Funções. Para começarmos, precisamos de algumas definições: Dessa forma, já temos conteúdo suficiente para definirmos o assunto principal:

Tamanho: px
Começar a partir da página:

Download "Funções. Para começarmos, precisamos de algumas definições: Dessa forma, já temos conteúdo suficiente para definirmos o assunto principal:"

Transcrição

1 Funções 1 Introdução Para começarmos, precisamos de algumas definições: Par ordenado: conjunto de dois números reais em que a ordem dos elementos importa, ou seja, (1, 2) (2, 1). Utilizaremos essa definição para a representação de pontos no plano cartesiano, em que o primeiro elemento representa o valor de x e o segundo representa o valor de y. Relação: Uma relação de A em B é o conjunto formado por todos os pares (x,y), tais que x A e y B que assumem uma determinada propriedade p(x,y). Dessa forma, já temos conteúdo suficiente para definirmos o assunto principal: Função é a relação f de A em B tal que x A,!y B tal que (x, y) f. Geralmente representada por, no caso de funções de apenas uma variável, f(x) = y, ou seja, aplicando determinada propriedade em x, o transformamos em y. Essa propriedade pode ser explícita ou implícita (ou equação funcional), como motram os exemplos abaixo: f(x) = k f(x) = ax 2 + bx + c f(a + b) = f(a) + f(b) f(ab) = f(a) + f(b) Uma função geralmente é representada da seguinte forma: f : A B onde A é chamado domínio (D f ) e B, contra-domínio (CD f ). 1

2 Domínio: conjunto de valores em que a função pode ser aplicada. Contra-domínio: qualquer conjunto que contenha o conjunto imagem (Im f ). Conjunto imagem: subconjunto do contra-domínio formado por todos os valores que a função pode assumir quando aplicada a elementos do domínio. Pode ser representado pelo seguinte conjunto, representado pelo pontilhado na figura 1. Im f = {y B f(x) = y; x A} Figura 1: Exemplo de diagrama de funções 2 Classificação de Funções Sendo: f : A Bef(x) = y Injetora: Sobrejetora: (injetora) ( (x 1, x 2 ) A 2 x 1 x 2 f(x 1 ) f(x 2 )) (sobrejetora) ( y B, x A f(x) = y) 2

3 Bijetora: Injetora e Sobrejetora Paridade: (bijetora) ( y B,!x A f(x) = y) 1. Par: Gráfico da função é simétrico em relação ao eixo y. (par) ( x A ( x) A f( x) = f(x)) 2. ímpar: Gráfico da função é simétrico em relação à origem. Obs: (ímpar) ( x A ( x) A f( x) = f(x)) (a) (f é par e ímpar) (f(x) = 0, x A)). (b) Toda função pode ser escrita como a soma de uma função par com uma ímpar. Periodicidade: (periódica) ( p 0(real ) x A (x+p) A f(x) = f(x+p)) Preíodo principal: menor valor de P. f(x) = a + b.sen(cx + d) = P = 2π c f(x) = a + b.cos(cx + d) = P = 2π c f(x) = a + b.tg(cx + d) = P = π c Monotonicidade: 1. Estritamente crescente: 2. Crescente: x 1 > x 2 = f(x 1 ) > f(x 2 ), (x 1, x 2 ) A 2, x 1 x 2 3. Constante: x 1 x 2 = f(x 1 ) f(x 2 ), (x 1, x 2 ) A 2, x 1 x 2 f(x 1 ) = f(x 2 ), (x 1, x 2 ) A 2, x 1 x 2 3

4 4. Decrescente: x 1 x 2 = f(x 1 ) f(x 2 ), (x 1, x 2 ) A 2, x 1 x 2 5. Estritamente decrescente: x 1 > x 2 = f(x 1 ) < f(x 2 ), (x 1, x 2 ) A 2, x 1 x 2 Obs: No primeiro e no último itens as funções são injetoras. 3 Composição de Funções f : A B g : C D E = { x A f(x) C} Se E = g f é a função composta de f com g. No caso da figura 2, A = X, B = C = Y e D = Z: Figura 2: Exemplo de diagrama de funções compostas Obs: 1. f g(x) g f(x). 2. h (g f)(x) = (h g) f(x). 3. Se f e g são injetoras, g f é injetora. 4. Se f e g são sobrejetoras, g f é sobrejetora. 5. Se g f ínjetora então f é injetora. 6. Se g f śobrejetora então g é sobrejetora. 4

5 4 Funções Inversas Uma função f é inversível se sua relaçao inversa é função, ou seja, se, sendo f(x) = y uma função, f 1 (y) = x também for. Dessa definição, temos a seguinte propriedade: Obs: fé inversível fé bijetora 1. f 1 = f 1 f(x) = x. 2. f e f 1 são simétricas em relação à reta y = x. 5 Gráfico de uma Função O gráfico de uma função f : A B é o seguinte conjunto de pontos (Figura 3): G = {(x, f(x)), x A} Figura 3: Exemplo do gráfico da função f(x) = x 5

6 6 Principais Funções Para essas funções, denotaremos: R como o conjunto dos números reais. Período como o "período principal". Domínio como o domínio máximo. 1. Função constante: f(x) = k Domínio: D f = R Imagem: Im f = {k} Paridade: Função par Período principal não definido Monotonicidade: Função Constante f 1 (y) Gráfico: Figura 4 Figura 4: Gráfico da função constante f(x) = k 2. Função Afim: f(x) = ax + b 6

7 Domínio: D f = R Imagem: Im f = R { ímpar b = 0 Paridade: nem ímpar, nem par b 0 Sem período Monotonicidade: f 1 (y) = y b a Gráfico: Figura 5 { Extritamente Crescente a > 0 Extritamente Decrescente a < 0 Figura 5: Gráfico da função afim f(x) = ax + b 3. Função Quadrática: f(x) = ax 2 + bx + c Domínio: D f = R {[ 4a Imagem: Im f = ; + ) if a > 0 ( ] ; if a < 0 4a { par b = 0 Paridade: nem ímpar, nem par b 0 Sem período Monotonicidade: Sem classificação para todo o domínio. f 1 (y) em todo o domínio. Gráfico (D = ): Figura 6 7

8 Forma fatorada: f(x) = a(x r 1 )(x r 2 ), sendo r 1 e r 2 as raízes. Forma vértice: f(x) = a(x x V ) 2 + y V, sendo (x V, y V ) o vértice. 4. Função Polinomial: f : R Rf(x) = a 0 x n + a 1 x n a n 1 x + a n Domínio: D f = R Imagem: R ímpar Im f = [y V, + ) a 0 > 0 (, y V ] a 0 < 0 Sendo y V a ordenada do vértice extremo do gráfico da função. Paridade: Figura 6: Gráfico da função quadrática f(x) = ax 2 + bx + c 8

