Resumo com exercícios resolvidos dos assuntos:
|
|
|
- Nicolas Kevin Aveiro Amaro
- 9 Há anos
- Visualizações:
Transcrição
1 (0)- Considerações iniciais: Resumo com exercícios resolvidos dos assuntos: Máximos e mínimos absolutos e Multiplicador de Lagrange -Grande parte das funções não possui máximos e/ou mínimos absolutos quando consideramos todo o seu domínio. Tendo como exemplo o paraboloide elíptico abaixo: f x, y = x 2 + 2y 2 x Podemos perceber que, se considerássemos todo o plano XY, essa função não teria um ponto de máximo absoluto, pois conforme (x, y) (+, + ) a função também explode!! Logo, só podemos determinar o máximo absoluto se restringirmos o domínio dessa função. (1)- Teorema de existência (Teorema de Weierstrass): O teorema de Weierstrass afirma que: Se a função (F) for contínua e seu domínio (D) for limitado e fechado, Então F possui máximo e mínimo absoluto em D (2)- Calculando máximos e mínimos absolutos: Para calcularmos os valores máximos e mínimos absolutos, facilita dividir o problema:
2 Candidatos à (I) No interior de D Max abs ou Min abs (II) Na beirada de D Avaliando a primeira parte (I), podemos achar candidatos da mesma forma que utilizamos para calcular máximos e mínimos locais, ou seja, encontrar os pontos críticos ( f = 0). Dessa forma, poderemos encontrar os pontos candidatos a maximos e mínimos absolutos no interior de D. Avaliando a segunda parte (II), podemos proseguir de duas formas: uma muito trabalhosa e uma bem mais tranquila. A trabalhosa é tentar reduzir a equação para uma equação de uma variável e resolver usando Calculo 1. A tranquila é utilizar um novo método chamado Método dos Multiplicadores de Lagrange. Apenas dessa vez, mostraremos o método trabalhoso. Em seguida, explicaremos como resolver usando Lagrange. Exercicio: Ache os máximos e mínimos locais de f x, y = x 2 + 2y 2 x em D: x 2 + y 2 1 Olhando os pontos dentro de D, f = 0 f, f = (0,0), logo: a) f f = 0 2x 1 = 0 e b) = 0 4y = 0 Por fim, resolvendo o sistema gerado por a e b : y = 0 e x = 1 2 x, y = 1 2, 0 Olhando para a periferia de D, partimos da equação de D: Substituindo y 2 na equação de f(x, y), temos: 1 x 2 + y 2 = 1 y 2 = 1 x 2
3 f x = x x 2 x f x = x 2 x + 2, com x ε[ 1,1] Para encontrar os candidatos de máximo, df dx = 0 2x 1 = 0 x = 1/2, usando esse resultado em (1): y 2 = y = ± 3 2 Também podemos concluir que: Substituindo x 2 na equação de f(x, y), temos: 2 x 2 + y 2 = 1 x 2 = 1 y 2 f y = 1 y 2 + 2y 2 ± 1 y f y = y 2 ± 1 y , com y ε [ 1,1] Para encontrar os candidatos de máximo, df = 0 y 2 ± = 0 y = 0 ou y = ±( ), para y = ±( ), já fizemos, dy 1 y substituindo y = 0 em (2): x 2 = 1 x = ±1 Por fim, obtemos 5 candidatos para máximos e mínimos absolutos: a) 1 2, + 3 2, b) 1 2, 3 2, c) +1,0, d) 1,0, e) (1 2, 0) Para descobrirmos qual é o máximo absoluto, basta substituir os pontos em f(x, y) e ver qual é o maior e o menor: f a = f b = 9 4, f c = 0, f d = 2, f e = 1 4 Analisando os resultados, podemos conluir que:
