUTO FEDERAL CATARINENSE CAMPUS AVANÇADO SOMBRIO Disciplinas: Estágio Supervisionado IV e Laboratório de prática e ensino aprendizagem II Professoras: Marleide Coan Cardoso e Margarete Farias Medeiros
LISTA DE EXERCÍCIOS. Humberto José Bortolossi
GMA DEPARTAMENTO DE MATEMÁTICA APLICADA LISTA DE EXERCÍCIOS Cálculo I A Humberto José Bortolossi http://wwwprofessoresuffbr/hjbortol/ 03 Operações com funções: soma, diferença, produto, quociente, composição
E-books PCNA. Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 FUNÇÕES
E-books PCNA Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 FUNÇÕES 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 SUMÁRIO Apresentação -------------------------------------------------------2 Capítulo 3 ------------------------------------------------------
Capítulo 1. Funções e grácos
Capítulo 1 Funções e grácos Denição 1. Sejam X e Y dois subconjuntos não vazios do conjunto dos números reais. Uma função de X em Y ou simplesmente uma função é uma regra, lei ou convenção que associa
1. Arcos de mais de uma volta. Vamos generalizar o conceito de arco, admitindo que este possa dar mais de uma volta completa na circunferência.
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Trigonometria II Prof.: Rogério
1.1. Expressão geral de arcos com uma mesma extremidade Expressão geral de arcos com uma mesma extremidade
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA 1.1. Expressão geral de arcos
Aula 04 Funções. Professor Marcel Merlin dos Santos Página 1
PARIDADE Define-se como paridade o estudo das características do que é igual ou semelhante, ou seja, é uma comparação para provar que uma coisa pode ser igual ou semelhante à outra. Função Par Define-se
Mat.Semana 5. PC Sampaio Alex Amaral Gabriel Ritter (Roberta Teixeira)
Semana 5 PC Sampaio Alex Amaral Gabriel Ritter (Roberta Teixeira) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos
Matemática Aplicada à Informática
Matemática Aplicada à Informática Unidade 9.0 Construindo Gráfico de uma Função Curso Técnico em Informática Aline Maciel Zenker SUMÁRIO SUMÁRIO... 2 GRÁFICOS DE FUNÇÃO DE 1º GRAU... 3 1 CARACTERÍSTICAS
Funções. Matemática Básica. O que é uma função? O que é uma função? Folha 1. Humberto José Bortolossi. Parte 07. Definição
Folha 1 Matemática Básica Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Funções Parte 07 Aula 9 Matemática Básica 1 Aula 9 Matemática Básica 2 O que é uma
A derivada da função inversa
A derivada da função inversa Sumário. Derivada da função inversa............... Funções trigonométricas inversas........... 0.3 Exercícios........................ 7.4 Textos Complementares................
b) Para que valores reais de x, f(x) > 2x + 2? 2. (Ufscar 2002) Sejam as funções f(x) = x - 1 e g(x) = (x + 4x - 4).
1. (Fuvest 2000) a) Esboce, para x real, o gráfico da função f(x)= x-2 + 2x+1 -x-6. O símbolo a indica o valor absoluto de um número real a e é definido por a =a, se aµ0 e a =-a, se a
MAT Aula 12/ 23/04/2014. Sylvain Bonnot (IME-USP)
MAT 0143 Aula 12/ 23/04/2014 Sylvain Bonnot (IME-USP) 2014 1 Resumo: 1 Site: http://www.ime.usp.br/~sylvain/courses.html 2 Hoje: correção da prova + derivadas. 3 Derivadas: definição de f (a) e equação
Subtemas: Função Composta, Função Inversa, Qualidades
PLANO DE AULA 1)Escola de Educação Básica Bulcão Viana Município: Praia Grande/SC Disciplina: Matemática Série: 1º ano Nível: Ensino Médio Turma: Única Professora: Mariani Constante de Jesus Tempo previsto:
APLICAÇÕES IMAGEM DIRETA - IMAGEM INVERSA. Professora: Elisandra Bär de Figueiredo
Professora: Elisandra Bär de Figueiredo APLICAÇÕES DEFINIÇÃO 1 Seja f uma relação de E em F. Dizemos que f é uma aplicação de E em F se (i) D(f) = E; (ii) dado a D(f), existe um único b F tal que (a, b)
1º) Esboce o gráfico das funções, calcule e marque os interceptos: a) f(x) = x b) f(x) = - 3x + 2
1º) Esboce o gráfico das funções, calcule e marque os interceptos: a) f() = b) f() = - 3 + 2 (0,0) (0,2) no eio (,0) no eio c) f() = + 3 d) f() = 2-3 (0,3) no (0,-3) no (-3,0) no (1,5;0) no 2º) Determine
Pela definição de função composta temos: h(x) = g(f(x)), ou seja, h(x) = gof(x)
SEMIEXTENSIVO VOL. MATEMÁTICA A 05.01) Pela definição de função composta temos: h(x) = g(f(x)), ou seja, h(x) = gof(x) ALTERNATIVA D 05.0) Se f() = 5 e g(5) = 5, baseado no exercício anterior, temos que
(d) f (x) = ln (x + 1) (e) f (x) = sinh (ax), a R. (f) f(x) = sin(3x)
Lista de Cálculo Diferencial e Integral I Derivadas 1. Use a denição para encontrar a primeira derivada de cada uma das funções abaixo. (a) f (x) x 1 2x + (b) f (x) x + 1 (d) f (x) ln (x + 1) (e) f (x)
Função Exponencial, Inversa e Logarítmica
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.2 Função Exponencial, Inversa e Logarítmica Bárbara Simionatto Engenharia Civil Jaime Vinícius - Engenharia de Produção Função Exponencial Dúvida:
3 a. FASE DO CONCURSO VESTIBULAR DO BACHARELADO EM ESTATÍSTICA 1 a. PROVA DA DISCIPLINA: CE065 ELEMENTOS BÁSICOS PARA ESTATÍSTICA CANDIDATO:
3 a. FASE DO CONCURSO VESTIBULAR DO BACHARELADO EM ESTATÍSTICA a. PROVA DA DISCIPLINA: CE65 ELEMENTOS BÁSICOS PARA ESTATÍSTICA CANDIDATO: a. Questão (valor,): Resolva de forma clara e detalhada as questões
Matemática tica Discreta Módulo Extra (2)
Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática tica Discreta Módulo Extra (2) Prof. Jorge Cavalcanti [email protected] - www.univasf.edu.br/~jorge.cavalcanti
p: João Alvaro w: e: Lista de exercícios de Matemática Função composta. Função inversa.
