Funções de duas (ou mais)
|
|
|
- Levi Domingues Cesário
- 9 Há anos
- Visualizações:
Transcrição
1 Lista 5 - CDI II Funções de duas (ou mais) variáveis. Seja f(x, y) = x+y x y, calcular: f( 3, 4) f( 2, 3 ) f(x +, y ) f( x, y) f(x, y) 2. Seja g(x, y) = x 2 y, obter: g(3, 5) g( 4, 9) g(x + 2, 4x + 4) g( x, 3 x 2 ) 3. Seja f(x, y, z) = 4 x 2 y 2 z 2, calcular: f(,, ) f(, 2, 3 2 ) f( 2 x, 2 y, 2 z) [f(x, y, z)] 2 [f(x + 2, y + 2, z)] 2 4. Seja g(x, y, z) = 4 x 2 +y 2 +z 2 9, determinar: g(, 2, 3) g(2, 2, 3 2 ) g( 2 x, 2 x, x ) g(x + 2,, x 2) 5. Seja f(x, y, z, t) = x 2 y 3 z + t, determine f( 5, 2, π, 3π). Seja f(x, x 2,..., x n ) = kx k. Determine f(,,..., ). n k= Seja f(u, v, λ, φ) = e u+v cos λtgφ. Determine f( 2, 2, 0, π/4). Seja f(x, x 2,..., x n ) = x 2 +x x 2 n. Determine f(, 2,..., n). 6. Obter o domínio das funções abaixo: f(x, y) = x 2 +y 2 f(x, y) = x 2 y 2 f(x, y) = x 2 + y 2 f(x, y) = x 2 y 2 (e) f(x, y) = x4 y 4 x 2 y 2 (f) f(x, y) = cos (x y) (g) f(x, y) = ln(xy ) (h) f(x, y, z) = ln x + ln y + ln z (i) f(x, y, z) = ln(4 x 2 y 2 ) + z (j) f(x, y, z) = xz cos (y 2 ) 7. Faça um esboço do gráfico das funções: f(x, y) = 6 x 2 y 2 f(x, y) = 6 x 2 y 2 f(x, y) = x 2 y 2 f(x, y) = 4x 2 + 9y 2 8. Faça um esboço dos mapas de contorno das funções: f(x, y) = 6 x 2 y 2 em 0,, 2, 3 e 4; f(x, y) = 6 x 2 y 2 em 0, 6, 2, 0, -2, -6 e -0;
2 f(x, y) = x 2 y 2 em 6, 9, 4, 0, -4, -9 e -6; f(x, y) = 2 (x2 + y 2 ) em 8, 6, 4, 2 e 0; (e) f(x, y) = x 2 + y 2 em k = 2,, 0,, Calcular h(x, y), se h = f g, sendo f(t) = sen t e g(x, y) = x 2 y 2. Obtenha também o domínio de h(x, y). 0. Calcular h(x, y), se h = f g, sendo f(t) = e t e g(x, y) = y ln x. Obtenha também o domínio de h(x, y).. Dada f(x, y) = x y, g(t) = t, h(s) = s 2. Ache: (g f)(5, ) f(h(3), g(9)) f(g(x), h(y)) g((h f)(x, y)). 2. Dada f(x, y) = x y, g(t) = t, h(s) = s 2. Ache: (g f)(5, ) f(h(3), g(9)) f((g(x), h(y)) g((h f)(x, y)). 3. Se T (x, y) for a temperatura em um ponto (x, y) de uma placa delgada de metal no plano xy, então as curvas de nível de T são chamadas curvas isotérmicas. Todos os pontos sobre tal curva tem a mesma temperatura. Suponha que uma placa ocupa o primeiro quadrante T (x, y) = xy. Esboce as curvas isotérmicas sobre as quais T =, T = 2 e T = 3. Uma formiga, inicialmente em (, 4), anda sobre a placa de modo que a temperatura ao longo de sua trajetória permanece constante. Qual é a trajetória tomada pela formiga e qual é a temperatura ao longo de sua trajetória? 4. Esboce a região onde a função f é contínua. f(x, y) = y ln( + x) f(x, y) = x y f(x, y) = x 2 y 25 x 2 y 2 f(x, y) = ln(2x y + ) 5. Descreva a região na qual a função é contínua. f(x, y, z) = ln(4 x 2 y 2 z 2 ) f(x, y) = y+ x 2 +y 2 6. Calcule os seguintes ites: (e) (f) (x,y) (,3) (4xy2 x) (x,y) (/2,π) (xy2 sen xy) (x,y) (,2) xy 3 x + y (x,y) (, 3) e2x y2 ln( + x2 y 3 ) (x,y) (4, 2) x 3 y 3 + 2x 7. Mostre que o ite não existe considerando (x, y) (0, 0) ao longo dos eixos coordenados. 3 x 2 + 2y 2 2
3 x + y x + y 2 x y x 2 + y 2 cos xy x + y 8. Calcule o ite fazendo z = x 2 + y 2 e observando que z 0 + quando (x, y) (0, 0). sen(x 2 + y 2 ) x 2 + y 2 e /(x2 +y 2 ) cos(x 2 + y 2 ) ) x 2 + y 2 9. Verifique se o ite existe. Se existir, determine seu valor. xy 3x 2 + 2y 2 (x,y,z) (2,,2) xz 2 x2 + y 2 + z 2 ln(2x + y z) (x,y,z) (2,0, )) sen(x 2 + y 2 + z 2 ) (x,y,z) (0,0,0) x2 + y 2 + z Seja f(x, y) = x2 y x 4 + y 2, Mostre que f(x, y) 0 quando (x, y) (0, 0) ao longo de qualquer reta y = mx. Isso implica que f(x, y) 0 quando (x, y) (0, 0)? Explique. Mostre que f(x, y) 2 quando (x, y) (0, 0) ao longo da parábola y = x 2. Baseado nos itens anteriores podemos dizer que f(x, y) tem um ite quando (x, y) (0, 0)? Explique. 2. Mostre que o valor de xyz x 2 + y 4 + z 4 tende a 0 quando (x, y, z) (0, 0, 0) ao longo de qualquer reta x = at, y = bt, z = ct. Mostre que o (x,y,z) (0,0,0) xyz x 2 + y 4 + z 4 não existe tomando (x, y, z) (0, 0, 0), ao longo da curva x = t 2, y = t, z = t. 22. Seja f(x, y) = 3x 3 y 2. Determine: f x (x, y) f y (x, y) f x (, y) f x (x, ) (e) f y (, y) (f) f y (x, ) (g) f x (, 2) (h) f y (, 2) 23. Seja z = e 2x sen y. Determine: (e) z z z z (0,y) z (x,0) (0,y) (f) z (x,0) (g) z (h) z (ln 2,0) (ln 2,0) 24. Seja z = x cos y. Determine: 2 z 2 2 z 2 2 z 2 z 25. Seja f(x, y) = 4x 2 2y + 7x 4 y 5. Calcule: f xx f yy f xy f yx 26. Seja f(x, y) = 3x + 2y. Determine a inclinação da superfície z = f(x, y) na direção x no ponto (4,2). 3
