EQUAÇÕES DIFERENCIAIS ORDINÁRIAS - Lista I

Tamanho: px
Começar a partir da página:

Download "EQUAÇÕES DIFERENCIAIS ORDINÁRIAS - Lista I"

Transcrição

1 EQUAÇÕES DIFERENCIAIS ORDINÁRIAS - Lista I 1. Desenhe um campo de direções para a equação diferencial dada. Determine o comportamento de y quando t +. Se esse comportamento depender do valor inicial de y em t = 0, descreva essa dependência. a) y = y R.: y quando t + b) y = y R.: y se afasta de quando t + c) y = + y R.: y se afasta de quando t + d) y = 1 y R.: y 1 quando t + e) y = 1 + y R.: y se afasta de 1 quando t + f) y = y + R.: y se afasta de quando t + g) y = + t y R.: y é assintótico a (t ) quando t + h) y = te t y R.: y 0 quando t + i) y = e t + y R.: y +, 0 ou, dependendo do valor inicial de y j) y = t + y R.: y + ou, dependendo do valor inicial de y k) y = sent y R.: y + ou ou y oscila, dependendo do valor inicial de y l) y = t 1 y R.: y ou é assintótico a t 1, dependendo do valor inicial de y.. Resolva cada um dos problemas de valor inicial e desenhe os grácos das soluções para diversos valores de y 0. a) y = y + 5, y(0) = y 0 R.: y = 5 + (y 0 5)e t b) y = y + 5, y(0) = y 0 R.: y = 5 + (y 0 5 )e t c) y = y + 10, y(0) = y 0 R.: y = 5 + (y 0 5)e t d) y = y 5, y(0) = y 0 R.: y = 5 + (y 0 5)e t e) y = y 5, y(0) = y 0 R.: y = 5 + (y 0 5 )et f) y = y 10, y(0) = y 0 R.: y = 5 + (y 0 5)e t. Considere a equação diferencial y = ay + b onde a e b são números positivos. a) Resolva a equação diferencial b) Esboce a solução para diversas condições iniciais diferentes c) Descreva como a solução muda sob cada uma das condições: (i) a aumenta; (ii) b aumenta; (iii) a e b aumentam, mas a razão b permanece constante. a R.: a) y = ce at + b ; c) (i) o equilíbrio é mais baixo e é aproximado mais rapidamente, (ii) o a equilíbrio é mais alto, (iii) o equilíbrio permanece o mesmo e é aproximado mais rapidamente. 1

2 4. Determine a ordem da equação diferencial e diga se ela é linear ou não-linear (derivadas parciais são denotadas por índices). a) t d y dt + t dy dt b) (1 + y ) d y dt c) d4 y dt 4 + d y dt + y = sent + t dy dt + y = et + d y dt d) dy dt + ty = 0 + dy dt + y = 1 R.: Segunda ordem, linear R.: Segunda ordem, não linear R.: Quarta ordem, linear R.: Primeira ordem, não linear e) d y + sen(t + y) = sent R.: Segunda ordem, não linear dt f) d y + t dy + dt dt (cos t)y = t R.: Terceira ordem, linear g) u xx + u yy + u zz = 0 R.: Segunda ordem, linear h) u xx + u yy + uu x + uu y + u = 0 R.:Segunda ordem, não linear i) u xxxx + u xxyy + u yyyy = 0 R.: Quarta ordem, linear j) u t + uu x = 1 + u xx R.: Segunda ordem, não linear 5. Verique que a função (ou funções) dada(s) é (são) solução (soluções) da equação diferencial. a) y y = 0; y(t) = e t b) y + y y = 0; y 1 (t) = e t, y (t) = e t c) ty y = t ; y(t) = t + t d) y + 4y + y = t; y 1 (t) = t, y (t) = e t + t e) t y + ty y = 0, t > 0; y 1 (t) = t 1, y (t) = t 1 f) t y + 5ty + 4y = 0, t > 0; y 1 (t) = t, y (t) = t ln t g) y + y = sect, 0 < t < π ; y(t) = (cos t) ln cos t + tsent h) u xx + u yy = 0; u(x, y) = ln(x + y ) i) α u xx = u t ; u(x, t) = e α t senx j) a u xx = u tt ; u(x, t) = sen(x at) 6. Encontre a solução geral das equações diferenciais abaixo e use-as para determinar o comportamento das soluções quando t +. a) y + y = t + e t R.: y = ce t + t e t ; y é assintótico a t 1 9 b) y y = t e t R.: y = ce t + t e t ; y + c) y + y = te t + 1 R.: y = ce t t e t ; y 1 d) y + 1y = cos t, t > 0 R.: y = c cos t + + sent ; y é assintótico a sent t t 4t e) y y = e t R.: y = ce t e t ; y + ou f) ty c t cos t+sent + y = sent, t > 0 R.: y = ; y 0 t g) y + ty = te t R.: y = t e t + ce t ; y 0 h) (1 + t )y + 4ty = (1 + t ) R.: y = arctgt+c (1+t ), y 0

3 i) y + y = t R.: y = ce t + t 6; y é assintótico a t 6 j) ty y = t e t R.: y = te t + ct; y + ou k) y + y = 5sent R.: y = ce t +sent cos t; y é assintótico a sent cos t l) y + y = t R.: y = ce t + t 1t + 4; y é assintótico a t 1t Nos Encontre a solução do problema de valor inicial dado. a) y y = te t, y(0) = 1 R.: y = e t + (t 1)e t b) y + y = te t, y(1) = 0 R.: y = (t 1)e t c) ty + y = t t + 1, y(1) = 1, t > 0 R.: y = t4 4t +6t +1 1t d) y + ( (cos t) )y =, y(π) = 0, t > 0 R.: y = sent t t t e) y y = e t, y(0) = R.: y = (t + )e t f) ty + y = sent, y( π) = 1 R.: y = t [( π ) 1 t cos t + sent] 4 g) t y + 4t y = e t, y( 1) = 0 R.: y = (1+t)e t t 4, t 0 h) ty + (t + 1)y = t, y(ln ) = 1 R.: y = (t 1+e t ) t, t 0 8. Nos problemas: Desenhe um campo de direções para a equação diferencial dada. Como as soluções parecem se comportar quando t ca grande? O comportamento depende da escolha do valor inicial a? Seja a 0 o valor de a para o qual ocorre a transição de um tipo de comportamento para outro (valor crítico) Resolva o problema de valor inicial e encontre o valor crítico a 0 Descreva o comportamento da solução correspondente ao valor inicial a 0. a) y 1 y = cos t, y(0) = a R.: y = 4 5 cos t sent + (a )e t ; a 0 = 4 5 ; a 0 = 4 5 ; y oscila para a = a 0 b) y y = e t, y(0) = a R.: y = t t + (a + )e t ; a 0 = ; y para a = a 0 c) ty + (t + 1y = te t ), y(0) = a R.: y = te t + (ea 1)e t t ; a 0 = 1 e ; y 0 quando t 0 para a = a 0 d) ty + y = sent, y( π) = a t R.: y = cos t t + π a 4t ; a 0 = 4 π ; y 1 quando t 0 para a = a 0

