SEGUNDA CHAMADA CALCULO 2 2/2017
|
|
|
- Salvador Luiz Guilherme Carvalho
- 6 Há anos
- Visualizações:
Transcrição
1 9/11/017 SEGUNDA CHAMADA CALCULO /017 PROF: RENATO FERREIRA DE VELLOSO VIANNA Questão 1,5 pontos). Resolva os problemas de valor inicial: y + 4y + 4y = e x {, y = xyy + 4), a) = y0) = 0, b) = y0) = 5. y 0) = 1. Solução. a) Temos a equação característica r 4r +4 = r ) = 0. Portanto a solução geral da equação homogênea é: y h = c 1 e x + c xe x Usando o método dos coeficientes indeterminados, procuramos por uma solução particular da forma y p = Ax e x. Onde,. daí, y p = Ae x x x ) y p = Ae x 4x x x )) = Ae x 4x 8x + ) y p + 4y p + 4y p = Ae x 4x 8x + + 4x x ) + 4x ) = Ae x = e x, portanto, A = 1 e a solução geral é e b) Separando variáveis temos: y = c 1 e x + c xe x + x e x = e x c 1 + c x + x ) y0) = c 1 = 0 y = e x c x + x ) + c + x) y 0) = c = 1 y = e x x + x ) Integrando: dy yy + 4) = 1 y 1 ) dy y = xdx Portanto: 1 y 1 ) dy y = 1 4 lny) lny + 4)) = 1 ) y 4 ln = x y C y y + 4 = ex +4C Boa prova!!
2 PROF: RENATO FERREIRA DE VELLOSO VIANNA Como, y0) = 5, vemos que 5/9 = e 4C e de onde tiramos: y y + 4 = 5ex 9 y = 0ex 9 5e x Questão 0,5 ponto). Para as expressões a seguir, onde u, w e v são vetores em R 3, avalie se: não faz sentido, é um número ou é um vetor. Aqui a notação u w significa o produto interno e u w significa o produto vetorial). Solução. a) u v) w número b) u v não faz sentido c) u v) w número d) u v) w não faz sentido e) u v)w v) vetor Questão 3 pontos). Esboce: Solução. a) a superfície de nível 1 de px, y, z) = 3x + 4y + z 13. Descreva as seções z = k constante, y = 0 e x = 0.) Nível 1: 3x + 4y + z = 1 Seção z = k temos i) elipse 3x + 4y = 1 k para k < 1 ii) um ponto para k = 1 e k = 1 iii) nada para k > 1. Seção x = 0 temos elipse 4y + z = 1. Seção y = 0 temos elipse 3x + z = 1. Temos um elipsóide! b) o gráfico da função: zx, y) = { x y 0 x + y x + y 9. Temos que z 1 e z = 1 1 x + y 9.
3 SEGUNDA CHAMADA CALCULO /017 3 Para 0 x + y 1, temos que z 1) + x + y = 1 portanto temos uma meia esfera centrada em 0, 0, 1) com z 1. Esboço: Um chapéu sobre o disco x + y 9 de raio 3, na altura z = 1, com máximo z = sobre 0, 0). Questão 4 1,5 pontos). Em quais pontos da superfície descrita por gx, y, z) = x + y + z + 3) 16x + y ) = 0 o plano tangente é paralelo ao plano P = {x, y, z) R 3 ; 5x + 5y + 3 = 0}. Solução. Temos que ter o gradiente gx, y, z) paralelo a normal do plano P, que é 5, 5, 0). gx, y, z) = 4xx + y + z 5), 4yx + y + z 5), 4zx + y + z + 3)). Portanto, temos que resolver: i) λ4xx + y + z 5) = 5 ii) λ4yx + y + z 5) = 5 iii) 4zx + y + z + 3) = 0 iv) x + y + z + 3) 16x + y ) = 0 Como x + y + z > 0, por iii) temos que ter z = 0. Então de i) e ii) temos λ4xx + y + z 5) = 5 = λ4yx + y + z 5) Da onde tiramos que λx + y + z 5) 0 e x = y. Então em iv) temos:, x + 3) 3x = 4x 4 0x + 9 = 0 E pela fórmula quadrática: x = 0 ± Daí, x = y = ± 3 ou ±, = 0 ± 56 8 = 0 ± 16 8, e os pontos desejados são: ), 0 3, 3 ), 0 e,, 0 ) 3 ), 3, 0 = 9/ ou 1/