4 Determine a inclinação da superfície z = f(x, y) na direção y no ponto (4,2). 27. Seja f(x, y) = xe y + 5y. Determine a inclinação da superfície z = f(x, y) na direção x no ponto (3,0). Determine a inclinação da superfície z = f(x, y) na direção y no ponto (3,0). 28. Seja z = sen(y 2 4x). Determine a taxa de variação de z em relação a x no ponto (2,) com y fixo. Determine a taxa de variação de z em relação a y no ponto (2,) com x fixo. 29. Seja z = (x + y). Determine a taxa de variação de z em relação a x no ponto (-2,4) com y fixo. Determine a taxa de variação de z em relação a y no ponto (-2,4) com x fixo. 30. Nos itens abaixo, determine z e z. z = 4e x2 y 3 ; z = cos(x 5 y 4 ); z = x 3 ln( + xy 3 5 ); z = e xy sen(4y 2 ); (e) z = xy x 2 +y 2 ; (f) z = x2 y 3 x+y. 3. Nos itens abaixo, determine f x (x, y) e f y (x, y). f(x, y) = 3x 5 y 7x 3 y; 32. Nos itens abaixo, calcule as derivadas parciais indicadas. f(x, y) = 9 x 2 7y 3, f x (3, ), f y (3, ); f(x, y) = x 2 ye xy, f f (, ), (, ); z = x 2 + 4y 2, z z (, 2), (, 2); w = x 2 cos(xy), w( w, π), (, π) Nos itens abaixo, confirme que as derivadas parciais de segunda ordem mistas de f são iguais. f(x, y) = 4x 2 8xy 4 + 7y 5 3; f(x, y) = x 2 + y 2 ; f(x, y) = e x cos y; f(x, y) = e x y2 ; (e) f(x, y) = ln(4x 5y). 34. Dada f(x, y) = x 3 y 5 2x 2 y + x, determine f xxy f yxy f yyy 35. Dada z = (2x y) 5, determine 3 z 3 z 4 z Dada f(x, y) = y 3 e 5x, determine f xyy (0, ) f xxx (0, ) f yyxx (0, ) 37. Dada w = e y cos x, determine 3 w 2 3 w 2 ( π 4,0) ( π 4,0) f(x, y) = x+y x y. 4
5 38. Expresse as seguintes derivadas em notação f xxx f xyy f yyxx f xyyy 39. Seja f(x, y, z) = x 2 y 4 z 3 + xy + z 2 +. Determine f x (x, y, z) f y (x, y, z) f z (x, y, z) f x (, y, z) (e) f y (, 2, z) (f) f z (, 2, 3) 40. Seja w = x 2 y cos z. Determine w (x, y, z) w (x, y, z) w (x, y, z) z w (2, y, z) (e) w (2,, z) (f) w (2,, 0) z 4. Nos itens abaixo determine w w. z w = ye z sen(xz) w = x2 y 2 y 2 +z 2 w = x 2 + y 2 + z 2 w = y 3 e 2x+3z, w 42. Seja f(x, y, z) = y 2 e xz. Determine f (,,) f z (,,) f (,,) 43. Seja w = x 2 + 4y 2 z 2. Determine w (2,, ) w z (2,, ) w (2,, ) 44. Seja f(x, y, z) = x 3 y 5 z 7 + xy 2 + y 3 z. Determine e f xy f yz f xz f zz (e) f zyy (f) f xxy (g) f zyx (h) f xxyz 45. Um ponto move-se ao longo do da intersecção do parabolóide elíptico z = x 2 + 3y 2 e o plano x = 2. A que taxa está z variando em relação a y quando o ponto está em (2,, 7)? 46. Um ponto move-se ao longo da intersecção do plano y = 3 e a superfície z = 29 x 2 y 2. A que taxa está z variando em relação a x quando o ponto está em (4, 3, 2)? 47. Determine a inclinação da reta tangente em (,, 5) para a curva de intersecção da superfície z = x 2 + 4y 2 e o plano x = o plano y = 48. O volume V de um cilindro circular reto é dado pela fórmula V = πr 2 h, onde r é o raio da base e h é a altura. Determine uma fórmula para a taxa de variação instantânea de V em relação a r se r varia e h permanece constante. Determine uma fórmula para a taxa de variação instantânea de V em relação a h se h varia e r permanece constante. Suponha que h tem um valor constante de 4 pol, mas r varia. Determine a taxa de variação de V em relação a r no ponto onde r = 6 pol. Suponha que r tem um valor constante de 8 pol, mas h varia. Determine a taxa de variação de V em relação a h no ponto onde h = 0 pol. 5
DERIVADAS PARCIAIS. y = lim
DERIVADAS PARCIAIS Definição: Seja f uma função de duas variáveis, x e y (f: D R onde D R 2 ) e (x 0, y 0 ) é um ponto no domínio de f ((x 0, y 0 ) D). A derivada parcial de f em relação a x no ponto (x
Lista de Exercícios de Cálculo 3 Módulo 1 - Terceira Lista - 02/2016
Lista de Exercícios de Cálculo 3 Módulo 1 - Terceira Lista - 02/2016 Parte A 1. Identifique e esboce as superfícies quádricas x 2 + 4y 2 + 9z 2 = 1 x 2 y 2 + z 2 = 1 (c) y = 2x 2 + z 2 (d) x = y 2 z 2