9 par e ímpar ímpar a i = 0, i = 0, 1, 2,..., n n ímpar e a i = 0, i = 1, 3,..., n par par e a i = 0, i = 1, 3,..., n 1 nem par, nem ímpar outros casos Sem período Monotonicidade: Extritamente crescente a 0 > 0, n ímpar e f(x) = a 0 (x r) n Extritamente decrescente a 0 < 0, n ímpar e f(x) = a 0 (x r) n Sem classificação outros casos Sendo r a única raiz da função. Para os casos em que a função é extritamente crescente ou decrescente: ( y f 1 (y) = a 0 ) 1 n + r Gráfico: Muito genérico para ser desenhado, mas podemos descrevêlo: Cruza o eixo y em a n. Cruza o eixo x em k pontos, que são as raízes reais, com k n. Os gráficos são retas somente nos casos de n = 0 e n = 1, já estudados. 5. Função Recíproca: f(x) = 1 x Domínio: D f = R\{0} Imagem: Im f = R\{0} Paridade: ímpar Sem período Monotonicidade: Sem classificação para todo o domínio. f 1 (y) = 1 y. Gráfico: Hipérbole Equilátera (figura 7 Obs: Através do gráfico dessa função, pode ser definida a função logarítimica. Já que, como será visto mais adiante: 9

10 6. Função Modular: Domínio: D f = R x 1 1 dx = ln(x) x f(x) = x ou f(x) = Imagem: Im f = [0; + ) Paridade: Par Sem período { x x 0 x x < 0 Monotonicidade: Sem classificação para todo o domínio. f 1 (y) para todo o domínio. Gráfico: Figura 8 7. Função Exponencial: f(x) = a x, a > 0, a 1 Domínio: D f = R Imagem: Im f = [0; + ) Paridade: Nem par, nem ímpar. Figura 7: Gráfico da função recíproca f(x) = 1 x 10

11 Sem período Monotonicidade: { Extritamente decrescente 0 < a < 1 Extritamente crescente a > 1 f 1 (y) = log a y. Gráfico: Figura 9 Essa é uma das mais importantes funções e, portanto, algumas propriedades serão exploradas: x = 0 = f(x) = 1 ou a 0 = 1 x = 1 = f(x) = a ou a 1 = a f(x).f(y) = f(x + y) ou a x.a y = a x+y f(x) = f(x y) ou a x = a x y f(y) a y f(x) y = f(xy) ou (a x ) y = a xy 1 = f( x) ou 1 = a x f(x) a x a x.b x = (ab) x Essa função, com a = e (número de Euler), pode ser aproximada pela série de Taylor para a seguinte soma: e x = n=0 x n n! Figura 8: Gráfico da função modular f(x) = x 11

12 Uma importante equação, que relaciona a função exponencial com a trigonometria é a fórmula de Euler, dada por: e iθ = cos(θ) + i.sen(θ) Com essa relação será possível a dedução das fórmulas de sen(nθ) e cos(nθ), para qualquer valor de θ. Mas esse exercício fica a cargo do leitor na sessão de desafios da apostila de trigonometria. Dessa fórmula, tiramos uma expressão que relaciona 5 dos mais importantes números da matemática, ao substituirmos θ por π: e iπ + 1 = 0 8. Função Logarítimica: f(x) = log a x, a > 0, a 1 Domínio: D f = R + \{0} Imagem: Im f = R Figura 9: Gráfico da função exponencial f(x) = a x 12

13 Paridade: Nem par, nem ímpar. Sem período Monotonicidade: { Extritamente decrescente 0 < a < 1 Extritamente crescente a > 1 f 1 (y) = a y. Gráfico: Figura 10 Figura 10: Gráfico da função logarítimica f(x) = log a x Essa é uma das mais importantes funções e, portanto, algumas propriedades serão exploradas: x = 1 = f(x) = 0 ou log a 1 = 0 f(x) + f(y) = f(xy) ou log a (xy) = log a (x) + log a (y) ( ) ( ) f = f(x) f(y) ou log a = log a (x) log a (y) x y f(x y ) = y.f(x) ou log a (x y ) = y.log a (x) Mudança de base: log b x = logax log ab 9. Função seno: f(x) = sen(x) x y Domínio: D f = R (x em radianos) 13

14 Imagem: Im f = [ 1; 1] Paridade: Função ímpar Período: P = 2π Monotonicidade: Sem classificação f 1 (y) em todo o domínio, porém, para D = [ π 2 ; π 2 ], define-se f 1 (y) = arcsen(y) Gráfico: Figura 11 Figura 11: Gráfico da função seno f(x) = sen(x) Obs: A função pode ser aproximada pela série de Taylor para a seguinte soma: sen(x) = 10. Função cosseno: f(x) = cos(x) n=0 ( 1) n (2n + 1)! x2n+1 Domínio: D f = R (x em radianos) Imagem: Im f = [ 1; 1] Paridade: Função par Período: P = 2π Monotonicidade: Sem classificação f 1 (y) em todo o domínio, porém, para D = [0; π], define-se f 1 (y) = arccos(y) 14

15 Figura 12: Gráfico da função cosseno f(x) = cos(x) Gráfico: Figura 12 Obs: A função pode ser aproximada pela série de Taylor para a seguinte soma: cos(x) = 11. Função tangente: f(x) = tg(x) n=0 ( 1) n (2n)! x2n Domínio: D f = {x R x π + Kπ, K Z} (x em radianos) 2 Imagem: Im f = R Paridade: Função ímpar Período: P = π Monotonicidade: Sem classificação f 1 (y) em todo o domínio, porém, para D = ] π 2 ; π 2 [, define-se f 1 (y) = arctg(y) Gráfico: Figura 13 Obs: A função pode ser aproximada pela série de Taylor para a seguinte expressão: tg(x) = sen(x) cos(x) = n=0 n=0 ( 1) n (2n+1)! x2n+1 ( 1) n (2n)! x2n 15

16 Referências Livro: Mtemática - Temas e Metas Volume 6 - Funções e Derivadas - Antonio dos Santos Machado Livro de Matemática do Sistema de Ensino Poliedro Figura 13: Gráfico da função tangente f(x) = tg(x) 16

Ana Carolina Boero. Página: Sala Bloco A - Campus Santo André

Ana Carolina Boero.   Página:  Sala Bloco A - Campus Santo André Funções de uma variável real a valores reais E-mail: ana.boero@ufabc.edu.br Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Funções de uma variável real a valores

Leia mais

Notas de aula: Cálculo e Matemática Aplicados à Notas de aula: Gestão Ambiental

Notas de aula: Cálculo e Matemática Aplicados à Notas de aula: Gestão Ambiental Notas de aula: Cálculo e Matemática Aplicados à Notas de aula: Gestão Ambiental 1 Funções Definição: Sejam A e B, dois conjuntos, A /0, B /0. Uma função definida em A com valores em B é uma lei que associa