4 9 é o máximo absoluto e 1 é o mínimo absoluto de f x, y em D 4 4 (2)- Método dos Multiplicadores de Lagrange: No último exemplo, resolver pelo método trabalhoso não foi tão complicado, mas nem sempre as funções serão tão amigáveis a esse ponto. Por isso precisamos de um método mais eficaz. Para a utilização do método, precisamos estabelecer uma condição entre a direção de maior crescimento de f ( f) e a superfície que delimita o domínio S. Essa relação é dada por: (2.1) f S Essa condição é verdadeira para pontos candidatos a máximo e mínimo absoluto, pois, ao nos deslocarmos na direção de maior crescimento de f não observamos mudança na posição do ponto em S. Da condição (2.1), podemos concluir que: f é colinear a n (vetor normal à S), ou seja é um múltiplo de n Finalmente, denotando f x, y, z,, restringida por S: g x, y, = k (2.2) f = λ g Atente que essa fórmula SÓ PODE SER UTILIZADA PARA AS BORDAS DA SUPERFÍCIE QUE DELIMITA O DOMINIO DE f, uma vez que g x, y, = k é uma superfície de tipo FRONTEIRA. Vamos utilizar esse novo método para resolver o problema anterior: Exercicio: Ache os máximos e mínimos locais de f x, y = x 2 + 2y 2 x em D: g x, y 1, g x, y = x 2 + y 2 Para o interior de g(x, y), como já fizemos, f = 0, logo x, y = ( 1 2, 0) Para a fronteira de g(x, y), f = λ g f, f sistema: = λ g g, λ, com isso chegamos ao
5 2x 1 = λ 2x, um sistema gerado por (2.2) possui n equações(x,y,z,... ) e (n+1) incognitas 4y = λ 2y (x,y,z,..., λ). Logo, para acharmos um conjunto discreto de soluções, precisamos de mais uma equação. Se prestar atenção, nós já possuimos essa equação extra: g x, y, z, = k. Levando isso em conta: 2x 1 = λ 2x 4y = λ 2y, utilizando a segunda equação do sistema, encontramos que: λ = 2 ou y = 0. x 2 + y 2 = 1 Usando λ = 2, na primeira equação, chegamos que: x = 1 2, usando x na terceira equação, obtemos: y = ± 3 2 Usando y = 0 na terceira equação, obtemos : x = ±1. Por fim, a) 1 2, + 3 2, b) 1 2, 3 2, c) +1,0, d) 1,0, e) (1 2, 0) f a = f b = 9 4, f c = 0, f d = 2, f e = 1 4 (3)- Outras aplicações do Método dos Multiplicadores de Lagrange: Existe uma gama de exercícios que podem ser resolvidos usando o método. O que será cobrado em Calculo 2 será a maximização de funções de mais de uma variável. Exemplo: Encontre as dimensões máximas e o volume máximo de um paralelepípedo inscrito no elipsoide: g x, y, z : x 2 + y 2 + z2 = Para resolver esse problema é necessário escrever a fórmula do volume do paralelepípedo que, assim como o elipsoide, deve ser centrado na origem. Observe a imagem:
6 Temos V = f x, y, z = 2x2y2z = 8xyz, restrita por g x, y, z : x y 2 Logo, utilizamos Lagrange: f = λ g com: 4 + z2 1 = 1 f = 8yz, 8xz, 8xy e g = ( 2 x, 1 y, 2z), chegando ao sistema: 9 2 8yz = λ 2 9 x 8xz = λ 1 2 y 8xy = λ2z 4yz = λ 1 9 x 16xz = λ y 4xy = λ z Para resolver esse sistema, usaremos o método de eliminação de fatores λ, observe: - Dividindo a segunda equação pela terceira: 16xz 4xy = λy λz 4z2 = y 2 z = y 2 Lembre-se que x, y e z são grandezas unicamente positivas, uma vez que são lados do paralelepípedo. Por isso, ao tirar raiz quadrada dos dois lados, os termos ficam positivos! - Dividindo a primeira equação pela segunda: 4yz 16xz = λ x 9 λy y2 = 4 9 x2 y = 2 3 x Juntando as equações geradas, obtemos as relações entre x, y e z no volume máximo. São elas: V max = 2x 2y 2z = 2x 4 3 x 2 3 x
7 Resta agora descobrir o valor de x. Podemos utilizar então as relações entre x, y e z na equação de g x, y, z = 1 obtendo: Finalmente: x x2 9 + x2 9 = 1 3x2 = 9 x = 3 V max = V max = Bons Estudos!! Dúvidas? Acesse o Solucionador na página ou mande para [email protected].