1. as equações paramétricas da reta que contém o ponto A e é perpendicular ao plano de equação x 2y + 3z = 17;
PROVA 1 09 de setembro de 2015 08h30 1 2 3 4 5 081 x = 1 + 3t 0811 Considere a reta L de equações paramétricas y = t z = 5 A = (5, 0, 2). Obtenha e o ponto 1. as equações paramétricas da reta que contém
Derivadas Parciais. Sumário. 1 Funções de Várias Variáveis. Raimundo A. R. Rodrigues Jr. 1 de agosto de Funções de Duas Variáveis.
Derivadas Parciais Raimundo A. R. Rodrigues Jr 1 de agosto de 2016 Sumário 1 Funções de Várias Variáveis 1 1.1 Funções de Duas Variáveis.............................. 1 1.2 Grácos........................................
MAT Lista de exercícios
1 Curvas no R n 1. Esboce a imagem das seguintes curvas para t R a) γ(t) = (1, t) b) γ(t) = (t, cos(t)) c) γ(t) = (t, t ) d) γ(t) = (cos(t), sen(t), 2t) e) γ(t) = (t, 2t, 3t) f) γ(t) = ( 2 cos(t), 2sen(t))
3 Cálculo Integral em R n
3 Cálculo Integral em n Exercício 3.. Calcule os seguintes integrais. Universidade da Beira Interior Matemática Computacional II Engenharia Informática 4/5 Ficha Prática 3 3 x + y dxdy x y + x dxdy e 3
(*) livro Cálculo Diferencial e Integral de Funções de Várias Variáveis, de Diomara e Cândida
Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Matemática Lista de Cálculo II- Funções de Várias Variáveis (*) livro Cálculo Diferencial e Integral de Funções de Várias
a definição de derivada parcial como limite do que aplicar as regras de derivação.)
2 a LISTA DE MAT 2454 - CÁLCULO II - POLI 2 o semestre de 2003. Ache as derivadas parciais de primeira ordem das funções : (a f(x, y = arctg y (b f(x, y, z, t = x y x z t 2. Seja f : IR IR uma função derivável.
MAT Cálculo Diferencial e Integral para Engenharia II 2 a Lista de Exercícios
MAT2454 - Cálculo Diferencial e Integral para Engenharia II 2 a Lista de Exercícios - 2012 1. Ache as derivadas parciais de primeira ordem das funções: ( y (a) f(x, y) = arctg (b) f(x, y) = ln(1+cos x)
Lista de Exercícios de Cálculo 3 Quarta Semana
Lista de Exercícios de Cálculo 3 Quarta Semana Parte A 1. Identifique e esboce as superfícies x 2 + 4y 2 + 9z 2 = 1 x 2 y 2 + z 2 = 1 (c) y = 2x 2 + z 2 (d) x = y 2 z 2 (e) 4x 2 16y 2 + z 2 = 16 (f) x
(d) f (x) = ln (x + 1) (e) f (x) = sinh (ax), a R. (f) f(x) = sin(3x)
Lista de Cálculo Diferencial e Integral I Derivadas 1. Use a denição para encontrar a primeira derivada de cada uma das funções abaixo. (a) f (x) x 1 2x + (b) f (x) x + 1 (d) f (x) ln (x + 1) (e) f (x)
MAT Cálculo II - FEA, Economia Calcule os seguintes limites, caso existam. Se não existirem, explique por quê: xy. (i) lim.
MAT0147 - Cálculo II - FEA, Economia - 2011 Prof. Gláucio Terra 2 a Lista de Exercícios 1. Calcule os seguintes limites, caso existam. Se não existirem, explique por quê: xy x 2 y (a) lim (f) lim (x,y)
CÁLCULO III - MAT Encontre todos os máximos locais, mínimos locais e pontos de sela nas seguintes funções:
UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e da Natureza Centro Interdisciplinar de Ciências da Natureza CÁLCULO III - MAT0036 9 a Lista de exercícios
MAT Cálculo Diferencial e Integral para Engenharia II 2 a lista de exercícios
MAT454 - Cálculo Diferencial e Integral para Engenharia II a lista de exercícios - 009 1. Ache as derivadas parciais de primeira ordem das funções: ( y (a) f(x, y) = arctg (b) f(x, y) = ln(1 + cos x) (xy
Cálculo 1 - Quinta Lista de Exercícios Derivadas
Cálculo 1 - Quinta Lista de Exercícios Derivadas Prof. Fabio Silva Botelho November 2, 2017 1. Seja f : D = R\{ 7/5} R onde 1 5x+7. Seja x D. Utilizando a definição de derivada, calcule f (x). Calcule
Derivadas Parciais Capítulo 14
Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS 14.3 Derivadas Parciais Nesta seção, nós aprenderemos sobre: Os vários aspectos de derivadas parciais. INTRODUÇÃO Em um dia quente, a umidade muito alta
Lista 2. (d) f (x, y) = x y x
UFPR - Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Matemática CM048 - Cálculo II - Matemática Diurno - 207/ Prof. Zeca Eidam Lista 2 Funções reais de duas e três variáveis.