Leia mais

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Módulo I: Cálculo Diferencial e Integral Fundamentos e tópicos de revisão

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Módulo I: Cálculo Diferencial e Integral Fundamentos e tópicos de revisão Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo Módulo I: Cálculo Diferencial e Integral Fundamentos e tópicos de revisão Professora Renata Alcarde Sermarini Notas de aula do professor

Leia mais

Capítulo 1. Funções e grácos

Capítulo 1. Funções e grácos Capítulo 1 Funções e grácos Denição 1. Sejam X e Y dois subconjuntos não vazios do conjunto dos números reais. Uma função de X em Y ou simplesmente uma função é uma regra, lei ou convenção que associa

Leia mais

Dados dois conjuntos A, B é dito produto cartesiano de A com B o conjunto

Dados dois conjuntos A, B é dito produto cartesiano de A com B o conjunto 1 Algumas definições sobre funções Dados dois conjuntos A, B é dito produto cartesiano de A com B o conjunto A B = {(a, b) : a A, b B}. Dados dois conjuntos A, B, uma função de A em B é uma lei que associa

Leia mais

CÁLCULO FUNÇÕES DE UMA E VÁRIAS VARIÁVEIS Pedro A. Morettin, Samuel Hazzan, Wilton de O. Bussab.

CÁLCULO FUNÇÕES DE UMA E VÁRIAS VARIÁVEIS Pedro A. Morettin, Samuel Hazzan, Wilton de O. Bussab. Introdução Função é uma forma de estabelecer uma ligação entre dois conjuntos, sujeita a algumas condições. Antes, porém, será exposta uma forma de correspondência mais geral, chamada relação. Sejam dois

Leia mais

1 FUNÇÃO - DEFINIÇÃO. Chama-se função do 1. grau toda função definida de por f(x) = ax + b com a, b e a 0.

1 FUNÇÃO - DEFINIÇÃO. Chama-se função do 1. grau toda função definida de por f(x) = ax + b com a, b e a 0. MATEMÁTICA ENSINO MÉDIO FUNÇÃO - DEFINIÇÃO FUNÇÃO - DEFINIÇÃO Chama-se função do 1. grau toda função definida de por f(x) = ax + b com a, b e a 0. EXEMPLOS: f(x) = 5x 3, onde a = 5 e b = 3 (função afim)

Leia mais

Para mais exemplos veja o vídeo:

Para mais exemplos veja o vídeo: Resumo de matemática: Frente 1: Critério 01: Função: Função é uma relação do conjunto A para o conjunto B, em que os elementos do conjunto A sempre serão x e os elementos do conjunto B sempre serão y (ou

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO

UNIVERSIDADE FEDERAL DE PERNAMBUCO CÁLCULO L NOTAS DA NONA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, apresentaremos as funções logaritmo e exponencial e calcularemos as suas derivadas. Também estabeleceremos algumas propriedades

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Funções e Modelos. Danielly Guabiraba- Engenharia Civil Vitor Bruno- Engenharia Civil

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Funções e Modelos. Danielly Guabiraba- Engenharia Civil Vitor Bruno- Engenharia Civil CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.2 Funções e Modelos Danielly Guabiraba- Engenharia Civil Vitor Bruno- Engenharia Civil Quatro maneiras de representar uma função Verbalmente (Descrevendo-a

Leia mais

Uma Relação será função se:

Uma Relação será função se: Funções Uma Relação será função se: 1. Todo elemento do conjunto domínio (A) possui um elemento correspondente no conjunto contradomínio (B); 2. Qualquer que seja o elemento do domínio (A), so existe um

Leia mais

Matemática Complementos de Funções. Professor Marcelo Gonsalez Badin

Matemática Complementos de Funções. Professor Marcelo Gonsalez Badin Matemática Complementos de Funções Professor Marcelo Gonsalez Badin Paridade Função PAR f (x) é chamada FUNÇÃO PAR se f ( x) = f (x) Exemplo: f (x) = x 4 f ( x) = ( x) 4 = x 4 = f (x) O gráfico de uma

Leia mais

FUNÇÕES. Prof.ª Adriana Massucci

FUNÇÕES. Prof.ª Adriana Massucci FUNÇÕES Prof.ª Adriana Massucci Introdução: Muitas grandezas com as quais lidamos no nosso cotidiano dependem uma da outra, isto é, a variação de uma delas tem como consequência a variação da outra. Exemplo:

Leia mais

Dados dois conjuntos A, B é dito produto cartesiano de A com B o conjunto

Dados dois conjuntos A, B é dito produto cartesiano de A com B o conjunto 1 Algumas definições sobre funções Dados dois conjuntos A, B é dito produto cartesiano de A com B o conjunto A B = {(a, b) : a A, b B}. Dados dois conjuntos A, B, uma função de A em B é uma lei que associa

Leia mais

Pré-Cálculo ECT2101 Slides de apoio Funções II

Pré-Cálculo ECT2101 Slides de apoio Funções II Pré-Cálculo ECT2101 Slides de apoio Funções II Prof. Ronaldo Carlotto Batista 8 de abril de 2017 Funções Trigonométricas As funções trigonométricas são denidas no círculo unitário: sen (θ) = y r, cos (θ)

Leia mais

Resumo Matemática Ensino Médio - 1º ano/série -3º bimestre provão - frentes 1 e 2

Resumo Matemática Ensino Médio - 1º ano/série -3º bimestre provão - frentes 1 e 2 Frente 1 Algumas coisas retiradas de: http://www.brasilescola.com/matematica/funcao-segundo-grau.htm Critério 01: Função Quadrática: Introdução: Toda função estabelecida pela lei de formação f(x) = ax²

Leia mais

1. Polinómios e funções racionais

1. Polinómios e funções racionais Um catálogo de funções. Polinómios e funções racionais Polinómios e funções racionais são funções que se podem construir usando apenas as operações algébricas elementares. Recordemos a definição: Definição

Leia mais

Capítulo 3. Fig Fig. 3.2

Capítulo 3. Fig Fig. 3.2 Capítulo 3 3.1. Definição No estudo científico e na engenharia muitas vezes precisamos descrever como uma quantidade varia ou depende de outra. O termo função foi primeiramente usado por Leibniz justamente

Leia mais

Derivada - Parte 2 - Regras de derivação

Derivada - Parte 2 - Regras de derivação Derivada - Parte 2 - Wellington D. Previero previero@utfpr.edu.br http://paginapessoal.utfpr.edu.br/previero Universidade Tecnológica Federal do Paraná - UTFPR Câmpus Londrina Wellington D. Previero Derivada

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Provas e listas: Cálculo Diferencial e Integral I Período 204.2 Sérgio de Albuquerque Souza 4 de maio de 205 UNIVERSIDADE FEDERAL DA PARAÍBA CCEN - Departamento de Matemática http://www.mat.ufpb.br/sergio