4 4 PROF: RENATO FERREIRA DE VELLOSO VIANNA Questão 5 1,5 ponto). Encontre e classifique mínimo/máximo local ou ponto de sela) todos os pontos críticos de gx, y) = cos x cos y. Justifique. Solução. Pontos críticos: g x x, y) = senx = 0 x = kπ, k Z e Teste da Segunda derivada: g y x, y) = seny = 0 y = lπ, l Z Dx, y) = g xx g yy g xy ) = cos x cos y Portanto Dkπ, lπ) = 1 < 0 se e só se coskπ) = coslπ) k par e l par ou k ímpar e l ímpar. E cada um destes pontos kπ, lπ) temos ponto de sela. Note gkπ, lπ) = 0 nestes casos) Se k é par e l é ímpar, então Dkπ, lπ) = 1 > 0 e g xx = cos x = 1 < 0, portanto temos máximo local de fato global) e gkπ, lπ) = =. Se k é ímpar e l é par, então Dkπ, lπ) = 1 > 0 e g xx = cos x = 1 > 0, portanto temos mínimo local de fato global) e gkπ, lπ) = 1 1 =. Questão 6 pontos). Encontre o máximo e mínimo absolutos de fx, y, z) = xyz restrito ao domínio fechado e limitado D = {x, y, z) R 3 ; hx, y, z) = x 4 + y 4 + 5z 4}. Solução. Pontos críticos: fx, y, z) = yz, xz, xy) = 0, 0, 0) nos pontos da forma x, 0, 0), 0, y, 0) e 0, 0, z). E nestes pontos f = 0 pode-se ver que não são máximos nem mínimos locais). Na fronteira de D: hx, y, z) = x 4 + y 4 + 5z = 4, e usamos multiplicadores de Lagrange. ou seja, i) yz = 4x 3 λ ii) xz = 8y 3 λ iii) xy = 10zλ iv) x 4 + y 4 + 5z = 4 f = λ h, hx, y, z) = 4 λ = 0 f = 0, 0, 0), foi considerado e temos f = 0 nestes pontos. Tomamos, λ 0 e de xi), yii) e ziii) temos: Portanto: e por iv): ou seja, xyz = 4x 4 λ = 8y 4 λ = 10z λ 5z = x 4 y 4 = x 4 4x 4 = 4
5 SEGUNDA CHAMADA CALCULO /017 5 Máximo: f 1, Mínimo: f 1 1, 4, 5 1 4, 5 x = ±1, y = ± ) = f 1, = f 1, ) = f 1, = f 1, 1 4, z = ± 5 1 4, 5 1 4, 5 1 4, 5 1 4, 5 ) = f 1, ) 4 = 5 ) = f 1, ) 4 = 5 1 4, 5 1 4, 5 ) )
6 6 PROF: RENATO FERREIRA DE VELLOSO VIANNA Curiosidade: x 4 + y 4 + 5z = 4
DERIVADAS PARCIAIS. y = lim
DERIVADAS PARCIAIS Definição: Seja f uma função de duas variáveis, x e y (f: D R onde D R 2 ) e (x 0, y 0 ) é um ponto no domínio de f ((x 0, y 0 ) D). A derivada parcial de f em relação a x no ponto (x
1. as equações paramétricas da reta que contém o ponto A e é perpendicular ao plano de equação x 2y + 3z = 17;
PROVA 1 09 de setembro de 2015 08h30 1 2 3 4 5 081 x = 1 + 3t 0811 Considere a reta L de equações paramétricas y = t z = 5 A = (5, 0, 2). Obtenha e o ponto 1. as equações paramétricas da reta que contém
Respostas sem justificativas não serão aceitas Não é permitido o uso de aparelhos eletrônicos
UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL - 018. - TURMA MA 1A VERIFICAÇÃO DE APRENDIZAGEM - PARTE Nome Legível RG CPF Respostas
P4 de Cálculo a Várias Variáveis I MAT Data: 02 de julho
P de Cálculo a Várias Variáveis I MAT 6 03. Data: 0 de julho Nome: Assinatura: Matrícula: Turma: Questão Valor Nota Revisão 5.0 5.0 Total 0.0 Instruções Mantenha seu celular desligado durante toda a prova.