ln(x + y) (x + y 1) < 1 (x + y 1)2 3. Determine o polinômio de Taylor de ordem 2 da função dada, em volta do ponto dado:
ā Lista de MAT 454 - Cálculo II - a) POLINÔMIOS DE TAYLOR 1. Seja f(x, y) = ln (x + y). a) Determine o polinômio de Taylor de ordem um de f em torno de ( 1, 1 ). b) Mostre que para todo (x, y) IR com x
Lista de Exercícios 4
Universidade do Estado de Mato Grosso UNEMAT Cursos de Engenharia Elétrica Disciplina de Cálculo Dif. e Int. II Semestre letivo 2018/1-21/04/2017 Prof a Vera Lúcia Vieira de Camargo Lista de Exercícios
Exercício 1 Dê o valor, caso exista, que a função deveria assumir no ponto dado para. em p = 9
Exercícios - Limite e Continuidade-1 Exercício 1 Dê o valor, caso exista, que a função deveria assumir no ponto dado para ser contínua: (a) f(x) = x2 16 x 4 (b) f(x) = x3 x x em p = 4 em p = 0 (c) f(x)
1. Resolva a desigualdade e exprima a solução em termos de intervalos, quando possível. (f) x + 3 < 0, 01. (g) 3x 7 5.
Lista de Exercícios de Cálculo I - Funções de uma variável Real 1. Resolva a desigualdade e exprima a solução em termos de intervalos, quando possível. (a) 2x + 5 < 3x 7 3 2x 3 5 7 (c) x 2 x 6 < 0 (d)
Lista 1. (1,0). (Neste caso, usar a definição de derivada parcial é menos trabalhoso do que aplicar as regras de derivação.
UFPR - Universidade Federal do Paraná Departamento de Matemática CM04 - Cálculo II Prof. José Carlos Eidam Lista Derivadas parciais, gradiente e diferenciabilidade. Ache as derivadas parciais de primeira
MAT Cálculo Diferencial e Integral para Engenharia II 3 a lista de exercícios
MAT44 - Cálculo Diferencial e Integral para Engenharia II a lista de exercícios - 01 1. Esboce a superfície de nível da função F : A R R para o nível c: a) F(x, y, z) = x+y+z e c = 1 b) F(x, y, z) = x
SEGUNDA CHAMADA CALCULO 2 2/2017
9/11/017 SEGUNDA CHAMADA CALCULO /017 PROF: RENATO FERREIRA DE VELLOSO VIANNA Questão 1,5 pontos). Resolva os problemas de valor inicial: y + 4y + 4y = e x {, y = xyy + 4), a) = y0) = 0, b) = y0) = 5.
MAT Cálculo II - POLI
MAT25 - Cálculo II - POLI Primeira Lista de Exercícios - 2006 TAYLOR 1. Utilizando o polinômio de Taylor de ordem 2, calcule um valor aproximado e avalie o erro: (a) 3 8, 2 (b) ln(1, 3) (c) sen (0, 1)
MAT Cálculo Diferencial e Integral para Engenharia II 1 a lista de exercícios
MAT454 - Cálculo Diferencial e Integral para Engenharia II 1 a lista de exercícios - 008 POLINÔMIO DE TAYLOR 1. Utilizando o polinômio de Taylor de ordem, calcule um valor aproximado e avalie o erro: a)
Fazer os exercícios 35, 36, 37, 38, 39, 40, 41, 42 e 43 da 1 a lista.
MAT 2454 - Cálculo II - POLI - 2 a Lista de Exercícios 2 o semestre de 2002 Fazer os exercícios 35, 36, 37, 38, 39, 40, 41, 42 e 43 da 1 a lista. 1. Calcule w t e w pela regra da cadeia e confira os resultados
Universidade Federal do Paraná
Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Matematica Prof. Juan Carlos Vila Bravo 1 ra Lista de exercicios de Cálculo Diferencial e Integral II FUNÇÕES DE VÁRIAS VARIÁVEIS
MAT Cálculo Diferencial e Integral para Engenharia II 3 a lista de exercícios
MAT 454 - Cálculo Diferencial e Integral para Engenharia II a lista de exercícios - 7. Ache os pontos do hiperbolóide x y + z = onde a reta normal é paralela à reta que une os pontos (,, ) e (5,, 6)..
Cálculo Diferencial e Integral II
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral II Ficha de trabalho 1 (versão de 6/0/009 (Esboço de Conjuntos. Topologia. Limites. Continuidade
NONA LISTA DE EXERCÍCIOS Cálculo III. MATEMÁTICA DCET UESC Humberto José Bortolossi Derivadas Parciais
NONA LISTA DE EXERCÍCIOS Cálculo III MATEMÁTICA DCET UESC Humberto José Bortolossi http://www.arbelos.kit.net Derivadas Parciais (Entregar os exercícios [02] (a), [03], [07], [14] e [30] até o dia 14/07/2003)
Derivadas Parciais - parte 1. 1) Determine as derivadas parciais de primeira ordem da função.