4 9. Considere o problema de valor inicial y + 1 y = cos t, y(0) = 1 Encontre as coordenadas do primeiro ponto de máximo local da solução para t > 0. R.: (t, y) = (1, 641; 0, 8008) 10. Considere o problema de valor inicial y + y = 1 1 t, y(0) = y 0 Encontre o valor de y 0 para o qual a solução encosta no eixo dos t, mas não atravessa. R.: y 0 = 1, Considere o problema de valor inicial y + 1 y = + cos t, y(0) = 0 4 Encontre a solução desse problema de valor inicial e descreva seu comportamento para valores grandes de t. R.: a) y = cos t + sent e t 4 ; y oscila em torno de 1 quando t + 1. Encontre o valor de y 0 para o qual a solução do problema de valor inicial y y = 1 + sent, y(0) = y 0 permanece nita quando t +. R.: y 0 = 5 1. Considere o problema de valor inicial y y = t + et, y(0) = y 0 Encontre o valor de y 0 que separa as soluções que crescem positivamente quando t + das que crescem em módulo com sinal negativo. Como a solução correspondente a esse valor crítico de y 0 se comporta quando t +? R.: y 0 = 16 ; y quando t + para y 0 = Mostre que, se a e λ são constantes positivas e se b é qualquer número real, então toda solução da equação y + ay = be λt tem a propriedade que y 0 quando t +. 4

5 15. Resolva a equação diferencial dada. a) y = x y R.: y x = c, y 0 b) y = x y(1+x ) R.: y ln 1 + x = c; x 1, y 0 c) y + y senx = 0 R.: y 1 + cos x = c se y 0; também y = 0 em toda parte d) y = x 1 +y R.: y + y x + x = c; y e) xy = (1 + y ) 1 R.: y = sen[ln x + c] se x 0 e y < 1; também y = ±1 f) dy dx = x e x y+e y R.: y x + (e y e x ) = c; y + e y 0 g) dy dx = 16. Nos problemas: x R.: y + y x = c 1+y Determine o problema de valor inicial em forma explícita. Desenhe o gráco da solução. Determine, pelo menos aproximadamente, o intervalo no qual a solução está denida. a) y = (1 x)y, y(0) = 1 6 R.: y = 1 x x 6, < x < b) y = 1 x y, y(1) = R.: y = x x + 4, 1 < x < c) xdx + ye x dy = 0, y(0) = 1 R.: y = [(1 x)e x 1] 1, 1, 68 < x < 0, 77 aprox. d) dr = r dθ θ, r(1) = R.: r = 1 ln θ, 0 < θ < e e) y = x y+x y, y(0) = R.: y = [ ln(1 + x ) + 4] 1, < x < + f) y = xy (1 + x ) 1, y(0) = 1 R.: y = [ 1 + x ] 1, x < 1 5 g) y = x, y() = 0 R.: y = y 4x 15, x > 1 15 h) y = x(x +1), y(0) = 1 4y x R.: y = +1, < x < + i) y = x e x, y(0) = 1 R.: x y = 5 y 5 e x + 1, 1, 4445 < x < 4, 697 aprox. 4 j) y = e x e x +4y, y(0) = 1 R.: y = ex 8e x, x <, 0794 aprox. k) senx dx + cos y dy = 0, y( π) = π R.: y = π arcsen( cos x), x π < 0, 6155 l) y (1 x ) 1 dy = arcsenx dx, y(0) = 0 R.: y = [ (arcsenx) ] 1, 1 < x < Resolva o problema de valor inicial y = 1 + x y 6y, y(0) = 1 e determine o intervalo de validade da solução. Sugestão: Para encontrar o intervalo de denição, procure por pontos onde a curva integral tem uma tangente vertical. R.: y y x x + = 0, x < 1 5

6 18. Resolva o problema de valor inicial y = y + xy, y(0) = 1 1 e determine onde a solução atinge o seu valor mínimo. R.: y = x = x +x 1, 19. Resolva o problema de valor inicial y = ex + y, y(0) = 0 e determine onde a solução atinge o seu valor máximo. R.: y = + x e x ; x = ln 0. Considere o problema de valor inicial y = ty(4 y), y(0) = y 0 a) Determine como o comportamento da solução quando t aumenta depende do valor inicial y 0. b) Suponha que y 0 = 1. Encontre i instante T no qual a solução atinge, pela primeira vez, o valor, 98. R.: a) y 4 se y 0 > 0; y = 0 se y 0 = 0; y se y 0 < 0. b) T =, Considere o problema de valor inicial y = ty(4 y), y(0) = y 0 > t a) Determine o comportamento da solução quando t +. b) Se y 0 =, encontre o instante T no qual a solução atinge, pela primeira vez, o valor, 99 R.: a) y 4 quando t + ; b) T =, Resolva as equações diferenciais: a) dy = x +xy+y dx x R.: arctg( y ) ln x = c x b) dy dx = x +y xy R.: x + y cx = 0 c) dy = 4y x dx x y d) dy = 4x+y dx x+y e) dy = x+y dx x y R.: y x = c y + x 5 ; também y = x R.: y + x y + 4x = c x R.: + ln x + y = c; também y = x x+y f) (x + xy + y )dx x x dy = 0 R.: + ln x = c; também y = x x+y g) dy = x y R.: x x 5y = c dx xy h) dy x dx xy R.: c x = y x i) (x + ) + (y )y = 0 R.: x + x + y y = c 6

7 j) (x xy + ) dx + (6y x + ) dy = 0 R.: x x y + x + y + y = c k) (xy + y) + (x y + x)y = 0 R.: x y + xy = c l) dy dx bx+cy R.: ax + bxy + cy = k m) (e x seny ysenx) dx + (e x cos y + cos x) dy = 0 R.: e x seny + y cos x = c; também y = 0 n) (ye xy cos x e xy senx+x) dx+(xe xy cos x ) dy = 0 R.: e xy cos x+x y = c o) ( y x + 6x) dx + (ln x ) dy = 0, x > 0 R.: y ln x + x y = c p) x dx (x +y ) + y dy (x +y ) = 0 R.: x + y = c q) (x y + xy + y ) dx + (x + y ) dy = 0 R.: (x y + y )e x = c r) y = e x + y 1 R.: y = ce x e x s) dx + ( x seny) dy = 0 R.: xy + y cos y seny = c y t) y dx + (xy e y ) dy = 0 R.: xe y ln y = c, também y = 0 u) (4 x + ) dx + ( x + 4y) dy = 0 y y y R.: x 4 + xy + y 4 = c v) (xy) dx + (y x ) dy = 0 R.: x y y 1 = c e também y = 0 w) (x 4 x + y) dx x dy = 0 R.: y = x4 x ln x + cx e também x = 0 x) (y + xy) dx + (x y y 1 ) dy = 0 R.: x y 1 + x = c e também y = 0 y) t y + ty y = 0, t > 0 R.: y = ± ( ) 1 5t +5ct 5 z) dy dx x x y R.: y = cx x e também y = 0 aa) dy dx = y x x y R.: y = 5x x 5 +c e também y = 0 ab) dx dt + tx + x t = 0 R.: x = t ln t + ct e também x = 0 ac) dr = r +rθ dθ θ ad) dy dθ + y = y R.: y = 1+ce t. Use a substituição y = vx para resolver 4. Resolva o problema de valor inicial R.: r = θ c θ e também r = 0 dy dx = y ( y ) x + cos x R.: y = 19x 4 1 dy dx y x = x 1 y 1, y(1) = 5. Mostre que y + x = 0 é uma solução implícita para dy dx = 1 y no intervalo (, ). 6. Mostre que xy xy senx = 1 é uma solução implícita para dy dx (0, π). = (x cos x+senx 1)y (x xsenx) no intervalo 7