MAT Cálculo 2 para Economia 3 a Prova - 28 de novembro de 2016
MAT 0147 - Cálculo para Economia 3 a Prova - 8 de novembro de 016 Questão 1) Determine o máximo e o mínimo de f(x, y) = x 4 + y em D = {(x, y); x + y 1}. Soluç~ao: As derivadas parciais f x (x, y) = 4x
xy 2 (b) A função é contínua na origem? Justique sua resposta! (a) Calculando o limite pela reta y = mx:
NOME: UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Instituto de Matemática PRIMEIRA PROVA UNIFICADA CÁLCULO II Politécnica, Engenharia Química e Ciência da Computação 21/05/2013. 1 a QUESTÃO : Dada a função
Funções de duas (ou mais)
Lista 5 - CDI II Funções de duas (ou mais) variáveis. Seja f(x, y) = x+y x y, calcular: f( 3, 4) f( 2, 3 ) f(x +, y ) f( x, y) f(x, y) 2. Seja g(x, y) = x 2 y, obter: g(3, 5) g( 4, 9) g(x + 2, 4x + 4)
Cálculo II Lista 5. com respostas
Cálculo II Lista 5. com respostas Exercício 1. Determine os pontos críticos das funções dadas e classifique-os, decidindo se são pontos de máximo local, de mínimo local ou de sela: (a) f(x, y) = x 2 +
MAT-2454 Cálculo Diferencial e Integral II EP-USP
MAT-454 Cálculo Diferencial e Integral II EP-USP Solução da Questão da Terceira Prova 8//06 Questão (Tipo A Valor: 3, 0 pontos). a. Determine todos os pontos da superfície de nível da função g(x, y, z)
MAT Cálculo Diferencial e Integral para Engenharia II 3 a lista de exercícios
MAT44 - Cálculo Diferencial e Integral para Engenharia II a lista de exercícios - 01 1. Esboce a superfície de nível da função F : A R R para o nível c: a) F(x, y, z) = x+y+z e c = 1 b) F(x, y, z) = x
Aula 18. Método Multiplicadores Lagrange (continuação)
Aula 18 Método Multiplicadores Lagrange (continuação) Na aula anterior introduzimos o Método dos Multiplicadores de Lagrange, que serve para maximizar/minimizar uma função restrita a um domínio do tipo
Derivadas Parciais. Sumário. 1 Funções de Várias Variáveis. Raimundo A. R. Rodrigues Jr. 1 de agosto de Funções de Duas Variáveis.
Derivadas Parciais Raimundo A. R. Rodrigues Jr 1 de agosto de 2016 Sumário 1 Funções de Várias Variáveis 1 1.1 Funções de Duas Variáveis.............................. 1 1.2 Grácos........................................
Derivadas Parciais Capítulo 14
Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS No Exemplo 6 da Seção 14.7 maximizamos a função volume V = xyz sujeita à restrição 2xz + 2yz + xy = que expressa a condição de a área da superfície ser
Derivadas Parciais - parte 2. x + 2 z. y = 1
Quarta Lista de Exercícios Cálculo II - Engenharia de Produção ( extraída do livro C ÁLCULO - vol, James Stewart ) Derivadas Parciais - parte 1) Verifique que a função u = 1/ x + y + z é uma solução da
CÁLCULO III - MAT Encontre todos os máximos locais, mínimos locais e pontos de sela nas seguintes funções:
UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e da Natureza Centro Interdisciplinar de Ciências da Natureza CÁLCULO III - MAT0036 9 a Lista de exercícios
Multiplicadores de Lagrange
Multiplicadores de Lagrange Para motivar o método, suponha que queremos maximizar uma função f (x, y) sujeito a uma restrição g(x, y) = 0. Geometricamente: queremos um ponto sobre o gráfico da curva de
ln(x + y) (x + y 1) < 1 (x + y 1)2 3. Determine o polinômio de Taylor de ordem 2 da função dada, em volta do ponto dado:
ā Lista de MAT 454 - Cálculo II - a) POLINÔMIOS DE TAYLOR 1. Seja f(x, y) = ln (x + y). a) Determine o polinômio de Taylor de ordem um de f em torno de ( 1, 1 ). b) Mostre que para todo (x, y) IR com x
MAT Cálculo Diferencial e Integral para Engenharia II 3 a lista de exercícios
MAT454 - Cálculo Diferencial e Integral para Engenharia II a lista de exercícios - 014 1. Em cada caso, esboce a superfície de nível c da função F : R R: a) Fx, y, z) = x + y + z e c = 1 b) Fx, y, z) =
1o sem profa. daniela m. vieira. (a) f(x, y) = 3x y no conjunto A de todos (x, y) tais que x 0, y 0, y x 3, x + y 4 e
mat51 - cálculo várias variáveis i - licenciatura 1o sem 011 - profa daniela m vieira SÉTIMA LISTA DE EXERCÍCIOS (1) Estude a função dada com relação a máximo e mínimo no conjunto dado (a) f(x, y) = x
1. as equações paramétricas da reta que contém os pontos A e B;
ROVA 1 08 de abril de 2015 08h30 1 2 3 4 5 081 0811 Considere os pontos A = (2, 3, 5), B = (7, 1, 0) e C = (1, 3, 2) do espaço. 1. as equações paramétricas da reta que contém os pontos A e B; 2. a equação
Cálculo Diferencial e Integral II
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral II Ficha de trabalho 1 (versão de 6/0/009 (Esboço de Conjuntos. Topologia. Limites. Continuidade
MAT 2454 Cálculo II Resolução da Lista 3
MAT 2454 Cálculo II Resolução da Lista 3 por César Morad I. Superfícies de Nível, Planos Tangentes e Derivadas Direcionais 1.1. Em cada caso, esboce a superfície de nível c da função F: R 2 R: a. F(x,
MAT Lista de exercícios
1 Curvas no R n 1. Esboce a imagem das seguintes curvas para t R a) γ(t) = (1, t) b) γ(t) = (t, cos(t)) c) γ(t) = (t, t ) d) γ(t) = (cos(t), sen(t), 2t) e) γ(t) = (t, 2t, 3t) f) γ(t) = ( 2 cos(t), 2sen(t))
MAT Cálculo Diferencial e Integral para Engenharia II 3 a lista de exercícios
MAT 454 - Cálculo Diferencial e Integral para Engenharia II a lista de exercícios - 7. Ache os pontos do hiperbolóide x y + z = onde a reta normal é paralela à reta que une os pontos (,, ) e (5,, 6)..