Leia mais

Escola Naval 2010 ( ) ( ) 8 ( ) 4 ( ) 4 (

Escola Naval 2010 ( ) ( ) 8 ( ) 4 ( ) 4 ( Escola Naval 0 1. (EN 0) Os gráficos das funções reais f e g de variável real, definidas por f(x) = x e g(x) = 5 x interceptam-se nos pontos A = (a,f(a)) e B = (b,f(b)), a b. Considere os polígonos CAPBD

Leia mais

CURSO ALCANCE UFPR Matemática 13/08/2016 Página 1 de 6

CURSO ALCANCE UFPR Matemática 13/08/2016 Página 1 de 6 CURSO ALCANCE UFPR Matemática 13/08/2016 Página 1 de 6 Introdução à funções Uma função é determinada por dois conjuntos e uma regra de associação entre os elementos destes conjuntos. Os conjuntos são chamados

Leia mais

Notas de Aula Disciplina Matemática Tópico 05 Licenciatura em Matemática Osasco -2010

Notas de Aula Disciplina Matemática Tópico 05 Licenciatura em Matemática Osasco -2010 1. Função Afim Uma função f: R R definida por uma expressão do tipo f x = a. x + b com a e b números reais constantes é denominada função afim ou função polinomial do primeiro grau. A função afim está

Leia mais

MAT Aula 12/ 23/04/2014. Sylvain Bonnot (IME-USP)

MAT Aula 12/ 23/04/2014. Sylvain Bonnot (IME-USP) MAT 0143 Aula 12/ 23/04/2014 Sylvain Bonnot (IME-USP) 2014 1 Resumo: 1 Site: http://www.ime.usp.br/~sylvain/courses.html 2 Hoje: correção da prova + derivadas. 3 Derivadas: definição de f (a) e equação

Leia mais

Aula 13 mtm B TRIGONOMETRIA

Aula 13 mtm B TRIGONOMETRIA Aula 13 mtm B TRIGONOMETRIA Definição Função Seno: f(x) = a ± b.sen(mx + n) Função Cosseno: f(x) = a ± b.cos(mx + n) a - Parâmetro aditivo da função. b - Parâmetro multiplicativo da função. m Parâmetro

Leia mais

{ } { } { } { } { } Professor: Erivaldo. Função Composta SUPERSEMI. 01)(Aman 2013) Sejam as funções reais ( ) 2

{ } { } { } { } { } Professor: Erivaldo. Função Composta SUPERSEMI. 01)(Aman 2013) Sejam as funções reais ( ) 2 Centro de Estudos Matemáticos Florianópolis Professor: Erivaldo Santa Catarina Função Composta SUPERSEMI 01)(Aman 013) Sejam as funções reais ( ) f x = x + 4x e gx ( ) = x 1. O domínio da função f(g(x))

Leia mais

Universidade Federal de Pelotas. Instituto de Física e Matemática Pró-reitoria de Ensino. Módulo de Funções. Aula 01. Projeto GAMA

Universidade Federal de Pelotas. Instituto de Física e Matemática Pró-reitoria de Ensino. Módulo de Funções. Aula 01. Projeto GAMA Universidade Federal de Pelotas Instituto de Física e Matemática Pró-reitoria de Ensino Atividades de Reforço em Cálculo Módulo de Funções Aula 0 08/ Projeto GAMA Grupo de Apoio em Matemática Definição

Leia mais

Notas de Aula de Cálculo Diferencial e Integral I

Notas de Aula de Cálculo Diferencial e Integral I Universidade Federal de Campina Grande Centro de Ciências e Teconologia Agroalimentar Notas de Aula de Cálculo Diferencial e Integral I Prof. Ms. Hallyson Gustavo G. de M. Lima Pombal - PB Conteúdo 1 Noções

Leia mais

Função Exponencial, Inversa e Logarítmica

Função Exponencial, Inversa e Logarítmica CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.2 Função Exponencial, Inversa e Logarítmica Bárbara Simionatto Engenharia Civil Jaime Vinícius - Engenharia de Produção Função Exponencial Dúvida:

Leia mais

Matematica Essencial: Trigonometria. Matemática Essencial: Alegria Financeira Fundamental Médio Geometria Trigonometria Superior Cálculos

Matematica Essencial: Trigonometria. Matemática Essencial: Alegria Financeira Fundamental Médio Geometria Trigonometria Superior Cálculos Página 1 de 15 Matemática Essencial: Alegria Financeira Fundamental Médio Geometria Trigonometria Superior Cálculos Trigonometria: Funções trigonométricas circulares Funções circulares Funções reais Funções

Leia mais

PCNA - Matemática AULA 1

PCNA - Matemática AULA 1 PCNA - Matemática AULA 1 PCNA - Matemática Aritmética: Operações básicas com frações Potenciação Radiciação Módulo Necessário para o Cálculo 1: Polinômios Operações com expressões algébricas Intervalos,

Leia mais

E-books PCNA. Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 FUNÇÕES

E-books PCNA. Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 FUNÇÕES E-books PCNA Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 FUNÇÕES 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 SUMÁRIO Apresentação -------------------------------------------------------2 Capítulo 3 ------------------------------------------------------

Leia mais

CÁLCULO I. Reconhecer, através do gráco, a função que ele representa; (f + g)(x) = f(x) + g(x). (fg)(x) = f(x) g(x). f g

CÁLCULO I. Reconhecer, através do gráco, a função que ele representa; (f + g)(x) = f(x) + g(x). (fg)(x) = f(x) g(x). f g CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 03: Operações com funções. Funções Polinominais, Racionais e Trigonométricas Objetivos da Aula Denir operações com funções; Apresentar algumas

Leia mais

Lista Função - Ita Carlos Peixoto

Lista Função - Ita Carlos Peixoto Lista Função - Ita Carlos Peixoto. (Ita 07) Sejam X e Y dois conjuntos finitos com X Y e X Y. Considere as seguintes afirmações: I. Existe uma bijeção f : X Y. II. Existe uma função injetora g: Y X. III.