8 7. Mostre que y = c 1 senx + c cos x é uma solução para d y dx + y = 0 para qualquer escolha das constantes c 1 e c. Assim, c 1 senx + c cos x é uma família de soluções em dois parâmetros para a equação diferencial. 8. Mostre que y = ce x + 1 é uma solução para dy y = para qualquer escolha de c. dx 9. Determine para quais valores de m a função φ(x) = x m é uma solução para a equação dada. a) x d y + 11x dy y = 0 R.: 1 e dx dx b) x d y dx x dy dx 5y = 0 R.: 1 ± 6 0. Determine para quais valores de m a função φ = e mx é uma solução para a equação dada. a) d y dx + 6 dy dx + 5y = 0 b) d y dx + d y dx + dy dx = 0 1. Determine se o Teorema 1 implica que dado problema de valor inicial tem uma solução única. a) dy dx y4 x 4, y(0) = 7 R.: Sim b) x dx + 4t = 0, x() = π dt R.: Sim c) y dy = x, y(1) = 0 dx R.: Não 8

MAT Cálculo Diferencial e Integral para Engenharia II 2 a lista de exercícios

MAT Cálculo Diferencial e Integral para Engenharia II 2 a lista de exercícios MAT454 - Cálculo Diferencial e Integral para Engenharia II a lista de exercícios - 009 1. Ache as derivadas parciais de primeira ordem das funções: ( y (a) f(x, y) = arctg (b) f(x, y) = ln(1 + cos x) (xy

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia IV

MAT Cálculo Diferencial e Integral para Engenharia IV MAT456 - Cálculo Diferencial e Integral para Engenharia IV Parte A: Equações Diferenciais de 1 a Ordem o Semestre de 018-3 a Lista de exercícios 1) Os gráficos de duas soluções de y = x + y podem se cruzar

Leia mais

Derivadas Parciais. Sumário. 1 Funções de Várias Variáveis. Raimundo A. R. Rodrigues Jr. 1 de agosto de Funções de Duas Variáveis.

Derivadas Parciais. Sumário. 1 Funções de Várias Variáveis. Raimundo A. R. Rodrigues Jr. 1 de agosto de Funções de Duas Variáveis. Derivadas Parciais Raimundo A. R. Rodrigues Jr 1 de agosto de 2016 Sumário 1 Funções de Várias Variáveis 1 1.1 Funções de Duas Variáveis.............................. 1 1.2 Grácos........................................

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia II 2 a Lista de Exercícios

MAT Cálculo Diferencial e Integral para Engenharia II 2 a Lista de Exercícios MAT2454 - Cálculo Diferencial e Integral para Engenharia II 2 a Lista de Exercícios - 2012 1. Ache as derivadas parciais de primeira ordem das funções: ( y (a) f(x, y) = arctg (b) f(x, y) = ln(1+cos x)

Leia mais

MAT Cálculo II - FEA, Economia Calcule os seguintes limites, caso existam. Se não existirem, explique por quê: xy. (i) lim.

MAT Cálculo II - FEA, Economia Calcule os seguintes limites, caso existam. Se não existirem, explique por quê: xy. (i) lim. MAT0147 - Cálculo II - FEA, Economia - 2011 Prof. Gláucio Terra 2 a Lista de Exercícios 1. Calcule os seguintes limites, caso existam. Se não existirem, explique por quê: xy x 2 y (a) lim (f) lim (x,y)

Leia mais

a definição de derivada parcial como limite do que aplicar as regras de derivação.)

a definição de derivada parcial como limite do que aplicar as regras de derivação.) 2 a LISTA DE MAT 2454 - CÁLCULO II - POLI 2 o semestre de 2003. Ache as derivadas parciais de primeira ordem das funções : (a f(x, y = arctg y (b f(x, y, z, t = x y x z t 2. Seja f : IR IR uma função derivável.

Leia mais

Funções de duas (ou mais)

Funções de duas (ou mais) Lista 5 - CDI II Funções de duas (ou mais) variáveis. Seja f(x, y) = x+y x y, calcular: f( 3, 4) f( 2, 3 ) f(x +, y ) f( x, y) f(x, y) 2. Seja g(x, y) = x 2 y, obter: g(3, 5) g( 4, 9) g(x + 2, 4x + 4)

Leia mais

(x 1) 2 (x 2) dx 42. x5 + x + 1

(x 1) 2 (x 2) dx 42. x5 + x + 1 I - Integrais Indefinidas ā Lista de Cálculo I - POLI - 00 Calcule as integrais indefinidas abaixo. Para a verificação das resposta lembre-se que f(x)dx = F (x), k IR F (x) = f(x), x D f.. x7 + x + x dx.

Leia mais

EDO I. por Abílio Lemos. 16 e 18 de outubro de Universidade Federal de Viçosa. Departamento de Matemática UFV. Aulas de MAT

EDO I. por Abílio Lemos. 16 e 18 de outubro de Universidade Federal de Viçosa. Departamento de Matemática UFV. Aulas de MAT EDO I por Universidade Federal de Viçosa Departamento de Matemática-CCE Aulas de MAT 147-2017 16 e 18 de outubro de 2017 Definição 1 Uma equação diferencial é qualquer relação entre uma função e suas derivadas.

Leia mais

Fazer os exercícios 35, 36, 37, 38, 39, 40, 41, 42 e 43 da 1 a lista.

Fazer os exercícios 35, 36, 37, 38, 39, 40, 41, 42 e 43 da 1 a lista. MAT 2454 - Cálculo II - POLI - 2 a Lista de Exercícios 2 o semestre de 2002 Fazer os exercícios 35, 36, 37, 38, 39, 40, 41, 42 e 43 da 1 a lista. 1. Calcule w t e w pela regra da cadeia e confira os resultados

Leia mais

c + 1+t 2 (1 + t 2 ) 5/2 dt e 5 2 ln(1+t2 )dt (1 + t 2 ) 5/2 dt (c 5/2 + (1 + t 2 ) 5/2 (1 + t 2 ) 5/2 dt ϕ(t) = (1 + t 2 ) 5/2 (1 + t).

c + 1+t 2 (1 + t 2 ) 5/2 dt e 5 2 ln(1+t2 )dt (1 + t 2 ) 5/2 dt (c 5/2 + (1 + t 2 ) 5/2 (1 + t 2 ) 5/2 dt ϕ(t) = (1 + t 2 ) 5/2 (1 + t). Análise Complexa e Equações Diferenciais 2 o Semestre 206/207 3 de junho de 207, às 9:00 Teste 2 versão A MEFT, MEC, MEBiom, LEGM, LMAC, MEAer, MEMec, LEAN, LEMat [,0 val Resolva os seguintes problemas

Leia mais

DERIVADAS PARCIAIS. y = lim

DERIVADAS PARCIAIS. y = lim DERIVADAS PARCIAIS Definição: Seja f uma função de duas variáveis, x e y (f: D R onde D R 2 ) e (x 0, y 0 ) é um ponto no domínio de f ((x 0, y 0 ) D). A derivada parcial de f em relação a x no ponto (x

Leia mais

1. Resolva as equações diferenciais: 2. Resolver os seguintes Problemas dos Valores Iniciais:

1. Resolva as equações diferenciais: 2. Resolver os seguintes Problemas dos Valores Iniciais: Universidade do Estado de Mato Grosso - Campus de Sinop Cálculo Diferencial e Integral III - FACET Lista 6 Profª Ma. Polyanna Possani da Costa Petry 1. Resolva as equações diferenciais: a) y + 2y = 2e

Leia mais

Análise Complexa e Equações Diferenciais 2 o Semestre 2013/14 Cursos: LEAN, MeMec

Análise Complexa e Equações Diferenciais 2 o Semestre 2013/14 Cursos: LEAN, MeMec Análise Complexa e Equações Diferenciais 2 o Semestre 2013/14 Cursos: LEAN, MeMec M Paluch Aulas 28 33 7 23 de Abril de 2014 Exemplo de uma equação diferencial A Lei de Newton para a propagação de calor,

Leia mais

Derivadas Parciais - parte 1. 1) Determine as derivadas parciais de primeira ordem da função.