UNIVERSIDADE ESTADUAL DE SANTA CRUZ UESC. 1 a Avaliação escrita de Cálculo IV Professor: Afonso Henriques Data: 10/04/2008
1 a Avaliação escrita de Professor: Afonso Henriques Data: 10/04/008 1. Seja R a região do plano delimitada pelos gráficos de y = x, y = 3x 18 e y = 0. Se f é continua em R, exprima f ( x, y) da em termos
Cálculo Diferencial e Integral II Resolução do Exame/Teste de Recuperação 02 de Julho de 2018, 15:00h - versão 2 Duração: Exame (3h), Teste (1h30)
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral II do Exame/Teste de Recuperação 2 de Julho de 218, 15:h - versão 2 Duração: Exame (3h),
Instituto de Matemática Departamento de Métodos Matemáticos
?????? @ @ @@ @@?????? @ @ @@ @@ Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Métodos Matemáticos Prova Final Unificada de Cálculo II Politécnica,Escola Química - 03/12/2013
(x,y) x Exemplo: (x, y) ou f x. x = f x = 2xy. y = f y
1 DEFINIÇÃO DE Chamamos de derivada parcial quando temos uma função que envolve mais de uma variável e queremos derivar em relação a uma delas. De forma geral, basta derivarmos em relação à variável de
MAT1153 / LISTA DE EXERCÍCIOS : CAMPOS CONSERVATIVOS, INTEGRAIS DE LINHA, TRABALHO E TEOREMA DE GREEN
MAT1153 / 2008.1 LISTA DE EXERCÍCIOS : CAMPOS CONSERVATIVOS, INTEGRAIS DE LINHA, TRABALHO E TEOREMA DE GREEN OBS: Faça os exercícios sobre campos conservativos em primeiro lugar. (1 Fazer exercícios 1:(c,
Derivadas direcionais Definição (Derivadas segundo um vector): f : Dom(f) R n R e P 0 int(dom(f)) então
Derivadas direcionais Definição (Derivadas segundo um vector): f : Dom(f) R n R e P 0 int(dom(f)) então Seja D v f(p 0 ) = lim λ 0 f(p 0 + λ v) f(p 0 ) λ v representa a derivada direcional de f segundo
Lista 5: Rotacional, Divergente, Campos Conservativos, Teorema de Green
MAT 003 2 ō Sem. 207 Prof. Rodrigo Lista 5: Rotacional, Divergente, Campos Conservativos, Teorema de Green. Considere o campo de forças F (x, y) = f( r ) r, onde f : R R é uma função derivável e r = x
MAT Cálculo II - POLI a Lista de Exercícios
MAT 44 - Cálculo II - POLI - a Lista de Exercícios -) Ache os pontos do hiperbolóide x y +z = onde a reta normal é paralela à reta que une os pontos (,,) e (,,6). -) Encontre uma parametrização para C
Matemática 2. Teste Final. Atenção: Esta prova deve ser entregue ao fim de 1 Hora. Deve justificar detalhadamente todas as suas respostas.
Matemática 2 Lic. em Economia, Gestão e Finanças Data: 4 de Julho de 2017 Duração: 1H Teste Final Atenção: Esta prova deve ser entregue ao fim de 1 Hora. Deve justificar detalhadamente todas as suas respostas.
Cálculo II. Resumo e Exercícios P3
Cálculo II Resumo e Exercícios P3 Resuminho Teórico e Fórmulas Parte 1 Funções de Três Variáveis w = f(x, y, z) Definida em R +, apenas um valor de w para cada (x, y, z). Domínio de Função de Três Variáveis:
PROFESSOR: RICARDO SÁ EARP
LISTA DE EXERCÍCIOS SOBRE TRABALHO, CAMPOS CONSERVATIVOS, TEOREMA DE GREEN, FLUXO DE UM CAMPO AO LONGO DE UMA CURVA, DIVERGÊNCIA E ROTACIONAL DE UM CAMPO NO PLANO, FUNÇÕES HARMÔNICAS PROFESSOR: RICARDO
Cálculo a Várias Variáveis I - MAT Cronograma para P2: aulas teóricas (segundas e quartas)
Cálculo a Várias Variáveis I - MAT 116 0141 Cronograma para P: aulas teóricas (segundas e quartas) Aula 10 4 de março (segunda) Aula 11 6 de março (quarta) Referências: Cálculo Vol James Stewart Seções
Cálculo II Lista 4. com respostas
Cálculo II Lista 4. com respostas Exercício 1. Esboce a curva de nível de f(x, ) que passa pelo ponto P e desenhe o vetor gradiente de f em P: (a) f(x, ) = x ; P = ( 2, 2); 2 (b) f(x, ) = x 2 + 4 2 ; P
a definição de derivada parcial como limite do que aplicar as regras de derivação.)