Aula 18. Método Multiplicadores Lagrange (continuação)
Aula 18 Método Multiplicadores Lagrange (continuação) Na aula anterior introduzimos o Método dos Multiplicadores de Lagrange, que serve para maximizar/minimizar uma função restrita a um domínio do tipo
Respostas sem justificativas não serão aceitas Não é permitido o uso de aparelhos eletrônicos
UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL - 018. - TURMA MA 1A VERIFICAÇÃO DE APRENDIZAGEM - PARTE Nome Legível RG CPF Respostas
1o sem profa. daniela m. vieira. (a) f(x, y) = 3x y no conjunto A de todos (x, y) tais que x 0, y 0, y x 3, x + y 4 e
mat51 - cálculo várias variáveis i - licenciatura 1o sem 011 - profa daniela m vieira SÉTIMA LISTA DE EXERCÍCIOS (1) Estude a função dada com relação a máximo e mínimo no conjunto dado (a) f(x, y) = x
Aula 17. Máximo e Mínimo Absolutos
Aula 17 Máximo e Mínimo Absolutos O maior e o menor valor de f(x, y), num certo domínio, nem sempre existem, como ilustrado na Figura 1 (domínio = R ). Neste caso, não existe máximo absoluto. Uma das causas,
MAT Cálculo 2 para Economia 3 a Prova - 28 de novembro de 2016
MAT 0147 - Cálculo para Economia 3 a Prova - 8 de novembro de 016 Questão 1) Determine o máximo e o mínimo de f(x, y) = x 4 + y em D = {(x, y); x + y 1}. Soluç~ao: As derivadas parciais f x (x, y) = 4x
MAT-2454 Cálculo Diferencial e Integral II EP-USP
MAT-454 Cálculo Diferencial e Integral II EP-USP Solução da Questão da Terceira Prova 8//06 Questão (Tipo A Valor: 3, 0 pontos). a. Determine todos os pontos da superfície de nível da função g(x, y, z)
Derivadas Parciais Capítulo 14
Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS No Exemplo 6 da Seção 14.7 maximizamos a função volume V = xyz sujeita à restrição 2xz + 2yz + xy = que expressa a condição de a área da superfície ser
xy 2 (b) A função é contínua na origem? Justique sua resposta! (a) Calculando o limite pela reta y = mx:
NOME: UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Instituto de Matemática PRIMEIRA PROVA UNIFICADA CÁLCULO II Politécnica, Engenharia Química e Ciência da Computação 21/05/2013. 1 a QUESTÃO : Dada a função
MAT 2454 Cálculo II Resolução da Lista 3
MAT 2454 Cálculo II Resolução da Lista 3 por César Morad I. Superfícies de Nível, Planos Tangentes e Derivadas Direcionais 1.1. Em cada caso, esboce a superfície de nível c da função F: R 2 R: a. F(x,
(x,y) x Exemplo: (x, y) ou f x. x = f x = 2xy. y = f y
1 DEFINIÇÃO DE Chamamos de derivada parcial quando temos uma função que envolve mais de uma variável e queremos derivar em relação a uma delas. De forma geral, basta derivarmos em relação à variável de
Derivadas Parciais Capítulo 14
Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS Como vimos no Capítulo 4, no Volume I, um dos principais usos da derivada ordinária é na determinação dos valores máximo e mínimo. DERIVADAS PARCIAIS 14.7
Multiplicadores de Lagrange
Multiplicadores de Lagrange Para motivar o método, suponha que queremos maximizar uma função f (x, y) sujeito a uma restrição g(x, y) = 0. Geometricamente: queremos um ponto sobre o gráfico da curva de
ANÁLISE MATEMÁTICA III A TESTE 1 10 DE OUTUBRO DE :10-16H. Duração: 50 minutos
Departamento de Matemática Secção de Álgebra e Análise Última actualização: 10/Out/2005 ANÁLISE MATEMÁTICA III A TESTE 1 10 DE OUTUBRO DE 2005 15:10-16H RESOLUÇÃO (As soluções aqui propostas não são únicas!)
Resumo com exercícios resolvidos do assunto:
www.engenhariafacil.weebly.com Resumo com exercícios resolvidos do assunto: (I) (II) (III) (IV) Derivadas Parciais; Plano Tangente; Diferenciabilidade; Regra da Cadeia. (I) Derivadas Parciais Uma derivada
Cálculo II. Resumo Teórico Completo
Cálculo II Resumo Teórico Completo Cálculo 2 A disciplina visa estudar funções e gráficos, de forma semelhante a Cálculo 1, mas expande o estudo para funções de mais de uma variável, bem como gráficos
SEGUNDA CHAMADA CALCULO 2 2/2017
9/11/017 SEGUNDA CHAMADA CALCULO /017 PROF: RENATO FERREIRA DE VELLOSO VIANNA Questão 1,5 pontos). Resolva os problemas de valor inicial: y + 4y + 4y = e x {, y = xyy + 4), a) = y0) = 0, b) = y0) = 5.
Cálculo II Lista 5. com respostas
Cálculo II Lista 5. com respostas Exercício 1. Determine os pontos críticos das funções dadas e classifique-os, decidindo se são pontos de máximo local, de mínimo local ou de sela: (a) f(x, y) = x 2 +
Resumo com exercícios resolvidos do assunto:
www.engenhariafacil.weebly.com Resumo com exercícios resolvidos do assunto: (I) (II) Derivadas Direcionais; Vetor Gradiente. (I) Derivadas Direcionais Definição: É a taxa de variação do valor de uma função
DERIVADAS PARCIAIS. y = lim
DERIVADAS PARCIAIS Definição: Seja f uma função de duas variáveis, x e y (f: D R onde D R 2 ) e (x 0, y 0 ) é um ponto no domínio de f ((x 0, y 0 ) D). A derivada parcial de f em relação a x no ponto (x
CÁLCUL O INTEGRAIS TRIPLAS ENGENHARIA
CÁLCUL O INTEGRAIS TRIPLAS ENGENHARIA 1 INTERPRETAÇÃO GEOMÉTRICA DE Nas integrais triplas, temos funções f(x,y,z) integradas em um volume dv= dx dy dz, sendo a região de integração um paralelepípedo P=
Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente.