Derivadas Parciais - parte 1. 1) Determine as derivadas parciais de primeira ordem da função. Terceira Lista de Exercícios Cálculo II - Engenharia de Produção ( extraída do livro C ÁLCULO - vol 2 James Stewart ) Derivadas Parciais - parte 1 1) Determine as derivadas parciais de primeira ordem da

Leia mais

Cálculo 1 - Quinta Lista de Exercícios Derivadas

Cálculo 1 - Quinta Lista de Exercícios Derivadas Cálculo 1 - Quinta Lista de Exercícios Derivadas Prof. Fabio Silva Botelho November 2, 2017 1. Seja f : D = R\{ 7/5} R onde 1 5x+7. Seja x D. Utilizando a definição de derivada, calcule f (x). Calcule

Leia mais

Instituto Universitário de Lisboa

Instituto Universitário de Lisboa Instituto Universitário de Lisboa Departamento de Matemática Exercícios de Equações Diferenciais Ordinárias 1 Exercícios 1.1 EDO de Variáveis Separáveis Diz-se que uma equação diferencial ordinária (EDO)

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia II 2 a lista de exercícios

MAT Cálculo Diferencial e Integral para Engenharia II 2 a lista de exercícios MAT2454 - Cálculo Diferencial e Integral para Engenharia II 2 a lista de exercícios - 2011 1. Ache as derivadas parciais de primeira ordem das funções: ( y (a) f(x, y) =arctg (b) f(x, y) = ln(1 + cos x)

Leia mais

UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA Lista Final de Exercícios de Introdução às EDO s - MTM125 Prof. Júlio César do Espírito Santo 17

Leia mais

Complementos de Análise Matemática

Complementos de Análise Matemática Instituto Politécnico de Viseu Escola Superior de Tecnologia Ficha prática n o 3 - Equações Diferenciais 1. Determine as equações diferenciais das seguintes famílias de linhas: (a) y = cx (b) y = cx 3

Leia mais

MAT Lista de exercícios

MAT Lista de exercícios 1 Curvas no R n 1. Esboce a imagem das seguintes curvas para t R a) γ(t) = (1, t) b) γ(t) = (t, cos(t)) c) γ(t) = (t, t ) d) γ(t) = (cos(t), sen(t), 2t) e) γ(t) = (t, 2t, 3t) f) γ(t) = ( 2 cos(t), 2sen(t))

Leia mais

Uma Equação Diferencial Ordinária (abrevia-se EDO) de primeira ordem se apresenta sob duas formas equivalentes: (i) FORMA NORMAL:

Uma Equação Diferencial Ordinária (abrevia-se EDO) de primeira ordem se apresenta sob duas formas equivalentes: (i) FORMA NORMAL: 5. EDO DE PRIMEIRA ORDEM SÉRIES & EDO - 2017.2 5.1. :::: :::::::::::::::::::::::::::: FUNDAMENTOS GERAIS Uma Equação Diferencial Ordinária (abrevia-se EDO) de primeira ordem se apresenta sob duas formas

Leia mais

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS. Apresente e justifique todos os cálculos

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS. Apresente e justifique todos os cálculos Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS TESTES DE RECUPERAÇÃO A - 6 DE JUNHO DE 9 - DAS H ÀS :3H Teste Apresente e justifique

Leia mais

EXERCÍCIOS DE ELEMENTOS DE MATEMÁTICA II (BQ, CTA, EFQ, Q) 2002/2003. Funções reais de várias variáveis

EXERCÍCIOS DE ELEMENTOS DE MATEMÁTICA II (BQ, CTA, EFQ, Q) 2002/2003. Funções reais de várias variáveis EXERCÍCIOS DE ELEMENTOS DE MATEMÁTICA II (BQ, CTA, EFQ, Q) 2002/2003 Funções reais de várias variáveis 1. Faça um esboço de alguns conjuntos de nível das seguintes funções: (a) f (x,y) = 1 + x + 3y, (x,y)

Leia mais

(d) f (x) = ln (x + 1) (e) f (x) = sinh (ax), a R. (f) f(x) = sin(3x)

(d) f (x) = ln (x + 1) (e) f (x) = sinh (ax), a R. (f) f(x) = sin(3x) Lista de Cálculo Diferencial e Integral I Derivadas 1. Use a denição para encontrar a primeira derivada de cada uma das funções abaixo. (a) f (x) x 1 2x + (b) f (x) x + 1 (d) f (x) ln (x + 1) (e) f (x)

Leia mais

1 A Equação Fundamental Áreas Primeiras definições Uma questão importante... 7

1 A Equação Fundamental Áreas Primeiras definições Uma questão importante... 7 Conteúdo 1 4 1.1- Áreas............................. 4 1.2 Primeiras definições...................... 6 1.3 - Uma questão importante.................. 7 1 EDA Aula 1 Objetivos Apresentar as equações diferenciais

Leia mais

ANÁLISE MATEMÁTICA IV EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM ESCALARES E FORMAS CANÓNICAS DE JORDAN. tet + t

ANÁLISE MATEMÁTICA IV EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM ESCALARES E FORMAS CANÓNICAS DE JORDAN. tet + t Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE MATEMÁTICA IV FICHA 4 EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM ESCALARES E FORMAS CANÓNICAS DE JORDAN () Determine

Leia mais

Séries e Equações Diferenciais Lista 04 EDO s de Primeira Ordem e Aplicações

Séries e Equações Diferenciais Lista 04 EDO s de Primeira Ordem e Aplicações Séries e Equações Diferenciais Lista 04 EDO s de Primeira Ordem e Aplicações Professor: Daniel Henrique Silva Introdução às Equações Diferenciais 1) Defina equação diferencial. 2) Seja f(x; y) uma função

Leia mais

Lista 2. (d) f (x, y) = x y x

Lista 2. (d) f (x, y) = x y x UFPR - Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Matemática CM048 - Cálculo II - Matemática Diurno - 207/ Prof. Zeca Eidam Lista 2 Funções reais de duas e três variáveis.

Leia mais

CÁLCULO III - MAT Encontre as soluções das seguintes equações com condições iniciais:

CÁLCULO III - MAT Encontre as soluções das seguintes equações com condições iniciais: UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e da Natureza Centro Interdisciplinar de Ciências da Natureza CÁLCULO III - MAT0021 7 a Lista de exercícios

Leia mais

Lista 1. (1,0). (Neste caso, usar a definição de derivada parcial é menos trabalhoso do que aplicar as regras de derivação.