2 a LISTA DE MAT 2454 - CÁLCULO II - POLI 2 o semestre de 2003. Ache as derivadas parciais de primeira ordem das funções : (a f(x, y = arctg y (b f(x, y, z, t = x y x z t 2. Seja f : IR IR uma função derivável.
Lista 2. (d) f (x, y) = x y x
UFPR - Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Matemática CM048 - Cálculo II - Matemática Diurno - 207/ Prof. Zeca Eidam Lista 2 Funções reais de duas e três variáveis.
(7) Suponha que sobre uma certa região do espaço o potencial elétrico V é dado por V(x, y, z) = 5x 2 3xy + xyz.
1. MAT - 0147 CÁLCULO DIFERENCIAL E INTEGRAL II PARA ECÔNOMIA 3 a LISTA DE EXERCÍCIOS - 017 1) Em cada caso, esboce a superfície de nível c da função F : R 3 R: a) Fx, y, z) = x + y + 3z e c = 1 b) Fx,
Instituto de Matemática - IM/UFRJ Cálculo I - MAC118 1 a Prova - Gabarito - 13/10/2016
Instituto de Matemática - IM/UFRJ Cálculo I - MAC118 1 a Prova - Gabarito - 13/10/2016 Questão 1: (2 pontos) x (a) (0.4 ponto) Calcule o ite: 2 + 3 2. x 1 x 1 ( πx + 5 ) (b) (0.4 ponto) Calcule o ite:
Lista de Exercícios de Cálculo 3 Módulo 1 - Terceira Lista - 02/2016
Lista de Exercícios de Cálculo 3 Módulo 1 - Terceira Lista - 02/2016 Parte A 1. Identifique e esboce as superfícies quádricas x 2 + 4y 2 + 9z 2 = 1 x 2 y 2 + z 2 = 1 (c) y = 2x 2 + z 2 (d) x = y 2 z 2
MAT2454 - Cálculo Diferencial e Integral para Engenharia II
MAT454 - Cálculo Diferencial e Integral para Engenharia II a Lista de Exercícios -. Ache os pontos do hiperboloide x y + z = onde a reta normal é paralela à reta que une os pontos (,, ) e (5,, 6).. Encontre
MAT Cálculo Diferencial e Integral para Engenharia II 2 o semestre de Prova Substitutiva - 03/12/2012. Gabarito - TURMA A
MAT 25 - Cálculo Diferencial e Integral para Engenaria II 2 o semestre de 2012 - Prova Substitutiva - 0/12/2012 Gabarito - TURMA A Questão 1. pontos) Seja a função fx,y) = ) x5 sen x +y x 2 +y 2, se x,y)
Cálculo 2. Guia de Estudos P1
Cálculo 2 Guia de Estudos P1 Resuminho Teórico e Fórmulas Parte 1 Cônicas Conceito: Cônicas são formas desenhadas em duas dimensões, considerando apenas os eixos x (horizontal) e y (vertical). Tipos de
Lista de Exercícios de Cálculo 3 Sexta Semana
Lista de Exercícios de Cálculo 3 Sexta Semana Parte A 1. (i) Encontre o gradiente das funções abaixo; (ii) Determine o gradiente no ponto P dado; (iii) Determine a taxa de variação da função no ponto P
Lista de Exercícios de Cálculo 3 Quarta Semana
Lista de Exercícios de Cálculo 3 Quarta Semana Parte A 1. Identifique e esboce as superfícies x 2 + 4y 2 + 9z 2 = 1 x 2 y 2 + z 2 = 1 (c) y = 2x 2 + z 2 (d) x = y 2 z 2 (e) 4x 2 16y 2 + z 2 = 16 (f) x
Lista 1. (1,0). (Neste caso, usar a definição de derivada parcial é menos trabalhoso do que aplicar as regras de derivação.
UFPR - Universidade Federal do Paraná Departamento de Matemática CM04 - Cálculo II Prof. José Carlos Eidam Lista Derivadas parciais, gradiente e diferenciabilidade. Ache as derivadas parciais de primeira
(3) Fazer os seguintes exercícios do livro texto. Exercs da seção : 1(d), 1(f), 1(h), 1(i), 1(j). 2(b), 2(d)
LISTA DE EXECÍCIOS DE GEOMETIA NO PLANO E NO ESPAÇO E INTEGAIS DUPLAS POFESSO: ICADO SÁ EAP (1) Fazer os seguintes exercícios do livro texto. Exercs da seção 1.1.4: 1(d), 1(f), 1(h), 1(i), 1(j). 2(b),
3 Cálculo Integral em R n
3 Cálculo Integral em n Exercício 3.. Calcule os seguintes integrais. Universidade da Beira Interior Matemática Computacional II Engenharia Informática 4/5 Ficha Prática 3 3 x + y dxdy x y + x dxdy e 3
MAT Cálculo II - FEA, Economia Calcule os seguintes limites, caso existam. Se não existirem, explique por quê: xy. (i) lim.