Aula 15 Derivadas Direcionais e Vetor Gradiente Seja f(x, y) uma função de variáveis. Iremos usar a notação D u f(x 0, y 0 ) para: Derivada direcional de f no ponto (x 0, y 0 ), na direção do vetor unitário
CÁLCULO II Prof. Jerônimo Monteiro
CÁLCULO II Pro. Jerônimo Monteiro Gabarito - Lista Semanal 08 Questão 1. Calcule 2 para (x, y, onde x = r cos θ e y = r sen θ. 2 Solução: Primeiro, calculamos pela regra da cadeia, como segue: = + = (
Cálculo II. Resumo e Exercícios P3
Cálculo II Resumo e Exercícios P3 Resuminho Teórico e Fórmulas Parte 1 Funções de Três Variáveis w = f(x, y, z) Definida em R +, apenas um valor de w para cada (x, y, z). Domínio de Função de Três Variáveis:
15 AULA. Máximos e Mínimos LIVRO. META Encontrar os pontos de máximo e mínimo de uma função de duas variáveis a valores reais.
1 LIVRO Máximos e Mínimos 1 AULA META Encontrar os pontos de máximo e mínimo de uma função de duas variáveis a valores reais. OBJETIVOS Maximizar e/ou minimizar função de duas variáveis a valores reais.
Variedades e Extremos Condicionados (Resolução Sumária)
Variedades e Extremos Condicionados (Resolução Sumária) 3 de Maio de 013 1. Mostre que os seguintes conjuntos são variedades e indique a respectiva dimensão: (a) {(x,y,z) R 3 : x +y z = 1}; Resolução:
MAT Cálculo Diferencial e Integral para Engenharia II 3 a lista de exercícios
MAT454 - Cálculo Diferencial e Integral para Engenharia II a lista de exercícios - 014 1. Em cada caso, esboce a superfície de nível c da função F : R R: a) Fx, y, z) = x + y + z e c = 1 b) Fx, y, z) =
BANCO DE EXERCÍCIOS - 24 HORAS
BANCO DE EXERCÍCIOS - HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº GABARITO COMENTADO ) A função será y,5x +, onde y (preço a ser pago) está em função de x (número de quilômetros
ANÁLISE MATEMÁTICA III TESTE 2-9 DE JUNHO DE apresente e justifique todos os cálculos duração: hora e meia (19:00-20:30)
Instituto uperior Técnico Departamento de Matemática ecção de Álgebra e Análise ANÁLIE MATEMÁTICA III TETE - VERÃO A 9 DE JUNHO DE apresente e justifique todos os cálculos duração: hora e meia (9: - :3
Aula 17 Máximos e mínimos (2 a parte) Multiplicadores de Lagrange
Aula 17 Máximos e mínimos (2 a parte) Multiplicadores de Lagrange MÓDULO 1 AULA 17 Ao pedir um conselho, estamos, na maioria das vezes, buscando um cúmplice. Lagrange Objetivo Usar os multiplicadores de
Aula 18 Multiplicadores de Lagrange. (2 a parte) Objetivo. Usar os multiplicadores de Lagrange para calcular máximos e mínimos.
Aula 18 Multiplicadores de Lagrange (2 a parte) Objetivo Usar os multiplicadores de Lagrange para calcular máximos e mínimos. Começamos com um exemplo no qual queremos determinar o máximo eomínimo de uma
MAT Cálculo Diferencial e Integral para Engenharia II 2 o semestre de Prova Substitutiva - 03/12/2012. Gabarito - TURMA A
MAT 25 - Cálculo Diferencial e Integral para Engenaria II 2 o semestre de 2012 - Prova Substitutiva - 0/12/2012 Gabarito - TURMA A Questão 1. pontos) Seja a função fx,y) = ) x5 sen x +y x 2 +y 2, se x,y)
Cálculo Diferencial e Integral II Resolução do Exame/Teste de Recuperação 02 de Julho de 2018, 15:00h - versão 2 Duração: Exame (3h), Teste (1h30)
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral II do Exame/Teste de Recuperação 2 de Julho de 218, 15:h - versão 2 Duração: Exame (3h),
Os únicos candidatos a extremantes locais são os pontos críticos de f pois o D f 2 é aberto. f
CAPÍTULO 16 Exercícios 16 1 Seja (x y) x y xy x y Os únicos candidatos a extremantes locais são os pontos críticos de pois o D é aberto De ( x x y ) x y ( y x y ) y x 1 resulta que os candidatos a extremantes
Aula 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 se define da seguinte maneira:
Aula 1 1. Ângulo entre duas retas no espaço Definição 1 O ângulo (r1, r ) entre duas retas r1 e r se define da seguinte maneira: (r1, r ) 0o se r1 e r são coincidentes, Se as retas são concorrentes, isto
Capítulo 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 é assim definido:
Capítulo 1 1. Ângulo entre duas retas no espaço Definição 1 O ângulo (r1, r ) entre duas retas r1 e r é assim definido: (r1, r ) 0o se r1 e r são coincidentes, se as retas são concorrentes, isto é, r1
Dinâmica do Movimento de Rotação
www.engenhariafacil.net Resumo com exercícios resolvidos do assunto: Dinâmica do Movimento de Rotação (1)- TORQUE, CONSIDERAÇÕES INICIAIS: Já estudamos que a atuação de forças em um corpo altera o movimento
(7) Suponha que sobre uma certa região do espaço o potencial elétrico V é dado por V(x, y, z) = 5x 2 3xy + xyz.