p: João Alvaro w: www.matemaniacos.com.br e: [email protected] Lista de exercícios de Matemática Função composta. Função inversa. EXERCÍCIOS DE EMBASAMENTO 1. Dados A = { 1, 1, 0, 1, 2}, B = { 3,
Funções. Pré-Cálculo. O que é uma função? O que é uma função? Humberto José Bortolossi. Parte 2. Definição
Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Funções Parte 2 Parte 2 Pré-Cálculo 1 Parte 2 Pré-Cálculo 2 O que é uma função? O que é uma função?
Notas de aulas. álgebra abstrata
1 Notas de aulas de álgebra abstrata UEMA LICENCIATURA EM MATEMATICA Elaborada por : Raimundo Merval Morais Gonçalves Licenciado em Matemática/UFMA Professor Assistente/UEMA Especialista em Ensino de Ciências/UEMA
12. FUNÇÕES INJETORAS. FUNÇÕES SOBREJETORAS 12.1 FUNÇÕES INJETORAS. Definição
90 1. FUNÇÕES INJETORAS. FUNÇÕES SOBREJETORAS 1.1 FUNÇÕES INJETORAS Definição Dizemos que uma função f: A B é injetora quando para quaisquer elementos x 1 e x de A, f(x 1 ) = f(x ) implica x 1 = x. Em
1. Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1
2.1 Domínio e Imagem 1. Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1 3 (e) g (x) 2x (f) g (x) = jx 1j x, se x 2
Matematica Essencial: Trigonometria. Matemática Essencial: Alegria Financeira Fundamental Médio Geometria Trigonometria Superior Cálculos
Página 1 de 15 Matemática Essencial: Alegria Financeira Fundamental Médio Geometria Trigonometria Superior Cálculos Trigonometria: Funções trigonométricas circulares Funções circulares Funções reais Funções
Especialização em Matemática - Estruturas Algébricas
1 Universidade Estadual de Santa Cruz Departamento de Ciências Exatas e Tecnológicas Especialização em Matemática - Estruturas Algébricas Prof a.: Elisangela Farias e Sérgio Motta FUNÇÕES Sejam X e Y conjuntos.
QUESTÕES-AULA Determine se as funções dadas são inversa uma da outra: f(x) = x 4 4, g(x) = 4 x + 4. Se calcularmos (g f)(x) e (f g)(x) teremos,
QUESTÕES-AULA 36 1. Determine se as funções dadas são inversa uma da outra: f(x) = x 4 4, g(x) = 4 x + 4 Se calcularmos (g f)(x) e (f g)(x) teremos, e (g f)(x) = g(f(x)) = g(x 4 4) = 4 x 4 4 + 4 x (f g)(x)
UFSC. Matemática (Amarela) Resposta: = , se x < fx ( ) 2x 3, se 7 x < 8. x + 16x 51, se x. 01. Correta.
Resposta: 01 + 08 + 16 = 5 7 4, se x < fx ( ) x 3, se 7 x < 8 x + 16x 51, se x 8 01. Correta. 0. Incorreta. A imagem da função é Im = ( ; 13]. 3 04. Incorreta. f( 16) f( 6) 4 08. Correta. 16. Correta.
Observamos então que as aplicações de plano cartesiano, produto cartesiano, relações e funções estão presentes no nosso cotidiano.
Relações e Funções Ao lermos um jornal ou uma revista, diariamente nos deparamos com gráficos, tabelas e ilustrações. Estes, são instrumentos muito utilizados nos meios de comunicação. Um texto com ilustrações,
Derivadas das Funções Trigonométricas Inversas
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Derivadas das Funções
2. Tipos de funções. Funções pares e ímpares Uma função f é par se é simétrica em relação ao eixo y, isto é, f( x) = f(x).
1. Algumas funções básicas 2. Tipos de funções Funções pares e ímpares Uma função f é par se é simétrica em relação ao eio y, isto é, f( ) = f(). Eemplos: A função f() = n onde n inteiro positivo é par?