MAT0147 - Cálculo II - FEA, Economia - 2011 Prof. Gláucio Terra 2 a Lista de Exercícios 1. Calcule os seguintes limites, caso existam. Se não existirem, explique por quê: xy x 2 y (a) lim (f) lim (x,y)
Total Escolha 5 (cinco) questões. Justifique todas as passagens. Não é permitido o uso de calculadoras. Boa Sorte!
ā Prova de MAT 147 - Cálculo II - FEA-USP 8/11/01 Nome : GABARITO N ō USP : Professor : Oswaldo Rio Branco de Oliveira Q 1 4 5 6 7 Total N Escolha 5 (cinco) questões. Justifique todas as passagens. Não
Integrais Sobre Caminhos e Superfícies. Teoremas de Integração do Cálculo Vectorial.
Capítulo 5 Integrais Sobre Caminhos e Superfícies. Teoremas de Integração do Cálculo Vectorial. 5.1 Integral de Um Caminho. Integral de Linha. Exercício 5.1.1 Seja f(x, y, z) = y e c(t) = t k, 0 t 1. Mostre
EQUAÇÕES DIFERENCIAIS ORDINÁRIAS - Lista I
EQUAÇÕES DIFERENCIAIS ORDINÁRIAS - Lista I 1. Desenhe um campo de direções para a equação diferencial dada. Determine o comportamento de y quando t +. Se esse comportamento depender do valor inicial de
MAT Cálculo Diferencial e Integral para Engenharia III 2a. Lista de Exercícios - 1o. semestre de 2014
MAT455 - Cálculo Diferencial e Integral para Engenharia III a. Lista de Exercícios - 1o. semestre de 014 1. Calcule as seguintes integrais de linha ao longo da curva indicada: x ds, (t) = (t 3, t), 0 t
(*) livro Cálculo Diferencial e Integral de Funções de Várias Variáveis, de Diomara e Cândida
Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Matemática Lista de Cálculo II- Funções de Várias Variáveis (*) livro Cálculo Diferencial e Integral de Funções de Várias
MAT Cálculo II - POLI
MAT25 - Cálculo II - POLI Primeira Lista de Exercícios - 2006 TAYLOR 1. Utilizando o polinômio de Taylor de ordem 2, calcule um valor aproximado e avalie o erro: (a) 3 8, 2 (b) ln(1, 3) (c) sen (0, 1)
Universidade Estadual de Montes Claros Departamento de Ciências Exatas Curso de Licenciatura em Matemática. Notas de Aulas de
Universidade Estadual de Montes Claros Departamento de Ciências Exatas Curso de Licenciatura em Matemática Notas de Aulas de Cálculo Rosivaldo Antonio Gonçalves Notas de aulas que foram elaboradas para
MAT1153 / LISTA DE EXERCÍCIOS : REGIÕES DO ESPAÇO E INTEGRAIS TRIPLAS
MAT1153 / 008.1 LISTA DE EXERCÍCIOS : (1) Fazer os seguintes exercícios do livro texto. Exercs da seção.1.4: Exercs 1(b), 4(a), 4(b). () Fazer exercícios 3:(b), (c), (d) da secão 4.1.4 pg 99 do livro texto.
Fazer os exercícios 35, 36, 37, 38, 39, 40, 41, 42 e 43 da 1 a lista.