Leia mais

MATEMÁTICA 3. Professor Renato Madeira. MÓDULO 4 Função injetora, sobrejetora, bijetora, par, ímpar, crescente, decrescente, limitada e periódica

MATEMÁTICA 3. Professor Renato Madeira. MÓDULO 4 Função injetora, sobrejetora, bijetora, par, ímpar, crescente, decrescente, limitada e periódica MATEMÁTICA 3 Professor Renato Madeira MÓDULO 4 Função injetora, sobrejetora, bijetora, par, ímpar, crescente, decrescente, limitada e periódica SUMÁRIO 1. Funções monotônicas (crescente ou decrescente)

Leia mais

A Matemática no Vestibular do ITA. Material Complementar: Coletânea de Questões Isoladas ITA 1970

A Matemática no Vestibular do ITA. Material Complementar: Coletânea de Questões Isoladas ITA 1970 A Matemática no Vestibular do ITA Material Complementar: Coletânea de Questões Isoladas ITA 1970 Essas 24 questões foram coletadas isoladamente em diversas fontes bibliográficas. Seguindo sugestão de uma

Leia mais

1.1. Expressão geral de arcos com uma mesma extremidade Expressão geral de arcos com uma mesma extremidade

1.1. Expressão geral de arcos com uma mesma extremidade Expressão geral de arcos com uma mesma extremidade UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA 1.1. Expressão geral de arcos

Leia mais

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo Módulo I: Cálculo Diferencial e Integral Derivada e Diferencial de uma Função Professora Renata Alcarde Sermarini Notas de aula

Leia mais

MATEMÁTICA I FUNÇÕES. Profa. Dra. Amanda L. P. M. Perticarrari

MATEMÁTICA I FUNÇÕES. Profa. Dra. Amanda L. P. M. Perticarrari MATEMÁTICA I FUNÇÕES Profa. Dra. Amanda L. P. M. Perticarrari amanda.perticarrari@unesp.br Conteúdo Função Variáveis Traçando Gráficos Domínio e Imagem Família de Funções Funções Polinomiais Funções Exponenciais

Leia mais

FUNÇÕES. a < 0. a = 0. a > 0. b < 0 b = 0 b > 0

FUNÇÕES. a < 0. a = 0. a > 0. b < 0 b = 0 b > 0 FUNÇÕES As principais definições, teorias e propriedades sobre funções podem ser encontradas em seu livro-teto (Guidorizzi, vol1, Stewart vol1...); Assim, não vamos aqui nos alongar na teoria que pode

Leia mais

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo LCE0130 Cálculo Diferencial e Integral

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo LCE0130 Cálculo Diferencial e Integral Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo LCE0130 Cálculo Diferencial e Integral Taciana Villela Savian Sala 304, pav. Engenharia, ramal 237 tvsavian@usp.br tacianavillela@gmail.com

Leia mais

CÁLCULO I. Aula n o 02: Funções. Determinar o domínio, imagem e o gráco de uma função; Reconhecer funções pares, ímpares, crescentes e decrescentes;

CÁLCULO I. Aula n o 02: Funções. Determinar o domínio, imagem e o gráco de uma função; Reconhecer funções pares, ímpares, crescentes e decrescentes; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 02: Funções Objetivos da Aula Denir e reconhecer funções; Determinar o domínio, imagem e o gráco de uma função; Reconhecer funções pares,

Leia mais

CENTRO UNIVERSITÁRIO DA SERRA DOS ÓRGÃOS CURSO DE MATEMÁTICA

CENTRO UNIVERSITÁRIO DA SERRA DOS ÓRGÃOS CURSO DE MATEMÁTICA 1 CENTRO UNIVERSITÁRIO DA SERRA DOS ÓRGÃOS CURSO DE MATEMÁTICA CONSTRUÇÃO DE GRÁFICOS DE FUNÇÕES REAIS DE VARIÁVEIS REAIS A PARTIR DE TRANSFORMAÇÕES ISOMÉTRICAS 1 TRANSFORMAÇÕES GEOMÉTRICAS ISOMÉTRICAS

Leia mais

- Cálculo 1: Lista de exercícios 1 -

- Cálculo 1: Lista de exercícios 1 - - Cálculo : Lista de exercícios - UFOP - Professora Jussara Moreira. Resolver as inequações: (a) x(x ) > 0 {x R/x < 0 ou x > }; (b) (x )(x + ) < 0 {x R/ < x < }; (c) x x {x R/x ou x }; x (x ) 0 {x R/x

Leia mais

Função Inversa. f(x) é invertível. Assim,

Função Inversa. f(x) é invertível. Assim, Função Inversa. (Eear 07) Sabe-se que a função a) b) 4 c) 6 d) x f(x) é invertível. Assim, 5 f () é. (Espm 07) O conjunto imagem de uma função inversível é igual ao domínio de sua x inversa. Sendo f :

Leia mais

CURSO: Licenciatura em Matemática TURMA: LM 2011/01_1ºSEM PROFESSOR: NÍCOLAS MORO MÜLLER PLANO DE ENSINO

CURSO: Licenciatura em Matemática TURMA: LM 2011/01_1ºSEM PROFESSOR: NÍCOLAS MORO MÜLLER PLANO DE ENSINO CURSO: Licenciatura em Matemática TURMA: LM 2011/01_1ºSEM PROFESSOR: NÍCOLAS MORO MÜLLER PLANO DE ENSINO DISCIPLINA: 030152 Matemática Fundamental I DURAÇÃO: Semestral CARGA HORÁRIA TOTAL: 90 horas CARGA

Leia mais

AULA 1: PRÉ-CÁLCULO E FUNÇÕES

AULA 1: PRÉ-CÁLCULO E FUNÇÕES MATEMÁTICA I AULA 1: PRÉ-CÁLCULO E FUNÇÕES Prof. Dr. Nelson J. Peruzzi Profa. Dra. Amanda L. P. M. Perticarrari Parte 1 Conjuntos numéricos A reta real Intervalos Numéricos Valor absoluto de um número

Leia mais

UFJF ICE Departamento de Matemática Cálculo I Primeira Avaliação Primeiro Semestre Letivo de /04/2014 FILA A Aluno (a): Matrícula: Turma:

UFJF ICE Departamento de Matemática Cálculo I Primeira Avaliação Primeiro Semestre Letivo de /04/2014 FILA A Aluno (a): Matrícula: Turma: UFJF ICE Departamento de Matemática Cálculo I Primeira Avaliação Primeiro Semestre Letivo de 014 6/04/014 FILA A Aluno (a): Matrícula: Turma: Instruções Gerais: 1- A prova pode ser feita a lápis, exceto

Leia mais

Funções reais: exemplos

Funções reais: exemplos Funções reais: exemplos Juliana Pimentel juliana.pimentel@ufabc.edu.br 25 de julho de 2016 Funções lineares Uma função f : R R chama-se afim quando existem números reais a e b tais que f (x) = ax + b para

Leia mais

Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil. 11 de Março de 2014

Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil. 11 de Março de 2014 Funções - Aula 06 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 11 de Março de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica O principal objetivo do

Leia mais

1 a Lista de Exercícios de Métodos Matemáticos II

1 a Lista de Exercícios de Métodos Matemáticos II a Lista de Exercícios de Métodos Matemáticos II. Simplifique: [ ] + i a Re + i i b Im 4 i + i 6 i + i d i 4 e eπi i e πi f e +πi. Encontre todos os valores de C tais que: a i 0 b + i + i d 6 + 64 0 e i