1. MAT - 0147 CÁLCULO DIFERENCIAL E INTEGRAL II PARA ECÔNOMIA 3 a LISTA DE EXERCÍCIOS - 017 1) Em cada caso, esboce a superfície de nível c da função F : R 3 R: a) Fx, y, z) = x + y + 3z e c = 1 b) Fx,
J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial
178 Capítulo 10 Equação da reta e do plano no espaço 1. Equações paramétricas da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que
Matemática E Extensivo V. 7
Matemática E Etensivo V. 7 Eercícios ) B ) A P() = ³ + a² + b é divisivel por. Pelo teorema do resto, = é raiz de P(). P() = ³ + a. ² + b a + b = Da mesma maneira, P() é divisível por. Pelo teorema do
Teoremas e Propriedades Operatórias
Capítulo 10 Teoremas e Propriedades Operatórias Como vimos no capítulo anterior, mesmo que nossa habilidade no cálculo de ites seja bastante boa, utilizar diretamente a definição para calcular derivadas
UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ FUNDAMENTOS DE MATEMÁTICA
UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ FUNDAMENTOS DE MATEMÁTICA PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR - 0/11/014 CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES:
MAT Cálculo Diferencial e Integral para Engenharia II 3 a lista de exercícios
MAT44 - Cálculo Diferencial e Integral para Engenharia II a lista de exercícios - 01 1. Esboce a superfície de nível da função F : A R R para o nível c: a) F(x, y, z) = x+y+z e c = 1 b) F(x, y, z) = x
P4 de Cálculo a Várias Variáveis I MAT Data: 02 de julho
P de Cálculo a Várias Variáveis I MAT 6 03. Data: 0 de julho Nome: Assinatura: Matrícula: Turma: Questão Valor Nota Revisão 5.0 5.0 Total 0.0 Instruções Mantenha seu celular desligado durante toda a prova.
Seção 15: Sistema de Equações Diferenciais Lineares Homogêneas com Coeficientes Constantes
Seção 15: Sistema de Equações Diferenciais Lineares Homogêneas com Coeficientes Constantes Muitos problemas de física envolvem diversas equações diferenciais. Na seção 14, por exemplo, vimos que o sistema
Cálculo Diferencial e Integral II
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral II Exame/Teste de Recuperação v2-8h - 29 de Junho de 215 Duração: Teste - 1h3m; Exame -
MAT Cálculo Diferencial e Integral para Engenharia II 3 a lista de exercícios
MAT 454 - Cálculo Diferencial e Integral para Engenharia II a lista de exercícios - 7. Ache os pontos do hiperbolóide x y + z = onde a reta normal é paralela à reta que une os pontos (,, ) e (5,, 6)..
ln(x + y) (x + y 1) < 1 (x + y 1)2 3. Determine o polinômio de Taylor de ordem 2 da função dada, em volta do ponto dado:
ā Lista de MAT 454 - Cálculo II - a) POLINÔMIOS DE TAYLOR 1. Seja f(x, y) = ln (x + y). a) Determine o polinômio de Taylor de ordem um de f em torno de ( 1, 1 ). b) Mostre que para todo (x, y) IR com x
Técnicas de. Integração
Técnicas de Capítulo 7 Integração TÉCNICAS DE INTEGRAÇÃO 7.4 Integração de Funções Racionais por Frações Parciais Nessa seção, vamos aprender como integrar funções racionais reduzindo-as a uma soma de
EXERCICIOS RESOLVIDOS - INT-POLIN - MMQ - INT-NUMERICA - EDO
Cálculo Numérico EXERCICIOS EXTRAIDOS DE PROVAS ANTERIORES o sem/08 EXERCICIOS RESOLVIDOS - INT-POLIN - MMQ - INT-NUMERICA - EDO x. Considere a seguinte tabela de valores de uma função f: i 0 f(x i ).50
. Repare que ao multiplicar os vetores (-1,1) e
Álgebra Linear II P1-2014.2 Obs: Todas as alternativas corretas são as representadas pela letra A. 1 AUTOVETORES/ AUTOVALORES Essa questão poderia ser resolvida por um sistema bem chatinho. Mas, faz mais
Resolução das objetivas 3ª Prova de Álgebra Linear II da UFRJ, período
www.engenhariafacil.weebly.com Resolução das objetivas 3ª Prova de Álgebra Linear II da UFRJ, período 4. OBS: Todas as alternativas corretas são as letras A. ) Devemos utilizar o teorema que diz: (Im(A
Matemática 2. Teste Final. Atenção: Esta prova deve ser entregue ao fim de 1 Hora. Deve justificar detalhadamente todas as suas respostas.