MAT 2454 - Cálculo II - POLI - 2 a Lista de Exercícios 2 o semestre de 2002 Fazer os exercícios 35, 36, 37, 38, 39, 40, 41, 42 e 43 da 1 a lista. 1. Calcule w t e w pela regra da cadeia e confira os resultados
Resumo com exercícios resolvidos dos assuntos:
www.engenhariafacil.weebly.com (0)- Considerações iniciais: Resumo com exercícios resolvidos dos assuntos: Máximos e mínimos absolutos e Multiplicador de Lagrange -Grande parte das funções não possui máximos
L I S TA 6 - D E R I VA D A S PA R C I A I S E D I R E C I O N A I S, P L A N O TA N G E N T E E P O L I N Ô M I O S D E TAY L O R
6 L I S TA 6 - D E R I VA D A S PA R C I A I S E D I R E C I O N A I S, P L A N O TA N G E N T E E P O L I N Ô M I O S D E TAY L O R Prof. Benito Frazão Pires questões. Calcule as derivadas parciais de
Máximos e mínimos (continuação)
UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 3 Assunto: Máximos e mínimos Palavras-chaves: máximos e mínimos, valores máximos e valores mínimos Máximos e mínimos (continuação) Sejam f
EXERCÍCIOS DE ELEMENTOS DE MATEMÁTICA II (BQ, CTA, EFQ, Q) 2002/2003. Funções reais de várias variáveis
EXERCÍCIOS DE ELEMENTOS DE MATEMÁTICA II (BQ, CTA, EFQ, Q) 2002/2003 Funções reais de várias variáveis 1. Faça um esboço de alguns conjuntos de nível das seguintes funções: (a) f (x,y) = 1 + x + 3y, (x,y)
MAT Cálculo Diferencial e Integral para Engenharia II 2 a lista de exercícios
MAT454 - Cálculo Diferencial e Integral para Engenharia II a lista de exercícios - 009 1. Ache as derivadas parciais de primeira ordem das funções: ( y (a) f(x, y) = arctg (b) f(x, y) = ln(1 + cos x) (xy
MAT Cálculo Diferencial e Integral para Engenharia II 2 a Lista de Exercícios
MAT2454 - Cálculo Diferencial e Integral para Engenharia II 2 a Lista de Exercícios - 2012 1. Ache as derivadas parciais de primeira ordem das funções: ( y (a) f(x, y) = arctg (b) f(x, y) = ln(1+cos x)
Derivadas Parciais Capítulo 14
Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS Como vimos no Capítulo 4, no Volume I, um dos principais usos da derivada ordinária é na determinação dos valores máximo e mínimo. DERIVADAS PARCIAIS 14.7
Exercício 1 Dê o valor, caso exista, que a função deveria assumir no ponto dado para. em p = 9
Exercícios - Limite e Continuidade-1 Exercício 1 Dê o valor, caso exista, que a função deveria assumir no ponto dado para ser contínua: (a) f(x) = x2 16 x 4 (b) f(x) = x3 x x em p = 4 em p = 0 (c) f(x)
5. Determine o conjunto dos pontos em que a função dada é diferenciável. Justifique.
4 ā Lista de Exercícios de SMA-332- Cálculo II 1. Mostre que as funções dadas são diferenciáveis. a) f(x, y) = xy b) f(x, y) = x + y c) f(x, y) = x 2 y 2 d) f(x, y) = 1 xy e) f(x, y) = 1 x + y f) f(x,
Lista Determine o valor máximo e o valor mínimo da função f sujeita às restrições explicitadas:
UFPR - Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Matemática CM048 - Cálculo II - Matemática Diurno Prof. Zeca Eidam Lista 3 Máximos e mínimos de funções de duas variáveis
Lista de Exercícios de Funções de Várias Variáveis
Lista de Exercícios de Funções de Várias Variáveis 29 de dezembro de 2016 2 Sumário 1 Sequências e Séries InnitasP1) 5 1.1 Sequências............................. 5 1.1.1 Digitado por:luele Ribeiro de
1 Definição de uma equação diferencial linear de ordem n
Equações diferenciais lineares de ordem superior 1 1 Definição de uma equação diferencial linear de ordem n Equação diferencial linear de ordem n é uma equação da forma: a n (x) dn y dx n + a n 1(x) dn
Soluções abreviadas de alguns exercícios
Tópicos de cálculo para funções de várias variáveis Soluções abreviadas de alguns exercícios Instituto Superior de Agronomia - 2 - Capítulo Tópicos de cálculo diferencial. Domínio, curva de nível e gráfico.
Cálculo 3 Lista 2 Limites-Continuidade-Derivada Direcional-Derivada Parcial-Plano Tangente-Gradiente Prof. Rildo Soares. (f) lim. (g) lim.
Centro Federal de Educação Tecnológica Unidade de Nova Iguaçu Ensino de Graduação Matemática Cálculo 3 Lista Limites-Continuidade-Derivada Direcional-Derivada Parcial-Plano Tangente-Gradiente Prof. Rildo
MAT Cálculo Diferencial e Integral para Engenharia III 3a. Lista de Exercícios - 1o. semestre de 2017
MAT2455 - Cálculo Diferencial e Integral para Engenharia III 3a. Lista de Exercícios - 1o. semestre de 2017 1. Determine uma representação paramétrica de cada uma das superfícies abaixo e calcule sua área:
LISTA DE EXERCÍCIOS SOBRE FLUXOS, TEOREMA DE GAUSS E DE STOKES
LITA DE EXERCÍCIO OBRE FLUXO, TEOREMA DE GAU E DE TOKE (1) Fazer exercícios 1), 2), 3), 4) da seção 10.4.4 pgs 235, 236 do livro texto. (2) Fazer exercícios 1), 2), 3), 5) da seção 10.5.3 pgs 241, 242
Lista Determine o volume do sólido contido no primeiro octante limitado pelo cilindro z = 9 y 2 e pelo plano x = 2.