Lista 1. (1,0). (Neste caso, usar a definição de derivada parcial é menos trabalhoso do que aplicar as regras de derivação. UFPR - Universidade Federal do Paraná Departamento de Matemática CM04 - Cálculo II Prof. José Carlos Eidam Lista Derivadas parciais, gradiente e diferenciabilidade. Ache as derivadas parciais de primeira

Leia mais

Gabarito da Prova Final Unificada de Cálculo IV Dezembro de 2010

Gabarito da Prova Final Unificada de Cálculo IV Dezembro de 2010 Gabarito da Prova Final Unificada de Cálculo IV Dezembro de a Questão: (5 pts) Dentre as três séries alternadas abaixo, diga se convergem absolutamente, se convergem condicionalmente ou se divergem Justifique

Leia mais

Curso: Engenharia Ambiental. Disciplina: Equações Diferenciais Ordinárias. Professora: Dr a. Camila N. Boeri Di Domenico NOTAS DE AULA 2

Curso: Engenharia Ambiental. Disciplina: Equações Diferenciais Ordinárias. Professora: Dr a. Camila N. Boeri Di Domenico NOTAS DE AULA 2 Curso: Engenharia Ambiental Disciplina: Equações Diferenciais Ordinárias Professora: Dr a. Camila N. Boeri Di Domenico NOTAS DE AULA 2 11. EQUAÇÕES DIFERENCIAIS ORDINÁRIAS DE 2º ORDEM y (x) = f (x,y,y

Leia mais

MAT1153 / LISTA DE EXERCÍCIOS : CAMPOS CONSERVATIVOS, INTEGRAIS DE LINHA, TRABALHO E TEOREMA DE GREEN

MAT1153 / LISTA DE EXERCÍCIOS : CAMPOS CONSERVATIVOS, INTEGRAIS DE LINHA, TRABALHO E TEOREMA DE GREEN MAT1153 / 2008.1 LISTA DE EXERCÍCIOS : CAMPOS CONSERVATIVOS, INTEGRAIS DE LINHA, TRABALHO E TEOREMA DE GREEN OBS: Faça os exercícios sobre campos conservativos em primeiro lugar. (1 Fazer exercícios 1:(c,

Leia mais

1 Equações Diferenciais Ordinárias: Sistemas de Equações

1 Equações Diferenciais Ordinárias: Sistemas de Equações Equações Diferenciais Ordinárias: Sistemas de Equações O sistema geral de duas equações diferenciais pode ser escrito como: ẋ = F x,y,t ẏ = Gx,y,t Uma Solução de é um par x t e y t de funções de t tais

Leia mais

Equações Diferenciais Ordinárias de Ordem Superior a Um

Equações Diferenciais Ordinárias de Ordem Superior a Um Capítulo 2 Equações Diferenciais Ordinárias de Ordem Superior a Um 2.1 EDOs lineares homogéneas de ordem dois. Redução de ordem. Exercício 2.1.1 As seguintes equações diferenciais de 2 a ordem podem ser

Leia mais

Prova de Conhecimentos Específicos 1 a QUESTÃO: (2,0 pontos)

Prova de Conhecimentos Específicos 1 a QUESTÃO: (2,0 pontos) Prova de Conhecimentos Específicos 1 a QUESTÃO: (,0 pontos) a) etermine números reais a 0, b, c, e d tais que o gráfico de f(x) ax + bx + cx + d tenha um ponto de inflexão em (1, ) e o coeficiente angular

Leia mais

Introdução às Equações Diferenciais e Ordinárias

Introdução às Equações Diferenciais e Ordinárias Introdução às Equações Diferenciais e Ordinárias - 017. Lista - EDOs lineares de ordem superior e sistemas de EDOs de primeira ordem 1 São dadas trincas de funções que são, em cada caso, soluções de alguma

Leia mais

SEGUNDA CHAMADA CALCULO 2 2/2017

SEGUNDA CHAMADA CALCULO 2 2/2017 9/11/017 SEGUNDA CHAMADA CALCULO /017 PROF: RENATO FERREIRA DE VELLOSO VIANNA Questão 1,5 pontos). Resolva os problemas de valor inicial: y + 4y + 4y = e x {, y = xyy + 4), a) = y0) = 0, b) = y0) = 5.

Leia mais

Equações Ordinarias 1ªOrdem - Lineares

Equações Ordinarias 1ªOrdem - Lineares Nome: Nº Curso: Licenciatura em Matemática Disciplina: Equações Diferenciais Ordinárias 7ºPeríodo Prof. Leonardo Data: / /2018 Equações Ordinarias 1ªOrdem - Lineares 1. EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

Leia mais

Exercício 1 Dê o valor, caso exista, que a função deveria assumir no ponto dado para. em p = 9

Exercício 1 Dê o valor, caso exista, que a função deveria assumir no ponto dado para. em p = 9 Exercícios - Limite e Continuidade-1 Exercício 1 Dê o valor, caso exista, que a função deveria assumir no ponto dado para ser contínua: (a) f(x) = x2 16 x 4 (b) f(x) = x3 x x em p = 4 em p = 0 (c) f(x)

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia II 2 a Lista de Exercícios

MAT Cálculo Diferencial e Integral para Engenharia II 2 a Lista de Exercícios MAT454 - Cálculo Diferencial e Integral para Engenharia II a Lista de Eercícios - 014 1. Seja f (, y) = + y + 4 e seja γ(t) = (t cos t, t sen t, t + 4), t 0. (a) Mostre que a imagem de γ está contida no

Leia mais

x 2 (2 x) 2 + z 2 = 1 4x + z 2 = 5 x = 5 z2 4 Como y = 2 x, vem que y = 3+z2

x 2 (2 x) 2 + z 2 = 1 4x + z 2 = 5 x = 5 z2 4 Como y = 2 x, vem que y = 3+z2 Turma A Questão 1: (a Calcule Instituto de Matemática e Estatística da USP MAT55 - Cálculo Diferencial e Integral III para Engenharia a. Prova - 1o. Semestre 15-19/5/15 e z dx + xz dy + zy dz sendo a curva

Leia mais

PROFESSOR: RICARDO SÁ EARP

PROFESSOR: RICARDO SÁ EARP LISTA DE EXERCÍCIOS SOBRE TRABALHO, CAMPOS CONSERVATIVOS, TEOREMA DE GREEN, FLUXO DE UM CAMPO AO LONGO DE UMA CURVA, DIVERGÊNCIA E ROTACIONAL DE UM CAMPO NO PLANO, FUNÇÕES HARMÔNICAS PROFESSOR: RICARDO

Leia mais

Equações Diferenciais: Um Curso para Engenharias, Física, Matemática e Química

Equações Diferenciais: Um Curso para Engenharias, Física, Matemática e Química Notas de Aula da Disciplina Cálculo 3 Equações Diferenciais: Um Curso para Engenharias, Física, Matemática e Química André Luiz Galdino Departamento de Matemática do Campus Catalão da Universidade Federal

Leia mais

Lista 4. Funções de Uma Variável. Derivadas IIII. 3 Encontre y se y = ln(x 2 + y 2 ). 4 Encontre y se y x = x y.