Matemática 2 Lic. em Economia, Gestão e Finanças Data: 4 de Julho de 2017 Duração: 1H Teste Final Atenção: Esta prova deve ser entregue ao fim de 1 Hora. Deve justificar detalhadamente todas as suas respostas.
SME306 - Métodos Numéricos e Computacionais II Prof. Murilo F. Tomé. (α 1)z + 88 ]
SME306 - Métodos Numéricos e Computacionais II Prof. Murilo F. Tomé 1 o sem/2016 Nome: 1 a Prova - 07/10/2016 Apresentar todos os cálculos - casas decimais 1. Considere a família de funções da forma onde
Resolução das objetivas 3ª Prova de Álgebra Linear II da UFRJ, período
www.engenhariafacil.weebly.com Resolução das objetivas 3ª Prova de Álgebra Linear II da UFRJ, período 2013.2 OBS: Todas as alternativas corretas são as letras A. 1) Para encontrar o autovetor associado
Derivadas Parciais - parte 2. x + 2 z. y = 1
Quarta Lista de Exercícios Cálculo II - Engenharia de Produção ( extraída do livro C ÁLCULO - vol, James Stewart ) Derivadas Parciais - parte 1) Verifique que a função u = 1/ x + y + z é uma solução da
parciais primeira parte
MÓDULO - AULA 3 Aula 3 Técnicas de integração frações parciais primeira parte Objetivo Aprender a técnica de integração conhecida como frações parciais. Introdução A técnica que você aprenderá agora lhe
MAT Cálculo II - POLI a Lista de Exercícios
MAT 44 - Cálculo II - POLI - a Lista de Exercícios -) Ache os pontos do hiperbolóide x y +z = onde a reta normal é paralela à reta que une os pontos (,,) e (,,6). -) Encontre uma parametrização para C
SISTEMAS LINEARES PROF. EDÉZIO
SOLUÇÕES NUMÉRICAS DE SISTEMAS LINEARES PROF. EDÉZIO Considere o sistema de n equações e n incógnitas: onde E : a x + a x +... + a n x n = b E : a x + a x +... + a n x n = b. =. () E n : a n x + a n x
LISTA DE EXERCÍCIOS SOBRE FLUXOS, TEOREMA DE GAUSS E DE STOKES
LITA DE EXERCÍCIO OBRE FLUXO, TEOREMA DE GAU E DE TOKE (1) Fazer exercícios 1), 2), 3), 4) da seção 10.4.4 pgs 235, 236 do livro texto. (2) Fazer exercícios 1), 2), 3), 5) da seção 10.5.3 pgs 241, 242
AmigoPai. Matemática. Exercícios de Equação de 2 Grau
AmigoPai Matemática Exercícios de Equação de Grau 1-Mai-017 1 Equações de Grau 1. (Resolvido) Identifique os coeficientes da seguinte equação do segundo grau: 3x (x ) + 17 = 0 O primeiro passo é transformar
ADA 1º BIMESTRE CICLO I 2018 MATEMÁTICA 2ª SÉRIE DO ENSINO MÉDIO
ADA º BIMESTRE CICLO I 08 MATEMÁTICA ª SÉRIE DO ENSINO MÉDIO ITEM DA ADA Um sistema de equações pode ser usado para representar situações-problemas da matemática ou do dia-a-dia. Assinale a alternativa
ATENÇÃO: O 2 ō Teste corresponde às perguntas 5 a 10. Resolução abreviada. 1. Seja f(x,y) = a) Determine o domínio de f e a respectiva fronteira.