Terceira Lista de Exercícios Cálculo II - Engenharia de Produção ( extraída do livro C ÁLCULO - vol 2 James Stewart ) Derivadas Parciais - parte 1 1) Determine as derivadas parciais de primeira ordem da
Cálculo III. por PAULO XAVIER PAMPLONA
Cálculo III por PAULO XAVIER PAMPLONA CCTA/UFCG 15 Conteúdo 1 Funções de Várias Variáveis 4 1.1 Conceito de Funções de Várias Variáveis.................... 4 1. omínio e Imagem................................
EQUAÇÕES DIFERENCIAIS ORDINÁRIAS - Lista I
EQUAÇÕES DIFERENCIAIS ORDINÁRIAS - Lista I 1. Desenhe um campo de direções para a equação diferencial dada. Determine o comportamento de y quando t +. Se esse comportamento depender do valor inicial de
MAT Cálculo Diferencial e Integral para Engenharia II 3 a lista de exercícios
MAT454 - Cálculo Diferencial e Integral para Engenharia II a lista de exercícios - 014 1. Em cada caso, esboce a superfície de nível c da função F : R R: a) Fx, y, z) = x + y + z e c = 1 b) Fx, y, z) =
(c) f(x, y) = x 2 + y 2. (3) Faça a correspondência entre a função dada e seu o gráfico. Justifique sua resposta.
UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA Quarta Lista de Exercícios de Cálculo II - MTM13 Prof. Júlio César do Espírito Santo (com colaboraçao
Universidade Federal do Paraná
Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Matematica Prof. Juan Carlos Vila Bravo 2 da Lista de exercicios de cálculo II FUNÇÕES DE VÁRIAS VARIÁVEIS 1. Represente graficamente
DERIVADAS PARCIAIS. Seção 14.3
DERIVDS PRCIIS Seção 14.3 Section 14.3 Seja I o índice de temperatura aparente do ar (humidex) I = f(t, H), sendo T: temperatura real e H: umidade relativa (%) Digite a equação aqui. 2 Section 14.2 Seja
Matemática Complementos de Funções. Professor Marcelo Gonsalez Badin
Matemática Complementos de Funções Professor Marcelo Gonsalez Badin Paridade Função PAR f (x) é chamada FUNÇÃO PAR se f ( x) = f (x) Exemplo: f (x) = x 4 f ( x) = ( x) 4 = x 4 = f (x) O gráfico de uma
MAT Cálculo Diferencial e Integral para Engenharia II 2 a lista de exercícios
MAT2454 - Cálculo Diferencial e Integral para Engenharia II 2 a lista de exercícios - 2011 1. Ache as derivadas parciais de primeira ordem das funções: ( y (a) f(x, y) =arctg (b) f(x, y) = ln(1 + cos x)
5. Determine o conjunto dos pontos em que a função dada é diferenciável. Justifique.
4 ā Lista de Exercícios de SMA-332- Cálculo II 1. Mostre que as funções dadas são diferenciáveis. a) f(x, y) = xy b) f(x, y) = x + y c) f(x, y) = x 2 y 2 d) f(x, y) = 1 xy e) f(x, y) = 1 x + y f) f(x,
MAT1153 / LISTA DE EXERCÍCIOS : CAMPOS CONSERVATIVOS, INTEGRAIS DE LINHA, TRABALHO E TEOREMA DE GREEN
MAT1153 / 2008.1 LISTA DE EXERCÍCIOS : CAMPOS CONSERVATIVOS, INTEGRAIS DE LINHA, TRABALHO E TEOREMA DE GREEN OBS: Faça os exercícios sobre campos conservativos em primeiro lugar. (1 Fazer exercícios 1:(c,
Ca lculo Vetorial. 2) Fac a uma corresponde ncia entre as func o es f e os desenhos de seus campos vetoriais gradientes.
Se tima Lista de Exercı cios a lculo II - Engenharia de Produc a o extraı da do livro A LULO - vol, James Stewart a lculo Vetorial 1) Determine o campo vetorial gradiente de f. a) f (x, y) = ln(x + y)
Lista 5: Rotacional, Divergente, Campos Conservativos, Teorema de Green
MAT 003 2 ō Sem. 207 Prof. Rodrigo Lista 5: Rotacional, Divergente, Campos Conservativos, Teorema de Green. Considere o campo de forças F (x, y) = f( r ) r, onde f : R R é uma função derivável e r = x
MAT Cálculo Diferencial e Integral para Engenharia II 1 a lista de exercícios
MAT2454 - Cálculo Diferencial e Integral para Engenharia II 1 a lista de exercícios - 2011 CURVAS E SUPERFÍCIES 1. Desenhe as imagens das seguintes curvas: (a) γ(t) =(1, t) (b) γ(t) =(cos 2 t,sent), 0
Cálculo II Lista 5. com respostas
Cálculo II Lista 5. com respostas Exercício 1. Determine os pontos críticos das funções dadas e classifique-os, decidindo se são pontos de máximo local, de mínimo local ou de sela: (a) f(x, y) = x 2 +
Derivadas direcionais Definição (Derivadas segundo um vector): f : Dom(f) R n R e P 0 int(dom(f)) então
Derivadas direcionais Definição (Derivadas segundo um vector): f : Dom(f) R n R e P 0 int(dom(f)) então Seja D v f(p 0 ) = lim λ 0 f(p 0 + λ v) f(p 0 ) λ v representa a derivada direcional de f segundo