Lista 4. Funções de Uma Variável. Derivadas IIII. 3 Encontre y se y = ln(x 2 + y 2 ). 4 Encontre y se y x = x y. Lista 4 Funções de Uma Variável Derivadas IIII Encontre y se y = ln(x + y. Derivadas de Ordem Superior Calcule y e y para as seguintes funções: a y = tgh(6x b y = senh(7x c y = cotgh( + x d y = cosh(x

Leia mais

Regras de Produto e Quociente

Regras de Produto e Quociente Regras de Produto e Quociente Aula 13 5950253 Plano da Aula Derivadas de Ordem Superior Regra de Produto Regra de Quociente Exercícios Referências James Stewart Cálculo Volume I (Cengage Learning) Derivadas

Leia mais

Exercícios Complementares 5.2

Exercícios Complementares 5.2 Exercícios Complementares 5.2 5.2A Veri que se a função dada é ou não solução da EDO indicada: (a) y = 2e x + xe x ; y 00 + 2y 0 + y = 0: (b) x = C 1 e 2t + C 2 e 3t ; :: x 10 : x + 6x = 0: (c) y = ln

Leia mais

MAT Lista de exercícios

MAT Lista de exercícios MAT 352 - Lista de exercícios Integrais indefinidas. Calcule 2x cos(x 2 )dx sen(x) cos(x)dx sen(2x) 5 + sen 2 (x)dx sec 2 (x) 3 + 2 tan(x) dx x + 2 x dx x 2 x + dx g) tan 3 (x) sec 4 (x)dx h) (2x + 3)

Leia mais

Nome: Gabarito Data: 28/10/2015. Questão 01. Calcule a derivada da função f(x) = sen x pela definição e confirme o resultado

Nome: Gabarito Data: 28/10/2015. Questão 01. Calcule a derivada da função f(x) = sen x pela definição e confirme o resultado Fundação Universidade Federal de Pelotas Departamento de Matemática e Estatística Curso de Licenciatura em Matemática - Diurno Segunda Prova de Cálculo I Prof. Dr. Maurício Zan Nome: Gabarito Data: 8/0/05.

Leia mais

y (n) (x) = dn y dx n(x) y (0) (x) = y(x).

y (n) (x) = dn y dx n(x) y (0) (x) = y(x). Capítulo 1 Introdução 1.1 Definições Denotaremos por I R um intervalo aberto ou uma reunião de intervalos abertos e y : I R uma função que possua todas as suas derivadas, a menos que seja indicado o contrário.

Leia mais

Cálculo Diferencial e Integral II

Cálculo Diferencial e Integral II Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral II Ficha de trabalho 1 (versão de 6/0/009 (Esboço de Conjuntos. Topologia. Limites. Continuidade

Leia mais

d [xy] = x arcsin x. dx + 4x

d [xy] = x arcsin x. dx + 4x Instituto de Matemática e Estatística da USP MAT456 - Cálculo Diferencial e Integral IV para Engenharia 3a. Prova - o. Semestre 01-6/11/01 Turma A Questão 1. a (1,0 ponto Determine a solução geral da equação

Leia mais

Equações Diferenciais Noções Básicas

Equações Diferenciais Noções Básicas Equações Diferenciais Noções Básicas Definição: Chama-se equação diferencial a uma equação em que a incógnita é uma função (variável dependente) de uma ou mais variáveis (variáveis independentes), envolvendo

Leia mais

Separe em grupos de folhas diferentes as resoluções dos grupos I e II das resoluções dos grupos III, IV e V GRUPO I (60 PONTOS)

Separe em grupos de folhas diferentes as resoluções dos grupos I e II das resoluções dos grupos III, IV e V GRUPO I (60 PONTOS) Faculdade de Ciências Económicas e Empresariais UCP MATEMÁTICA I Exame - versão A Duração: 8 minutos Durante a prova não serão prestados quaisquer tipo de esclarecimentos Qualquer dúvida ou questão relativa

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia II 1 a lista de exercícios

MAT Cálculo Diferencial e Integral para Engenharia II 1 a lista de exercícios MAT454 - Cálculo Diferencial e Integral para Engenharia II 1 a lista de exercícios - 008 POLINÔMIO DE TAYLOR 1. Utilizando o polinômio de Taylor de ordem, calcule um valor aproximado e avalie o erro: a)

Leia mais

MAT 1351 : Cálculo para Funções de Uma Variável Real I. Sylvain Bonnot (IME-USP)

MAT 1351 : Cálculo para Funções de Uma Variável Real I. Sylvain Bonnot (IME-USP) MAT 1351 : Cálculo para Funções de Uma Variável Real I Sylvain Bonnot (IME-USP) 2016 1 Aplicação das derivadas: Equações diferenciais Teorema As soluções da equação y = 0 num intervalo (a, b) são exatamente

Leia mais

FOLHAS DE PROBLEMAS DE MATEMÁTICA II CURSO DE ERGONOMIA PEDRO FREITAS

FOLHAS DE PROBLEMAS DE MATEMÁTICA II CURSO DE ERGONOMIA PEDRO FREITAS FOLHAS DE PROBLEMAS DE MATEMÁTICA II CURSO DE ERGONOMIA PEDRO FREITAS Maio 12, 2008 2 Contents 1. Complementos de Álgebra Linear 3 1.1. Determinantes 3 1.2. Valores e vectores próprios 5 2. Análise em

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Provas e listas: Cálculo Diferencial e Integral I Período 204.2 Sérgio de Albuquerque Souza 4 de maio de 205 UNIVERSIDADE FEDERAL DA PARAÍBA CCEN - Departamento de Matemática http://www.mat.ufpb.br/sergio

Leia mais

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Módulo I: Cálculo Diferencial e Integral Funções de Duas ou Mais Variáveis

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Módulo I: Cálculo Diferencial e Integral Funções de Duas ou Mais Variáveis Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo Módulo I: Cálculo Diferencial e Integral Funções de Duas ou Mais Variáveis Professora Renata Alcarde Sermarini Notas de aula do

Leia mais

CÁLCULO I Aula 08: Regra da Cadeia. Derivação Implícita. Derivada da Função Inversa.

CÁLCULO I Aula 08: Regra da Cadeia. Derivação Implícita. Derivada da Função Inversa. CÁLCULO I Aula 08: Regra da Cadeia.. Função Inversa. Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará 1 2 3 Teorema (Regra da Cadeia) Sejam g(y) e y = f (x) duas funções deriváveis,

Leia mais

Equações Diferenciais Noções Básicas

Equações Diferenciais Noções Básicas Equações Diferenciais Noções Básicas Definição: Chama-se equação diferencial a uma equação em que a incógnita é uma função (variável dependente) de uma ou mais variáveis (independentes), envolvendo derivadas

Leia mais

Lista de Exercícios de Cálculo 3 Sexta Semana

Lista de Exercícios de Cálculo 3 Sexta Semana Lista de Exercícios de Cálculo 3 Sexta Semana Parte A 1. (i) Encontre o gradiente das funções abaixo; (ii) Determine o gradiente no ponto P dado; (iii) Determine a taxa de variação da função no ponto P

Leia mais

8.1-Equação Linear e Homogênea de Coeficientes Constantes

8.1-Equação Linear e Homogênea de Coeficientes Constantes 8- Equações Diferenciais Lineares de 2 a Ordem e Ordem Superior As equações diferenciais lineares de ordem n são aquelas da forma: y (n) + a 1 (x) y (n 1) + a 2 (x) y (n 2) + + a n 1 (x) y + a n (x) y

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia II 3 a lista de exercícios

MAT Cálculo Diferencial e Integral para Engenharia II 3 a lista de exercícios MAT44 - Cálculo Diferencial e Integral para Engenharia II a lista de exercícios - 01 1. Esboce a superfície de nível da função F : A R R para o nível c: a) F(x, y, z) = x+y+z e c = 1 b) F(x, y, z) = x

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia III 2a. Lista de Exercícios - 1o. semestre de 2014

MAT Cálculo Diferencial e Integral para Engenharia III 2a. Lista de Exercícios - 1o. semestre de 2014 MAT455 - Cálculo Diferencial e Integral para Engenharia III a. Lista de Exercícios - 1o. semestre de 014 1. Calcule as seguintes integrais de linha ao longo da curva indicada: x ds, (t) = (t 3, t), 0 t