Instituto uperior Técnico Departamento de Matemática ecção de Álgebra e Análise Cálculo Diferencial e Integral II 2 ō Teste/ ō Exame - de Janeiro de 2 Duração: Teste - h3m ; Exame - 3h Apresente e justifique
Aplicações de. Integração
Aplicações de Capítulo 6 Integração APLICAÇÕES DE INTEGRAÇÃO Neste capítulo exploraremos algumas das aplicações da integral definida, utilizando-a para calcular áreas entre curvas, volumes de sólidos e
Cálculo 2. Guia de Estudos P1
Cálculo 2 Guia de Estudos P1 Resuminho Teórico e Fórmulas Parte 1 Cônicas Conceito: Cônicas são formas desenhadas em duas dimensões, considerando apenas os eixos x (horizontal) e y (vertical). Tipos de
Problema 5a by
Problema 5a by [email protected] Resolva o sistema linear por escalonamento S = x y z=1 x y z= 1 2x y 3z=2 Resolução Utilizaremos quatro métodos para ilustrar a resolução do sistema linear acima.
1 Derivadas Parciais de Ordem Superior Em duas variáveis Em três variáveis. 1.3 Derivadas de Ordem
Contents 1 Derivadas Parciais de Ordem Superior 1 1.1 Em duas variáveis..................................... 1 1. Em três variáveis...................................... 1 1.3 Derivadas de Ordem...................................
21 e 22. Superfícies Quádricas. Sumário
21 e 22 Superfícies uádricas Sumário 21.1 Introdução....................... 2 21.2 Elipsoide........................ 3 21.3 Hiperboloide de uma Folha.............. 4 21.4 Hiperboloide de duas folhas..............
Seção 15: Sistema de Equações Diferenciais Lineares Homogêneas com Coeficientes Constantes
Seção 15: Sistema de Equações Diferenciais Lineares Homogêneas com Coeficientes Constantes Muitos problemas de física envolvem diversas equações diferenciais. Na seção 14, por exemplo, vimos que o sistema
Derivadas Parciais Capítulo 14
Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS 14.5 Regra da Cadeia Nesta seção, aprenderemos sobre: A Regra da Cadeia e sua aplicação em diferenciação. A REGRA DA CADEIA Lembremo-nos de que a Regra
Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 ESTUDO DA CIRCUNFERÊNCIA
DEFINIÇÃO... EQUAÇÃO REDUZIDA... EQUAÇÃO GERAL DA CIRCUNFERÊNCIA... 3 RECONHECIMENTO... 3 POSIÇÃO RELATIVA ENTRE PONTO E CIRCUNFERÊNCIA... 1 POSIÇÃO RELATIVA ENTRE RETA E CIRCUNFERÊNCIA... 17 PROBLEMAS
Matemática para a Economia II - 7 a lista de exercícios Prof. Juliana Coelho
Matemática para a Economia II - 7 a lista de exercícios Prof. Juliana Coelho - Cacule a integral dupla I fx, y) dxdy onde f e R são dados abaixo. R a) fx, y) x + y e R [, ] [, ]; b) fx, y) x + xy + e R
Integrais Múltiplas. Integrais duplas sobre retângulos
Integrais Múltiplas Integrais duplas sobre retângulos Vamos estender a noção de integral definida para funções de duas, ou mais, variáveis. Da mesma maneira que a integral definida para uma variável, nos
Lista Determine o valor máximo e o valor mínimo da função f sujeita às restrições explicitadas:
UFPR - Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Matemática CM048 - Cálculo II - Matemática Diurno Prof. Zeca Eidam Lista 3 Máximos e mínimos de funções de duas variáveis
Exercícios Resolvidos Variedades
Instituto Superior Técnico Departamento de atemática Secção de Álgebra e Análise Eercícios Resolvidos Variedades Eercício 1 Considere o conjunto = {(,, ) R : + = 1 ; 0 < < 1}. ostre que é uma variedade,
Álgebra Linear I - Lista 10. Matrizes e Transformações lineares. Respostas
Álgebra Linear I - Lista 1 Matrizes e Transformações lineares Respostas 1 Sejam A e B matrizes quadradas do mesmo tamanho Dê um exemplo onde (A + B 2 A 2 + 2A B + B 2 Complete: (A + B 2 = A 2 + B 2 +?
Lista de Exercícios de Cálculo 3 Sétima Semana
Lista de Exercícios de Cálculo Sétima Semana Parte A. Use os multiplicados de Lagrange para determinar os valores máximos e mínimos da função sujeita as restrições dadas. (a) f(x, y) = x 2 + y 2 s.a. xy
Aula 7 Equação Vetorial da Reta e Equação Vetorial do plano
Aula 7 Equação Vetorial da Reta e Equação Vetorial do plano Prof Luis Carlos As retas podem estar posicionadas em planos (R 2 ) ou no espaço (R 3 ). Retas no plano possuem pontos com duas coordenadas,