Leia mais

Gênesis S. Araújo Pré-Cálculo

Gênesis S. Araújo Pré-Cálculo Gênesis Soares Jaboatão, de de 2016. Estudante: PAR ORDENADO: Um par ordenado de números reais é o conjunto formado por dois números reais em determinada ordem. Os parênteses, em substituição às chaves,

Leia mais

UNIVERSIDADE GAMA FILHO

UNIVERSIDADE GAMA FILHO UNIVERSIDADE GAMA FILHO Pró-Reitoria de Ciências Exatas e Tecnologia CÁLCULO BÁSICO Notas de Aula Simone Dutra Ramos Resumo Estas notas de aula têm por finalidade apresentar de forma clara e didática todo

Leia mais

Notas breves sobre números complexos e aplicações

Notas breves sobre números complexos e aplicações Notas breves sobre números complexos e aplicações Complementos de Análise Matemática - ESI DMat - Universidade do Minho Dezembro de 2005 1 Definição O conjunto dos números complexos, denotado por C, pode-se

Leia mais

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Objetivos da Aula CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 03: Funções Logarítmica, Exponencial e Hiperbólicas Definir as funções logarítmica, exponencial e hiperbólicas; Enunciar

Leia mais

12 Qua 16 mar Coordenadas retangulares, representação Funções vetoriais paramétrica

12 Qua 16 mar Coordenadas retangulares, representação Funções vetoriais paramétrica Aula Data Aula Detalhes 1 Qua 3 fev Introdução Apresentação e avisos 2 Sex 5 fev Revisão Resumo dos pré-requisitos Qua 10 fev Feriado Carnaval 3 Sex 12 fev Soma de Riemann Área, soma superior e inferior

Leia mais

3 a. FASE DO CONCURSO VESTIBULAR DO BACHARELADO EM ESTATÍSTICA 1 a. PROVA DA DISCIPLINA: CE065 ELEMENTOS BÁSICOS PARA ESTATÍSTICA CANDIDATO:

3 a. FASE DO CONCURSO VESTIBULAR DO BACHARELADO EM ESTATÍSTICA 1 a. PROVA DA DISCIPLINA: CE065 ELEMENTOS BÁSICOS PARA ESTATÍSTICA CANDIDATO: 3 a. FASE DO CONCURSO VESTIBULAR DO BACHARELADO EM ESTATÍSTICA a. PROVA DA DISCIPLINA: CE65 ELEMENTOS BÁSICOS PARA ESTATÍSTICA CANDIDATO: a. Questão (valor,): Resolva de forma clara e detalhada as questões

Leia mais

CÁLCULO I Aula 03: Funções Logarítmicas, Exponenciais e

CÁLCULO I Aula 03: Funções Logarítmicas, Exponenciais e CÁLCULO I Aula 03: s, e. Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará 1 2 3 4 A Seja x > 0. Denimos a função logarítmica natural como sendo a função dada pela medida da área

Leia mais

PROVA 3 conhecimentos específicos

PROVA 3 conhecimentos específicos PROVA conhecimentos específicos MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Central do Vestibular Unificado GABARITO

Leia mais

O ESTUDO DAS FUNÇÕES INTRODUÇÃO

O ESTUDO DAS FUNÇÕES INTRODUÇÃO O ESTUDO DAS FUNÇÕES INTRODUÇÃO DEFINIÇÃO As funções explicitam relações matemáticas especiais entre duas grandezas. As grandezas envolvidas nessas relações são conhecidas como variável dependente

Leia mais

Limites de Funções. Bases Matemáticas. 2 o quadrimestre de o quadrimestre de / 57

Limites de Funções. Bases Matemáticas. 2 o quadrimestre de o quadrimestre de / 57 2 o quadrimestre de 2017 2 o quadrimestre de 2017 1 / Visão Geral 1 Limites Finitos Limite para x ± 2 Limites infinitos Limite no ponto Limite para x ± 3 Continuidade Definição e exemplos Resultados importantes

Leia mais

MÉTODOS MATEMÁTICOS. Claudia Mazza Dias Sandra Mara C. Malta

MÉTODOS MATEMÁTICOS. Claudia Mazza Dias Sandra Mara C. Malta MÉTODOS MATEMÁTICOS Claudia Mazza Dias Sandra Mara C. Malta 1 Métodos Matemáticos Aulas: De 03/11 a 08/11-8:30 as 11:00h Ementa: 1. Funções 2. Eq. Diferenciais Ordinárias de 1 a ordem 3. Sistemas de Equações

Leia mais

Exercício 1 Dê o valor, caso exista, que a função deveria assumir no ponto dado para. em p = 9

Exercício 1 Dê o valor, caso exista, que a função deveria assumir no ponto dado para. em p = 9 Exercícios - Limite e Continuidade-1 Exercício 1 Dê o valor, caso exista, que a função deveria assumir no ponto dado para ser contínua: (a) f(x) = x2 16 x 4 (b) f(x) = x3 x x em p = 4 em p = 0 (c) f(x)

Leia mais

Pre-calculo 2013/2014

Pre-calculo 2013/2014 . Números reais, regras básicas de cálculo com fracções, expoentes e radicais Sumário: Número reais, regras básicas de cálculo com fracções, expoentes e radicais. Ler secções. e. do livro adoptado.. Pre-calculo

Leia mais

NOTAÇÕES A. ( ) 0. B. ( ) 1. C. ( ) 2. D. ( ) 4. E. ( ) 8. são disjuntos, A B=

NOTAÇÕES A. ( ) 0. B. ( ) 1. C. ( ) 2. D. ( ) 4. E. ( ) 8. são disjuntos, A B= NOTAÇÕES = {,,,...} : conjunto dos números reais : conjuntodos números complexos [ ab, ] = { x ; a x b} ( a, + ) = a, + = { x ; a< x < + } A\ B= { x A; x B} A : complementar doconjunto A i :unidade imaginária;

Leia mais

PROVA 3 conhecimentos específicos

PROVA 3 conhecimentos específicos PROVA conhecimentos específicos MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Central do Vestibular Unificado GABARITO

Leia mais

PROVA 3 conhecimentos específicos

PROVA 3 conhecimentos específicos PROVA conhecimentos específicos MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Central do Vestibular Unificado GABARITO

Leia mais

PROVA 3 conhecimentos específicos

PROVA 3 conhecimentos específicos PROVA conhecimentos específicos MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Central do Vestibular Unificado GABARITO

Leia mais

1. Arcos de mais de uma volta. Vamos generalizar o conceito de arco, admitindo que este possa dar mais de uma volta completa na circunferência.