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO

UNIVERSIDADE FEDERAL DE PERNAMBUCO CÁLCULO L NOTAS DA NONA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, apresentaremos as funções logaritmo e exponencial e calcularemos as suas derivadas. Também estabeleceremos algumas propriedades

Leia mais

1. as equações paramétricas da reta que contém o ponto A e é perpendicular ao plano de equação x 2y + 3z = 17;

1. as equações paramétricas da reta que contém o ponto A e é perpendicular ao plano de equação x 2y + 3z = 17; PROVA 1 09 de setembro de 2015 08h30 1 2 3 4 5 081 x = 1 + 3t 0811 Considere a reta L de equações paramétricas y = t z = 5 A = (5, 0, 2). Obtenha e o ponto 1. as equações paramétricas da reta que contém

Leia mais

Instituto Tecnológico de Aeronáutica / Departamento de Matemática / 2 o Fund / a LISTA DE MAT-32

Instituto Tecnológico de Aeronáutica / Departamento de Matemática / 2 o Fund / a LISTA DE MAT-32 1 Instituto Tecnológico de Aeronáutica / Departamento de Matemática / 2 o Fund / 2012. 1 a LISTA DE MAT-32 Nos exercícios de 1 a 9, classi car e apresentar, formalmente, solução (ou candidata a solução)

Leia mais

INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA. MATEMÁTICA APLICADA 1 o SEMESTRE 2016/2017

INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA. MATEMÁTICA APLICADA 1 o SEMESTRE 2016/2017 3 de janeiro de 7 Instruções: INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA MATEMÁTICA APLICADA o SEMESTRE 6/7 Resolução do o Teste Duração: hm É obrigatória

Leia mais

LISTA dy dx y x + y3 cos x = y = ky ay 3. dizemos que F (x, y) é homogênea de grau 0. Neste caso a equação diferencial y =

LISTA dy dx y x + y3 cos x = y = ky ay 3. dizemos que F (x, y) é homogênea de grau 0. Neste caso a equação diferencial y = MAT 01167 LISTA Equações Diferenciais Resolva: 1. y = y x + x y, y ( ) 1 8 =. (1 x ) dy dx (1 + x) y = y. dy dx y x + y cos x = 0 4. y = ky ay. Se uma função F (x, y) satisfaz a condição F (t x, t y) =

Leia mais

depende apenas da variável y então a função ṽ(y) = e R R(y) dy

depende apenas da variável y então a função ṽ(y) = e R R(y) dy Formulario Equações Diferenciais Ordinárias de 1 a Ordem Equações Exactas. Factor Integrante. Dada uma equação diferencial não exacta M(x, y) dx + N(x, y) dy = 0. ( ) 1. Se R = 1 M N y N x depende apenas

Leia mais

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 09: Regras de Derivação Objetivos da Aula Apresentar e aplicar as regras operacionais de derivação; Derivar funções utilizando diferentes

Leia mais

Cálculo 3 Lista 2 Limites-Continuidade-Derivada Direcional-Derivada Parcial-Plano Tangente-Gradiente Prof. Rildo Soares. (f) lim. (g) lim.

Cálculo 3 Lista 2 Limites-Continuidade-Derivada Direcional-Derivada Parcial-Plano Tangente-Gradiente Prof. Rildo Soares. (f) lim. (g) lim. Centro Federal de Educação Tecnológica Unidade de Nova Iguaçu Ensino de Graduação Matemática Cálculo 3 Lista Limites-Continuidade-Derivada Direcional-Derivada Parcial-Plano Tangente-Gradiente Prof. Rildo

Leia mais

Derivadas. Slides de apoio sobre Derivadas. Prof. Ronaldo Carlotto Batista. 21 de outubro de 2013

Derivadas. Slides de apoio sobre Derivadas. Prof. Ronaldo Carlotto Batista. 21 de outubro de 2013 Cálculo 1 ECT1113 Slides de apoio sobre Derivadas Prof. Ronaldo Carlotto Batista 21 de outubro de 2013 AVISO IMPORTANTE Estes slides foram criados como material de apoio às aulas e não devem ser utilizados

Leia mais

Exercícios. de Equações Diferenciais Ordinárias. Tatiana Tchemisova Cordeiro Vera Kharlamova Adelaide Valente Freitas

Exercícios. de Equações Diferenciais Ordinárias. Tatiana Tchemisova Cordeiro Vera Kharlamova Adelaide Valente Freitas Exercícios de Equações Diferenciais Ordinárias Tatiana Tchemisova Cordeiro Vera Kharlamova Adelaide Valente Freitas Departamento de Matemática UNIVERSIDADE DE AVEIRO 2 Prefácio A presente publicação tem

Leia mais

21 de Junho de 2010, 9h00

21 de Junho de 2010, 9h00 Análise Complexa e Equações Diferenciais ō Semestre 009/00 ō Teste \ ō Exame - Versão A (Cursos: Todos) de Junho de 00, 9h00 Duração: Teste - h 30m, Exame - 3h INSTRUÇÕES Não é permitida a utilização de

Leia mais

Integrais Sobre Caminhos e Superfícies. Teoremas de Integração do Cálculo Vectorial.

Integrais Sobre Caminhos e Superfícies. Teoremas de Integração do Cálculo Vectorial. Capítulo 5 Integrais Sobre Caminhos e Superfícies. Teoremas de Integração do Cálculo Vectorial. 5.1 Integral de Um Caminho. Integral de Linha. Exercício 5.1.1 Seja f(x, y, z) = y e c(t) = t k, 0 t 1. Mostre

Leia mais

MAT 121 : Cálculo II. Aula 27 e 28, Segunda 03/11/2014. Sylvain Bonnot (IME-USP)

MAT 121 : Cálculo II. Aula 27 e 28, Segunda 03/11/2014. Sylvain Bonnot (IME-USP) MAT 121 : Cálculo II Aula 27 e 28, Segunda 03/11/2014 Sylvain Bonnot (IME-USP) 2014 1 Resumo 1 Derivadas parciais: seja f : R 2 R, a derivada parcial f x (a, b) é o limite (quando existe) lim h 0 f (a

Leia mais

Instituto de Matemática - IM/UFRJ Cálculo I - MAC118 1 a Prova - Gabarito - 13/10/2016

Instituto de Matemática - IM/UFRJ Cálculo I - MAC118 1 a Prova - Gabarito - 13/10/2016 Instituto de Matemática - IM/UFRJ Cálculo I - MAC118 1 a Prova - Gabarito - 13/10/2016 Questão 1: (2 pontos) x (a) (0.4 ponto) Calcule o ite: 2 + 3 2. x 1 x 1 ( πx + 5 ) (b) (0.4 ponto) Calcule o ite:

Leia mais

1 Definição de uma equação diferencial linear de ordem n

1 Definição de uma equação diferencial linear de ordem n Equações diferenciais lineares de ordem superior 1 1 Definição de uma equação diferencial linear de ordem n Equação diferencial linear de ordem n é uma equação da forma: a n (x) dn y dx n + a n 1(x) dn

Leia mais

EQUAÇÕES DIFERENCIAIS LINEARES SEGUNDA ORDEM

EQUAÇÕES DIFERENCIAIS LINEARES SEGUNDA ORDEM EQUAÇÕES DIFERENCIAIS LINEARES SEGUNDA ORDEM 02/04/2014 Prof. Geraldine Revisão de Álgebra Linear Definição de conjunto Linearmente Independente Dizemos que as funções f ( x), f ( x) são LI, em um 1 2