UFPR - Universidade Federal do Paraná Departamento de Matemática CM042 - Cálculo II (Turma B) Prof. José Carlos Eidam Lista 3 Integrais múltiplas. Calcule as seguintes integrais duplas: (a) R (2y 2 3x
Escola Naval Gabarito Comentado PSAEN PROVA ROSA Elaborado por alunos do ITA: Caio Guimarães, Ishai Elarrat, Felipe Moraes
Escola Naval Gabarito Comentado PSAEN 006 - PROVA ROSA Elaborado por alunos do ITA: Caio Guimarães, Ishai Elarrat, Felipe Moraes. Seja x = base d d. Da figura: x h.ctg d d h.(ctg ctg ) h x d h.ctg (ctg
Universidade Federal do Paraná
Universidade Federal do Paraná etor de iências Exatas Departamento de Matematica Prof. Juan arlos Vila Bravo Lista de exercicios de cálculo II uritiba, 28 de Maio de 2014 INTEGRAL DE LINHA DE AMPO VETORIAL:
MAT Cálculo a Várias Variáveis I Lista de Exercícios sobre Integração Dupla
MAT116 - Cálculo a Várias Variáveis I Lista de Exercícios sobre Integração Dupla 1 Exercícios Complementares resolvidos Exercício 1 Considere a integral iterada 1 ] exp ( x ) dx dy. x=y 1. Inverta a ordem
Derivadas Parciais - parte 1. 1) Determine as derivadas parciais de primeira ordem da função.
Terceira Lista de Exercícios Cálculo II - Engenharia de Produção ( extraída do livro C ÁLCULO - vol 2 James Stewart ) Derivadas Parciais - parte 1 1) Determine as derivadas parciais de primeira ordem da
Prova de Conhecimentos Específicos 1 a QUESTÃO: (2,0 pontos)
Prova de Conhecimentos Específicos 1 a QUESTÃO: (,0 pontos) 5x Considere a função f(x)=. Determine, se existirem: x +7 (i) os pontos de descontinuidade de f; (ii) as assíntotas horizontais e verticais
Lista de Exercícios de Cálculo 3 Sétima Semana
Lista de Exercícios de Cálculo Sétima Semana Parte A. Use os multiplicados de Lagrange para determinar os valores máximos e mínimos da função sujeita as restrições dadas. (a) f(x, y) = x 2 + y 2 s.a. xy
DERIVADAS PARCIAIS. A derivada parcial de f em relação a y, no ponto (x, y), é o limite
Teoria DERIVADAS PARCIAIS Definições Básicas: A derivada parcial de f em relação a x, no ponto (x, y), é o limite f x (x, y) = lim f(x + x, y) f(x, y) x 0 x em que y é mantido constante. A derivada parcial
Universidade Federal de Uberlândia
Universidade Federal de Uberlândia Faculdade de Matemática 2 a Prova de Matemática 2 - Data: 03/06/2016 Curso: Agronomia - Turma: M Professor: Germano Abud de Rezende GABARITO Escreva a resposta à caneta.
Universidade Federal do Paraná
Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Matematica Prof. Juan Carlos Vila Bravo 1 ra Lista de exercicios de Cálculo Diferencial e Integral II FUNÇÕES DE VÁRIAS VARIÁVEIS
Exercícios propostos para as aulas práticas
Análise Matemática III Engenharia Civil 2005/2006 Exercícios propostos para as aulas práticas Departamento de Matemática da Universidade de Coimbra Algumas noções topológicas em IR n 1 Verifique se cada
Cálculo II. Resumo Teórico Completo
Cálculo II Resumo Teórico Completo Cálculo 2 A disciplina visa estudar funções e gráficos, de forma semelhante a Cálculo 1, mas expande o estudo para funções de mais de uma variável, bem como gráficos
Universidade Federal do Rio de Janeiro Cálculo III
Universidade Federal do Rio de Janeiro Cálculo III 1 o semestre de 26 Primeira Prova Turma EN1 Não serão aceitas respostas sem justificativa. Explique tudo o que você fizer. 1. Esboce a região de integração,
Resumo com exercícios resolvidos do assunto:
www.engenhariafacil.weebly.com Resumo com exercícios resolvidos do assunto: (I) (II) (III) (IV) Derivadas Parciais; Plano Tangente; Diferenciabilidade; Regra da Cadeia. (I) Derivadas Parciais Uma derivada
Cálculo Diferencial e Integral II
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral II Exame/Teste de Recuperação v2-8h - 29 de Junho de 215 Duração: Teste - 1h3m; Exame -
ANÁLISE MATEMÁTICA III A TESTE 1 10 DE OUTUBRO DE :10-16H. Duração: 50 minutos
Departamento de Matemática Secção de Álgebra e Análise Última actualização: 10/Out/2005 ANÁLISE MATEMÁTICA III A TESTE 1 10 DE OUTUBRO DE 2005 15:10-16H RESOLUÇÃO (As soluções aqui propostas não são únicas!)