Problemas de Otimização
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Problemas de Otimização
12 AULA. ciáveis LIVRO. META Estudar derivadas de funções de duas variáveis a valores reais.
1 LIVRO Diferen- Funções ciáveis META Estudar derivadas de funções de duas variáveis a valores reais. OBJETIVOS Estender os conceitos de diferenciabilidade de funções de uma variável a valores reais. PRÉ-REQUISITOS
Lista 1 - Cálculo Numérico - Zeros de funções
Lista 1 - Cálculo Numérico - Zeros de funções 1.) De acordo com o teorema de Bolzano, se uma função contínua f(x) assume valores de sinais opostos nos pontos extremos do intervalo [a, b], isto é se f(a)
Gabarito da Prova Final Unificada de Cálculo IV Dezembro de 2010
Gabarito da Prova Final Unificada de Cálculo IV Dezembro de a Questão: (5 pts) Dentre as três séries alternadas abaixo, diga se convergem absolutamente, se convergem condicionalmente ou se divergem Justifique
Máximos e mínimos (continuação)
UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 3 Assunto: Máximos e mínimos Palavras-chaves: máximos e mínimos, valores máximos e valores mínimos Máximos e mínimos (continuação) Sejam f
Material Teórico - Sistemas Lineares e Geometria Anaĺıtica. Sistemas com três variáveis - Parte 1. Terceiro Ano do Ensino Médio
Material Teórico - Sistemas Lineares e Geometria Anaĺıtica Sistemas com três variáveis - Parte 1 Terceiro Ano do Ensino Médio Autor: Prof Fabrício Siqueira Benevides Revisor: Prof Antonio Caminha M Neto
Instituto de Matemática Departamento de Métodos Matemáticos
?????? @ @ @@ @@?????? @ @ @@ @@ Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Métodos Matemáticos Prova Final Unificada de Cálculo II Politécnica,Escola Química - 03/12/2013
1 A Equação Fundamental Áreas Primeiras definições Uma questão importante... 7
Conteúdo 1 4 1.1- Áreas............................. 4 1.2 Primeiras definições...................... 6 1.3 - Uma questão importante.................. 7 1 EDA Aula 1 Objetivos Apresentar as equações diferenciais
Integrais triplas UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 28. Assunto: Integrais Triplas
Assunto: Integrais Triplas UNIVRSIDAD FDRAL DO PARÁ CÁLCULO II - PROJTO NWTON AULA 8 Palavras-chaves: integração, integrais triplas, volume, teorema de Fubini, soma de Riemann Integrais triplas Assim como
MAT1153 / LISTA DE EXERCÍCIOS : CAMPOS CONSERVATIVOS, INTEGRAIS DE LINHA, TRABALHO E TEOREMA DE GREEN
MAT1153 / 2008.1 LISTA DE EXERCÍCIOS : CAMPOS CONSERVATIVOS, INTEGRAIS DE LINHA, TRABALHO E TEOREMA DE GREEN OBS: Faça os exercícios sobre campos conservativos em primeiro lugar. (1 Fazer exercícios 1:(c,
Total Escolha 5 (cinco) questões. Justifique todas as passagens. Não é permitido o uso de calculadoras. Boa Sorte!
ā Prova de MAT 147 - Cálculo II - FEA-USP 8/11/01 Nome : GABARITO N ō USP : Professor : Oswaldo Rio Branco de Oliveira Q 1 4 5 6 7 Total N Escolha 5 (cinco) questões. Justifique todas as passagens. Não
Universidade Estadual de Montes Claros Departamento de Ciências Exatas Curso de Licenciatura em Matemática. Notas de Aulas de
Universidade Estadual de Montes Claros Departamento de Ciências Exatas Curso de Licenciatura em Matemática Notas de Aulas de Cálculo Rosivaldo Antonio Gonçalves Notas de aulas que foram elaboradas para
UNIVERSIDADE FEDERAL DO ABC. 1 Existência e unicidade de zeros; Métodos da bissecção e falsa posição
UNIVERSIDADE FEDERAL DO ABC BC1419 Cálculo Numérico - LISTA 1 - Zeros de Funções (Profs. André Camargo, Feodor Pisnitchenko, Marijana Brtka, Rodrigo Fresneda) 1 Existência e unicidade de zeros; Métodos
POTENCIAL ELÉTRICO. Prof. Bruno Farias
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA III POTENCIAL ELÉTRICO Prof. Bruno Farias Introdução Um dos objetivos da Física é determinar
Sabendo que f(x) é um polinômio de grau 2, utilize a formula do trapézio e calcule exatamente
MÉTODOS NUMÉRICOS E COMPUTACIONAIS II EXERCICIOS EXTRAIDOS DE PROVAS ANTERIORES EXERCICIOS RESOLVIDOS - INTEGRACAO-NUMERICA - EDO. Considere a seguinte tabela de valores de uma função f x i..5.7..5 f(x