CEFET/RJ - Cálculo a Várias Variáveis Professor: Roberto Thomé e-mail: [email protected] homepage: www.rcthome.pro.br LISTA DE EXERCÍCIOS 01
CEFET/RJ - Cálculo a Várias Variáveis Professor: Roberto Thomé e-mail: [email protected] homepage: www.rcthome.pro.br LISTA DE EXERCÍCIOS 01 1) Seja f = 36 9x 2 4y 2. Então : (a) Calcule f, f(2, 0) e
PROFESSOR: RICARDO SÁ EARP
LISTA DE EXERCÍCIOS SOBRE TRABALHO, CAMPOS CONSERVATIVOS, TEOREMA DE GREEN, FLUXO DE UM CAMPO AO LONGO DE UMA CURVA, DIVERGÊNCIA E ROTACIONAL DE UM CAMPO NO PLANO, FUNÇÕES HARMÔNICAS PROFESSOR: RICARDO
4 o Roteiro de Atividades: reforço da segunda parte do curso de Cálculo II Instituto de Astronomia e Geofísica
4 o Roteiro de Atividades: reforço da segunda parte do curso de Cálculo II Instituto de Astronomia e Geofísica Objetivo do Roteiro Pesquisa e Atividades: Teoremas de diferenciabilidade de funções, Vetor
Cálculo Diferencial Lista de Problemas 1.2 Prof. Marco Polo
Cálculo Diferencial - 2016.2 - Lista de Problemas 1.2 1 Cálculo Diferencial Lista de Problemas 1.2 Prof. Marco Polo Questão 01 O ponto P (2, 1) está sobre a curva y = 1/(1 x). (a) Se Q é o ponto (x, 1/(1
MAT Cálculo Diferencial e Integral para Engenharia III 1a. Lista de Exercícios - 1o. semestre de x+y
MAT455 - Cálculo Diferencial e Integral para Engenharia III a. Lista de Exercícios - o. semestre de. Calcule as seguintes integrais duplas: (a) R (y 3xy 3 )dxdy, onde R = {(x, y) : x, y 3}. Resp. (a) 585
Derivadas 1
www.matematicaemexercicios.com Derivadas 1 Índice AULA 1 Introdução 3 AULA 2 Derivadas fundamentais 5 AULA 3 Derivada do produto e do quociente de funções 7 AULA 4 Regra da cadeia 9 www.matematicaemexercicios.com
Soluções abreviadas de alguns exercícios
Tópicos de cálculo para funções de várias variáveis Soluções abreviadas de alguns exercícios Instituto Superior de Agronomia - 2 - Capítulo Tópicos de cálculo diferencial. Domínio, curva de nível e gráfico.
Universidade Federal de Alagoas Instituto de Matemática Curso de Graduação em Matemática. Banco de Questões
Universidade Federal de Alagoas Instituto de Matemática Curso de Graduação em Matemática Banco de Questões Cálculo 1 Maceió, Brasil 11 de Março de 2010 Sumário 1 2005 3 1.1 1 a Avaliação-21 de fevereiro
Complementos de Análise Matemática
Instituto Politécnico de Viseu Escola Superior de Tecnologia Departamento: Matemática Ficha prática n o 1 - Cálculo Diferencial em IR n 1. Para cada um dos seguintes subconjuntos de IR, IR 2 e IR 3, determine
3xz dx + 4yz dy + 2xy dz, do ponto A = (0, 0, 0) ao ponto B = (1, 1, 2), ao longo dos seguintes caminhos:
Lista álculo III -A- 201-1 10 Universidade Federal Fluminense EGM - Instituto de Matemática GMA - Departamento de Matemática Aplicada LISTA - 201-1 Integral de Linha de ampo Vetorial Teorema de Green ampos
MAT Cálculo Diferencial e Integral para Engenharia III 1a. Lista de Exercícios - 1o. semestre de 2013
MAT55 - Cálculo iferencial e Integral para Engenharia III a. Lista de Exercícios - o. semestre de. Calcule as seguintes integrais duplas: (a) (y xy )dxdy, onde = {(x, y) : x, y }. esp. (a) 585 8. (b) x
Lista Determine o volume do sólido contido no primeiro octante limitado pelo cilindro z = 9 y 2 e pelo plano x = 2.
UFPR - Universidade Federal do Paraná Departamento de Matemática CM042 - Cálculo II (Turma B) Prof. José Carlos Eidam Lista 3 Integrais múltiplas. Calcule as seguintes integrais duplas: (a) R (2y 2 3x
Nome: Gabarito Data: 28/10/2015. Questão 01. Calcule a derivada da função f(x) = sen x pela definição e confirme o resultado
Fundação Universidade Federal de Pelotas Departamento de Matemática e Estatística Curso de Licenciatura em Matemática - Diurno Segunda Prova de Cálculo I Prof. Dr. Maurício Zan Nome: Gabarito Data: 8/0/05.
Lista de Exercícios de Cálculo 3 Sexta Semana
Lista de Exercícios de Cálculo 3 Sexta Semana Parte A 1. (i) Encontre o gradiente das funções abaixo; (ii) Determine o gradiente no ponto P dado; (iii) Determine a taxa de variação da função no ponto P
Universidade Federal de Uberlândia
Universidade Federal de Uberlândia Faculdade de Matemática 2 a Prova de Matemática 2 - Data: 03/06/2016 Curso: Agronomia - Turma: M Professor: Germano Abud de Rezende GABARITO Escreva a resposta à caneta.