Leia mais

x 2 + (x 2 5) 2, x 0, (1) 5 + y + y 2, y 5. (2) e é positiva em ( 2 3 , + ), logo x = 3

x 2 + (x 2 5) 2, x 0, (1) 5 + y + y 2, y 5. (2) e é positiva em ( 2 3 , + ), logo x = 3 Página 1 de 4 Instituto de Matemática - IM/UFRJ Cálculo Diferencial e Integral I - MAC 118 Gabarito segunda prova - Escola Politécnica / Escola de Química - 13/06/2017 Questão 1: (2 pontos) Determinar

Leia mais

Análise Complexa e Equações Diferenciais 2 o Semestre 2014/2015

Análise Complexa e Equações Diferenciais 2 o Semestre 2014/2015 Análise Complexa e Equações Diferenciais 2 o Semestre 2014/2015 (Cursos: 2 o Teste, versão A LEAN, LEGM, LMAC, MEBiom, MEC, MEFT, MEMec) 30 de Maio de 2015, 9h Duração: 1h 30m INSTRUÇÕES Não é permitida

Leia mais

Exercícios Matemática I (M193)

Exercícios Matemática I (M193) Exercícios Matemática I (M93) Funções. Associe a cada uma das seguintes funções o gráfico que a representa. a) f(x) = 2x + 4. b) f(x) = 3x +. c) f(x) = x 2. d) f(x) = 2x 3. e) f(x) = 0 x. f) f(x) = (0,

Leia mais

Trabalho de Equações Diferenciais Ordinárias

Trabalho de Equações Diferenciais Ordinárias Universidade Tecnológica Federal do Paraná Diretoria de Graduação e Educação Prossional Departamento Acadêmico de Matemática Trabalho de Equações Diferenciais Ordinárias Data de Entrega: 16/12/2015 Nome:

Leia mais

Cálculo Diferencial e Integral I 1 o Sem. 2016/17 - LEAN, MEMat, MEQ

Cálculo Diferencial e Integral I 1 o Sem. 2016/17 - LEAN, MEMat, MEQ Instituto Superior Técnico Departamento de Matemática Cálculo Diferencial e Integral I o Sem. 06/7 - LEAN, MEMat, MEQ FICHA 8 - SOLUÇÕES Regra de Cauchy. Estudo de funções.. a) 0; b) ln ; c) ln ; d) +

Leia mais

1 [30] O programa abaixo, que calcula a raiz quadrada de 6, está errado. Identifique o erro, e explique como corrigi-lo.

1 [30] O programa abaixo, que calcula a raiz quadrada de 6, está errado. Identifique o erro, e explique como corrigi-lo. TT009 Matemática Aplicada I Curso de Engenharia Ambiental Departamento de Engenharia Ambiental, UFPR P01, 30 mar 01 Prof. Nelson Luís Dias NOME: GABARITO Assinatura: 0 1 [30] O programa abaixo, que calcula

Leia mais

Notas de aula de Calculo Diferencial e Integral IV. Fabio Henrique de Carvalho

Notas de aula de Calculo Diferencial e Integral IV. Fabio Henrique de Carvalho Notas de aula de Calculo Diferencial e Integral IV Fabio Henrique de Carvalho Copyright c 2016 Publicado por Fundação Universidade Federal do Vale do São Francisco (Univasf) www.univasf.edu.br Todos os

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Resolução do exame Cálculo Diferencial e Integral I Versão B Data: 8/ / 8 Grupo I - (a) x 3 + x x = x(x + x ) = x(x + )(x ) Cálculo auxiliar: x + x = x = ± + 8 = ou x + + x + + + + + x + + + + x(x+)(x

Leia mais

Lista 8: Análise do comportamento de funções - Cálculo Diferencial e Integral I - Turma D. Professora: Elisandra Bär de Figueiredo

Lista 8: Análise do comportamento de funções - Cálculo Diferencial e Integral I - Turma D. Professora: Elisandra Bär de Figueiredo Lista 8: Análise do comportamento de funções - Cálculo Diferencial e Integral I - Turma D Professora: Elisandra Bär de Figueiredo 1. Seja f() = 5 + + 1. Justique a armação: f tem pelo menos uma raiz no

Leia mais

Derivada - Parte 2 - Regras de derivação

Derivada - Parte 2 - Regras de derivação Derivada - Parte 2 - Wellington D. Previero previero@utfpr.edu.br http://paginapessoal.utfpr.edu.br/previero Universidade Tecnológica Federal do Paraná - UTFPR Câmpus Londrina Wellington D. Previero Derivada

Leia mais

Diferenciabilidade de funções reais de várias variáveis reais

Diferenciabilidade de funções reais de várias variáveis reais Diferenciabilidade de funções reais de várias variáveis reais Cálculo II Departamento de Matemática Universidade de Aveiro 2018-2019 Cálculo II 2018-2019 Diferenciabilidade de f.r.v.v.r. 1 / 1 Derivadas

Leia mais

Métodos Numéricos em Equações Diferenciais Aula 01 - Problema de Valor Inicial

Métodos Numéricos em Equações Diferenciais Aula 01 - Problema de Valor Inicial Métodos Numéricos em Equações Diferenciais Aula 01 - Problema de Valor Inicial Profa. Vanessa Rolnik curso: Matemática Aplicada a Negócios Modelagem Exemplo: Determinação do valor de revenda de uma máquina

Leia mais

Universidade Federal de Juiz de Fora Departamento de Matemática

Universidade Federal de Juiz de Fora Departamento de Matemática Universidade Federal de Juiz de Fora Departamento de Matemática Cálculo I - Prova Opcional - Primeiro Semestre Letivo de 016-03/08/016 - FILA A Aluno(a): Matrícula: Turma: Instruções Gerais: 1- A prova

Leia mais

DERIVAÇÃO de FUNÇÕES REAIS de VARIÁVEL REAL

DERIVAÇÃO de FUNÇÕES REAIS de VARIÁVEL REAL DERIVAÇÃO de FUNÇÕES REAIS de VARIÁVEL REAL Derivada de uma função num ponto. Sejam f uma função denida num intervalo A R e a um ponto de acumulação de A. Cama-se derivada de f no ponto a ao ite, caso

Leia mais

Exercícios Complementares 5.2

Exercícios Complementares 5.2 Exercícios Complementares 5.2 5.2A Veri que se a função dada é ou não solução da edo indicada: (a) y = 2e x + xe x ; y 00 + 2y 0 + y = 0: (b) x = C e 2t + C 2 e 3t ; :: x 0 : x + 6x = 0: (c) y = ln x;

Leia mais

EQUAÇÕES DIFERENCIAIS, aulas teórico-práticas

EQUAÇÕES DIFERENCIAIS, aulas teórico-práticas EQUAÇÕES DIFERENCIAIS, aulas teórico-práticas Faculdade de Ciências da Universidade de Lisboa, 2009 1 Introdução, revisão Exercício 1.1 A equação (y 2 + 2xy)dx x 2 dy = 0 não é exacta mas tem o factor

Leia mais

Setor de Tecnologia - TC Engenharia Ambiental Prova Final. Matemática Aplicada II

Setor de Tecnologia - TC Engenharia Ambiental Prova Final. Matemática Aplicada II Universidade Federal do Paraná Matemática Aplicada II Setor de Tecnologia - TC Engenharia Ambiental 2015-1 Curitiba, 10.07.2015 Prova Final Matemática Aplicada II Tobias Bleninger Departamento de Engenharia

Leia mais