1. Arcos de mais de uma volta. Vamos generalizar o conceito de arco, admitindo que este possa dar mais de uma volta completa na circunferência. UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Trigonometria II Prof.: Rogério

Leia mais

Trigonometria no Círculo - Funções Trigonométricas

Trigonometria no Círculo - Funções Trigonométricas Trigonometria no Círculo - Funções Trigonométricas Prof. Márcio Nascimento marcio@matematicauva.org Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em

Leia mais

A derivada da função inversa, o Teorema do Valor Médio e Máximos e Mínimos - Aula 18

A derivada da função inversa, o Teorema do Valor Médio e Máximos e Mínimos - Aula 18 A derivada da função inversa, o Teorema do Valor Médio e - Aula 18 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 10 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014106

Leia mais

FUNÇÕES Parte 2 Disciplina: Lógica Aplicada Prof. Rafael Dias Ribeiro. Autoria: Prof. Denise Candal

FUNÇÕES Parte 2 Disciplina: Lógica Aplicada Prof. Rafael Dias Ribeiro. Autoria: Prof. Denise Candal FUNÇÕES Parte 2 Disciplina: Lógica Aplicada Prof. Rafael Dias Ribeiro Autoria: Prof. Denise Candal Função Quadrática ou do 2 o grau Definição: Toda função do tipo y = ax 2 + bx + c, com {a, b, c} R e a

Leia mais

9º Ano do Ensino Fundamental II:

9º Ano do Ensino Fundamental II: Conteúdos para III Simulado SDP/Outubro/2010 MATEMÁTICA 9º Ano do Ensino Fundamental II: CAPÍTULO I - NOÇÕES ELEMENTARES DE ESTATÍSTICA 1. Organizando os dados 2. Estudando gráficos 3. Estudando médias

Leia mais

Prova Final de Matemática a Nível de Escola Prova 82/1ª Fase 2018 Caderno Único: Página 1/9

Prova Final de Matemática a Nível de Escola Prova 82/1ª Fase 2018 Caderno Único: Página 1/9 Prova Final de Matemática a Nível de Escola 3º Ciclo do Ensino Básico Decreto-Lei nº139/01, de 5 de julho Prova 8/1ª Fase 9 Páginas Duração da Prova (CADERNO ÚNICO): 90 minutos. Tolerância: 30 minutos.

Leia mais

a) 7. b) 6. c) 5. d) 1. e) -1. a) 1 b) 1. c) 1. d) 1. e) 3.

a) 7. b) 6. c) 5. d) 1. e) -1. a) 1 b) 1. c) 1. d) 1. e) 3. TRIGONOMETRIA CIRCULAR ) (UFRGS) Se θ = 8 o, então a) tg θ < cos θ < sen θ. b) sen θ < cos θ < tg θ. c) cos θ < sen θ < tg θ. d) sen θ < tg θ < cos θ. e) cos θ < tg θ < sen θ. ) (UFRGS) O menor valor que

Leia mais

Universidade Federal Fluminense - UFF-RJ

Universidade Federal Fluminense - UFF-RJ Anotações sobre equações funcionais Rodrigo Carlos Silva de Lima Universidade Federal Fluminense - UFF-RJ rodrigo.uff.math@gmail.com 1 Sumário 1 Equacões funcionais 3 1.1 f(x + y) = f(x).f(y)..............................

Leia mais

MAT111 - Cálculo I - IF TRIGONOMETRIA. As Funçoes trigonométricas no triângulo retângulo

MAT111 - Cálculo I - IF TRIGONOMETRIA. As Funçoes trigonométricas no triângulo retângulo MAT111 - Cálculo I - IF - 010 TRIGONOMETRIA As Funçoes trigonométricas no triângulo retângulo Analisando a figura a seguir, temos que os triângulos retângulos OA 1 B 1 e OA B, são semelhantes, pois possuem

Leia mais

FUNÇÕES TRIGONOMÉTRICAS E FUNÇÕES TRIGONOMÉTRICAS INVERSAS

FUNÇÕES TRIGONOMÉTRICAS E FUNÇÕES TRIGONOMÉTRICAS INVERSAS FUNÇÕES TRIGONOMÉTRICAS E FUNÇÕES TRIGONOMÉTRICAS INVERSAS 1. FUNÇÕES TRIGONOMÉTRICAS 1.1. FUNÇÃO SENO Seja P a imagem de um ângulo no ciclo trigonométrico. Já vimos que o seno do ângulo é definido como

Leia mais

Mais funções e limites

Mais funções e limites Capítulo 3 Mais funções e ites Nesse capítulo, abordaremos as funções invertíveis, além de algumas classes especiais de funções: trignométricas, exponenciais, logarítmicas e hiperbólicas. 3.1 Funções Inversas

Leia mais

REVISÃO - DESIGUALDADE, MÓDULO E FUNÇÕES

REVISÃO - DESIGUALDADE, MÓDULO E FUNÇÕES REVISÃO - DESIGUALDADE, MÓDULO E FUNÇÕES Marina Vargas R. P. Gonçalves a a Departamento de Matemática, Universidade Federal do Paraná, marina.vargas@gmail.com, http:// www.estruturas.ufpr.br 1 REVISÃO

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia II 1 a lista de exercícios

MAT Cálculo Diferencial e Integral para Engenharia II 1 a lista de exercícios MAT454 - Cálculo Diferencial e Integral para Engenharia II 1 a lista de exercícios - 008 POLINÔMIO DE TAYLOR 1. Utilizando o polinômio de Taylor de ordem, calcule um valor aproximado e avalie o erro: a)

Leia mais

AFA Sabe-se que o isótopo do carbono, C 14, tem uma meia vida de 5760 anos, isto é, o número N de átomos de C 14 na substância é

AFA Sabe-se que o isótopo do carbono, C 14, tem uma meia vida de 5760 anos, isto é, o número N de átomos de C 14 na substância é AFA 7. Uma pessoa caminha, ininterruptamente, a partir de um marco inicial, com velocidade constante, em uma pista circular. Ela chega à marca dos 5 m quando são exatamente 5 horas. Se às 5 horas e 5 minutos

Leia mais

Trigonometria e funções trigonométricas. Funções trigonométricas O essencial

Trigonometria e funções trigonométricas. Funções trigonométricas O essencial Trigonometria e funções trigonométricas Funções trigonométricas O essencial Funções seno e cosseno Designa-se por função seno (respetivamente, função cosseno) e representa-se por sin ou sen (respetivamente,

Leia mais

NOTAÇÕES. R N C i z. ]a, b[ = {x R : a < x < b} (f g)(x) = f(g(x)) n. = a 0 + a 1 + a a n, sendo n inteiro não negativo.

NOTAÇÕES. R N C i z. ]a, b[ = {x R : a < x < b} (f g)(x) = f(g(x)) n. = a 0 + a 1 + a a n, sendo n inteiro não negativo. R N C i z det A d(a, B) d(p, r) AB Â NOTAÇÕES : conjunto dos números reais : conjunto dos números naturais : conjunto dos números complexos : unidade imaginária: i = 1 : módulo do número z C : determinante

Leia mais

EXERCÍCIOS 2006 APOSTILA MATEMÁTICA

EXERCÍCIOS 2006 APOSTILA MATEMÁTICA EXERCÍCIOS 2006 APOSTILA MATEMÁTICA Professor: LUIZ ANTÔNIO 1 >>>>>>>>>> PROGRESSÃO ARITMÉTICA P. A.