9 ạ Lista de Exercícios de Cálculo II Integrais Triplas: Coordenadas Retangulares, Cilíndricas e Esféricas; Mudança de Variáveis
9 ạ Lista de Exercícios de Cálculo II Integrais Triplas: Coordenadas Retangulares, Cilíndricas e Esféricas; Mudança de Variáveis Professora: Michelle Pierri Exercício 1 Encontre o volume do sólido limitado
CÁLCULO II - MAT0023. Nos exercícios de (1) a (4) encontre x e y em termos de u e v, alem disso calcule o jacobiano da
UNIVEIDADE FEDEAL DA INTEGAÇÃO LATINO-AMEICANA Instituto Latino-Americano de Ciências da Vida e da Natureza Centro Interdisciplinar de Ciências da Natureza CÁLCULO II - MAT3 15 a Lista de exercícios Nos
1. O raio de uma esfera está aumentando a uma taxa de 4 mm/s. Quão rápido o volume da esfera está aumentando quando o diâmetro for 80 mm?
MAT 001 1 ō Sem. 016 IMC UNIFEI Lista 4: Aplicações da Derivação 1. O raio de uma esfera está aumentando a uma taxa de 4 mm/s. Quão rápido o volume da esfera está aumentando quando o diâmetro for 80 mm?.
Derivadas Parciais - parte 2. x + 2 z. y = 1
Quarta Lista de Exercícios Cálculo II - Engenharia de Produção ( extraída do livro C ÁLCULO - vol, James Stewart ) Derivadas Parciais - parte 1) Verifique que a função u = 1/ x + y + z é uma solução da
2 o semestre de Calcule os seguintes limites, caso existam. Se não existirem, justifique por quê:
MAT2454 - Cálculo II - POLI - 2 a Lista de Eercícios 2 o semestre de 2004. Calcule os seguintes ites, caso eistam. Se não eistirem, justifique por quê: (a) (b) (c) (d) (e) y 2 + y 2 (f) 2 y cos( 2 + y
Cálculo II. Derivadas Parciais
Cálculo II Derivadas Parciais (I) (II) Definição Se f é uma função de duas variáveis, suas derivadas parciais são as funções f x e f y definidas por f x ( x, y) lim h 0 f ( x h, y) f( x,
(x 1) 2 (x 2) dx 42. x5 + x + 1
I - Integrais Indefinidas ā Lista de Cálculo I - POLI - 00 Calcule as integrais indefinidas abaixo. Para a verificação das resposta lembre-se que f(x)dx = F (x), k IR F (x) = f(x), x D f.. x7 + x + x dx.
Lista 7 Funções de Uma Variável
Lista 7 Funções de Uma Variável Aplicações de Integração i) y = sec 2 (x) y = cos(x), x = π x = π Áreas 1 Determine a área da região em cinza: Ache a área da região delimitada pela parábola y = x 2 a reta
1. Determine o domínio de F e esboce a sua imagem: 5. Determine a equação da reta tangente à trajetória da função dada no ponto dado:.
1 MAT 121-2 a Lista de Exercícios 1. Determine o domínio de F e esboce a sua imagem: (a) F(t) = (t 2, t 2 ) (b) F(t) = (5 t 2, ln(5 t 2 ), t) (c) F(t) = ( 1 t, 4 2 t 2, 2) 2. Calcule as expressões de F
xy 2 (b) A função é contínua na origem? Justique sua resposta! (a) Calculando o limite pela reta y = mx:
NOME: UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Instituto de Matemática PRIMEIRA PROVA UNIFICADA CÁLCULO II Politécnica, Engenharia Química e Ciência da Computação 21/05/2013. 1 a QUESTÃO : Dada a função
Cálculo 3 Lista 2 Limites-Continuidade-Derivada Direcional-Derivada Parcial-Plano Tangente-Gradiente Prof. Rildo Soares. (f) lim. (g) lim.
Centro Federal de Educação Tecnológica Unidade de Nova Iguaçu Ensino de Graduação Matemática Cálculo 3 Lista Limites-Continuidade-Derivada Direcional-Derivada Parcial-Plano Tangente-Gradiente Prof. Rildo
Quarta lista de exercícios da disciplina SMA0353- Cálculo I
Quarta lista de exercícios da disciplina SMA0353- Cálculo I Exercícios da Seção 2.7 1. Uma curva tem por equação y = f(x). (a) Escreva uma expressão para a inclinação da reta secante pelos pontos P (3,
CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBIOM, MEFT 1 o SEM. 2014/15 2 a FICHA DE EXERCÍCIOS. k + e 1 x, x > 0 f(x) = x cos 1, x > 0
Instituto Superior Técnico Departamento de Matemática CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBIOM, MEFT 1 o SEM. 2014/15 2 a FICHA DE EXERCÍCIOS I. Continuidade de Funções. 1) Considere a função f :
Curvas de Nível, Limite e Continuidade
Curvas de Nível, Limite e Continuidade Luciana Borges Goecking Universidade Federal de Alfenas - Instituto de Ciências Exatas maio - 2017 Funções de várias variáveis Muitas funções dependem de mais de
Cálculo II Lista 4. com respostas
Cálculo II Lista 4. com respostas Exercício 1. Esboce a curva de nível de f(x, ) que passa pelo ponto P e desenhe o vetor gradiente de f em P: (a) f(x, ) = x ; P = ( 2, 2); 2 (b) f(x, ) = x 2 + 4 2 ; P
I. Cálculo Diferencial em R n
Análise Matemática II Mestrado Integrado em Engenharia Electrotécnica e de Computadores Ano Lectivo 2010/2011 2 o Semestre Exercícios propostos para as aulas práticas I. Cálculo Diferencial em R n Departamento
3.4. Determine o(s) ponto(s) da curva x =cost, y =sent, z =sen(t/2) mais distante(s) da origem.
3.1. Locallize e classifiqueospontoscríticosdafunçãoz = f (x, y). Determine se a função tem máximo ou mínimo absoluto em seu domínio. (a) z = xy (b) z =ln(xy) 2x 3y (c) z = xy 2 + x 2 y xy (d) z = x 2
Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente.
Aula 15 Derivadas Direcionais e Vetor Gradiente Seja f(x, y) uma função de variáveis. Iremos usar a notação D u f(x 0, y 0 ) para: Derivada direcional de f no ponto (x 0, y 0 ), na direção do vetor unitário
INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO
INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-454 Cálculo Diferencial e Integral II (Escola Politécnica) Primeira Lista de Exercícios - Professor: Equipe de Professores BONS ESTUDOS!.
DERIVADAS PARCIAIS. A derivada parcial de f em relação a y, no ponto (x, y), é o limite
Teoria DERIVADAS PARCIAIS Definições Básicas: A derivada parcial de f em relação a x, no ponto (x, y), é o limite f x (x, y) = lim f(x + x, y) f(x, y) x 0 x em que y é mantido constante. A derivada parcial
1.2. Curvas, Funções e Superfícies de Nível. EXERCÍCIOS 1. Desenhe as imagens das seguintes curvas, indicando o sentido de percurso:
. MAT - 047 CÁLCULO DIFERENCIAL E INTEGRAL II PARA ECÔNOMIA a LISTA DE EXERCÍCIOS - 07.. Retas e Planos. Faça alguns exercícios das seções.3 e.5 do livro Cáculo (vol.) de James Stewart... Curvas, Funções
Universidade Estadual de Montes Claros Departamento de Ciências Exatas Curso de Licenciatura em Matemática. Notas de Aulas de
Universidade Estadual de Montes Claros Departamento de Ciências Exatas Curso de Licenciatura em Matemática Notas de Aulas de Cálculo Rosivaldo Antonio Gonçalves Notas de aulas que foram elaboradas para
MAT Cálculo Diferencial e Integral para Engenharia III 1a. Lista de Exercícios - 1o. semestre de 2016
MAT55 - Cálculo iferencial e Integral para ngenharia III a. Lista de xercícios - o. semestre de 6. Calcule as seguintes integrais duplas: (a) (y xy )dxdy, onde = {(x, y) : x, y }. esp. (a) 585. 8 x sin
Universidade Federal do Paraná
Universidade Federal do Paraná etor de iências Exatas Departamento de Matematica Prof. Juan arlos Vila Bravo Lista de exercicios de cálculo II uritiba, 28 de Maio de 2014 INTEGRAL DE LINHA DE AMPO VETORIAL:
UNIVERSIDADE ESTADUAL DE SANTA CRUZ UESC. 1 a Avaliação escrita de Cálculo IV Professor: Afonso Henriques Data: 10/04/2008
1 a Avaliação escrita de Professor: Afonso Henriques Data: 10/04/008 1. Seja R a região do plano delimitada pelos gráficos de y = x, y = 3x 18 e y = 0. Se f é continua em R, exprima f ( x, y) da em termos
(7) Suponha que sobre uma certa região do espaço o potencial elétrico V é dado por V(x, y, z) = 5x 2 3xy + xyz.
1. MAT - 0147 CÁLCULO DIFERENCIAL E INTEGRAL II PARA ECÔNOMIA 3 a LISTA DE EXERCÍCIOS - 017 1) Em cada caso, esboce a superfície de nível c da função F : R 3 R: a) Fx, y, z) = x + y + 3z e c = 1 b) Fx,
14 AULA. Vetor Gradiente e as Derivadas Direcionais LIVRO
1 LIVRO Vetor Gradiente e as Derivadas Direcionais 14 AULA META Definir o vetor gradiente de uma função de duas variáveis reais e interpretá-lo geometricamente. Além disso, estudaremos a derivada direcional
CÁLCULO IV - MAT Calcule a integral de linha do campo vetorial f ao longo da curva que indica-se em cada um dos seguintes itens.
UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERIANA Instituto Latino-Americano de iências da Vida e da Natureza entro Interdisciplinar de iências da Natureza ÁLULO IV - MAT0041 1 a Lista de exercícios 1.
Diferenciabilidade de funções reais de várias variáveis reais
Diferenciabilidade de funções reais de várias variáveis reais Cálculo II Departamento de Matemática Universidade de Aveiro 2018-2019 Cálculo II 2018-2019 Diferenciabilidade de f.r.v.v.r. 1 / 1 Derivadas
MAT Cálculo a Várias Variáveis I Lista de Exercícios sobre Integração Dupla
MAT116 - Cálculo a Várias Variáveis I Lista de Exercícios sobre Integração Dupla 1 Exercícios Complementares resolvidos Exercício 1 Considere a integral iterada 1 ] exp ( x ) dx dy. x=y 1. Inverta a ordem
Cálculo Diferencial e Integral II
Cálculo Diferencial e Integral II Prof. Rodrigo dos Santos Veloso Martins Departamento Acadêmico de Matemática Universidade Tecnológica Federal do Paraná (Esta página é deixada em branco propositadamente.)
Cálculo a Várias Variáveis I - MAT Cronograma para P2: aulas teóricas (segundas e quartas)
Cálculo a Várias Variáveis I - MAT 116 0141 Cronograma para P: aulas teóricas (segundas e quartas) Aula 10 4 de março (segunda) Aula 11 6 de março (quarta) Referências: Cálculo Vol James Stewart Seções
21 e 22. Superfícies Quádricas. Sumário
21 e 22 Superfícies uádricas Sumário 21.1 Introdução....................... 2 21.2 Elipsoide........................ 3 21.3 Hiperboloide de uma Folha.............. 4 21.4 Hiperboloide de duas folhas..............