Leia mais

Modelos Matemáticos: Uma Lista de Funções Essenciais

Modelos Matemáticos: Uma Lista de Funções Essenciais Modelos Matemáticos: Uma Lista de Funções Essenciais Campus Francisco Beltrão Disciplina: Professor: Jonas Joacir Radtke Um modelo matemático é a descrição matemática de um fenômeno do mundo real, como

Leia mais

MATEMÁTICA MÓDULO 10 EQUAÇÕES E INEQUAÇÕES TRIGONOMÉTRICAS 1. EQUAÇÕES TRIGONOMÉTRICAS BÁSICAS 1.1. EQUAÇÃO EM SENO. sen a arcsena 2k, k arcsena 2k, k

MATEMÁTICA MÓDULO 10 EQUAÇÕES E INEQUAÇÕES TRIGONOMÉTRICAS 1. EQUAÇÕES TRIGONOMÉTRICAS BÁSICAS 1.1. EQUAÇÃO EM SENO. sen a arcsena 2k, k arcsena 2k, k EQUAÇÕES E INEQUAÇÕES TRIGONOMÉTRICAS. EQUAÇÕES TRIGONOMÉTRICAS BÁSICAS Vamos mostrar como resolver equações trigonométricas básicas, onde temos uma linha trigonométrica aplicada sobre uma função e igual

Leia mais

RESUMÃO DE MATEMÁTICA PARA EsPCEx

RESUMÃO DE MATEMÁTICA PARA EsPCEx Prof. Arthur Lima, RESUMÃO DE MATEMÁTICA PARA EsPCEx Olá! Veja abaixo um resumo com os principais assuntos para a prova da EsPCEx! Bons estudos! Prof. Arthur Lima Equação de 1º grau b é do tipo ax b 0.

Leia mais

Equações e Funções Trigonométricas

Equações e Funções Trigonométricas CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2013.2 Equações e Funções Trigonométricas Isabelle da Silva Araujo - Engenharia de Produção Equações Trigonométricas Equações trigonométricas são aquelas

Leia mais

CÁLCULO I. Figura 1: Círculo unitário x2 + y 2 = 1

CÁLCULO I. Figura 1: Círculo unitário x2 + y 2 = 1 CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Prof. Emerson Veiga Prof. Tiago Coelho Aula no 04: Funções Trigonométricas, Logarítmica, Exponencial e Hiperbólicas. Objetivos

Leia mais

CONTEÚDOS PARA BANCA MATEMÁTICA II. EDITAL Mestres e Doutores

CONTEÚDOS PARA BANCA MATEMÁTICA II. EDITAL Mestres e Doutores CONTEÚDOS PARA BANCA MATEMÁTICA II EDITAL 07-2010 Mestres e Doutores 1- Trigonometria: identidades trigonométricas e funções circulares; a) Defina função periódica e encontre o período das funções circulares,

Leia mais

Relações. George Darmiton da Cunha Cavalcanti CIn - UFPE

Relações. George Darmiton da Cunha Cavalcanti CIn - UFPE Relações George Darmiton da Cunha Cavalcanti CIn - UFPE Relações Binárias Sejam X e Y dois conjuntos. Uma relação entre X e Y é um subconjunto de produto cartesiano X Y. No caso de X = Y, a uma relação

Leia mais

x 5 Df (( x))= ]0; 5[ ]5; + [

x 5 Df (( x))= ]0; 5[ ]5; + [ Resoluções das atividades adicionais Capítulo Grupo A x. a) f( x) x + 7 x + 7 0 x 7 Df (( x)) R { 7} x b) f( x) x x 0 e x 0 x 0e x. Df (( x)) ]0; [ ]; + [. a) O ponto onde o gráfico de f corta o eixo O

Leia mais

ln(x + y) (x + y 1) < 1 (x + y 1)2 3. Determine o polinômio de Taylor de ordem 2 da função dada, em volta do ponto dado:

ln(x + y) (x + y 1) < 1 (x + y 1)2 3. Determine o polinômio de Taylor de ordem 2 da função dada, em volta do ponto dado: ā Lista de MAT 454 - Cálculo II - a) POLINÔMIOS DE TAYLOR 1. Seja f(x, y) = ln (x + y). a) Determine o polinômio de Taylor de ordem um de f em torno de ( 1, 1 ). b) Mostre que para todo (x, y) IR com x

Leia mais

CÁLCULO I. Efetuar transformações no gráco de uma função. Aplicando esse teste às seguintes funções, notamos que

CÁLCULO I. Efetuar transformações no gráco de uma função. Aplicando esse teste às seguintes funções, notamos que CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 03: Funções Inversas e Compostas.Transformações no Gráco de uma Função. Objetivos da Aula Denir função bijetora e função

Leia mais

RESOLUÇÕES LISTA 02. b) FALSA, pois para termos a equação de uma reta em um certo ponto a função deve ser derivável naquele ponto.

RESOLUÇÕES LISTA 02. b) FALSA, pois para termos a equação de uma reta em um certo ponto a função deve ser derivável naquele ponto. UNIVERSIDADE ESTADUAL VALE DO ACARAÚ CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS CAMPUS DA CIDAO CURSO DE MATEMÁTICA CÁLCULO NUMÉRICO JOSÉ CLAUDIMAR DE SOUSA RESOLUÇÕES LISTA 02 QUESTÃO 1 a) Pela equação

Leia mais

1. Considere os conjuntos A = {0; 2} e B = {1; 2; 3}. A respeito de produto cartesiano entre dois conjuntos, assinale a alternativa correta:

1. Considere os conjuntos A = {0; 2} e B = {1; 2; 3}. A respeito de produto cartesiano entre dois conjuntos, assinale a alternativa correta: . Considere os conjuntos A = {0; 2} e B = {; 2; 3}. A respeito de produto cartesiano entre dois conjuntos, assinale a alternativa correta: a. AxB = {(0; ); (0; 2); (0; 3); (2; ); (2; 2); (2; 3)} b. BxA

Leia mais

Função Exponencial, Inversa e Logarítmica

Função Exponencial, Inversa e Logarítmica CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.1 Função Exponencial, Inversa e Logarítmica Bruno Conde Passos Engenharia Civil Rodrigo Vanderlei - Engenharia Civil Função Exponencial Dúvida: Como

Leia mais

Lista 6 - Bases Matemáticas

Lista 6 - Bases Matemáticas Lista 6 - Bases Matemáticas Funções - Parte 1 Conceitos Básicos e Generalidades 1 Sejam dados A e B conjuntos não vazios. a) Defina rigorosamente o conceito de função de A em B. b) Defina rigorosamente

Leia mais