CÁLCULO II Prof. Jerônimo Monteiro
|
|
|
- Rosa Álvares
- 6 Há anos
- Visualizações:
Transcrição
1 CÁLCULO II Pro. Jerônimo Monteiro Gabarito - Lista Semanal 08 Questão 1. Calcule 2 para (x, y, onde x = r cos θ e y = r sen θ. 2 Solução: Primeiro, calculamos pela regra da cadeia, como segue: = + = ( r sen θ + r cos θ r sen θ Com isso, para encontrar 2, derivamos novamente em relação a θ utilizando a regra da cadeia, 2 da seguinte orma: 2 = ( r sen θ 2 [ 2 r cos θ ( [ + r sen θ ( 2 r 2 r ( cos θ ( cos θ [ 2 ( 2 r cos θ ( [ ( [ ( ( + + [ 2 ( r sen θ + 2 [ ( r sen θ r cos θ [ ( ( r cos θ 2 ( 2 r cos θ + r 2 sen 2 θ 2 2 r2 sen θ cos θ 2 r 2 sen θ cos θ 2 + r2 cos 2 θ 2 2 1
2 Questão 2. Sejam (x, y, z e g(x, y, z unções dierenciáveis com derivadas contínuas e que (4, 1, 2 = 1, (4, 1, 2 = 0, (4, 1, 2 = g(4, 1, 2 = 0 (4, 1, 2 1, (4, 1, 2 = 4 (4, 1, 2 = 1, (4, 1, 2 1 (a Mostre que existe um intervalo U de R contendo 4 e unções h 1 (x, h 2 (x, com h 1 (4 1, h 2 (4 = 2 e com (x, h 1 (x, h 2 (x = 0 para todo x U. (b Calcule h 1 (4 e h 2 (4. Solução: (a Sejam h 1 (x e h 2 (x unções tais que: { (x, h1 (x, h 2 (x = 0 g(x, h 1 (x, h 2 (x = 0 Com isso, a partir da regra da cadeia, podemos derivar cada igualdade acima em relação a x, obtendo o seguinte: { x x + y h 1 (x + z h 2 (x = 0 g x x + g y h 1 (x + g z h 2 (x = 0 Organizando as equações acima, obtém-se o seguinte sistema: { y h 1 (x + z h 2 (x x g y h 1 (x + g z h 2 (x g x Para resolvê-lo, podemos utilizar a regra de Cramer, por exemplo, como segue: x z h g x g z 1(x = = g x z x g z y z y g z z g y g y g z y x h g y g x 2(x = y z g y g z = xg y g x y y g z z g y Com essas expressões em mente, podemos aplicar o valor de x = 4, obtendo (x, h 1 (x, h 2 (x = (4, 1, 2 e g(x, h 1 (x, h 2 (x = g(4, 1, 2. Em tal ponto, podemos determinar os valores das derivadas parciais, uma vez que eles oram dados na questão. Sendo assim, analisando o denominador das derivadas h 1 (x e h 2 (x, temos o seguinte, ao aplicar os valores: y (4, 1, 2g z (4, 1, 2 z (4, 1, 2g y (4, 1, 2 = ( 1 ( = 0 Ou seja, pelo Teorema da Função Implícita, como y (4, 1, 2g z (4, 1, 2 z (4, 1, 2g y (4, 1, 2 0, (4, 1, 2 = g(4, 1, 2 = 0 e e g são unções de classe C 1, podemos concluir que, em uma vizinhança de 4, existem as unções h 1 (x e h 2 (x, com h 1 (4 1 e h 2 (4 = 2 e, também, (x, h 1 (x, h 2 (x = g(x, h 1 (x, h 2 (x = 0 para todo x U. (b A partir da resolução do item (a, aplicando o valor de x = 4, temos: h 1(4 = g x(4, 1, 2 z (4, 1, 2 x (4, 1, 2g z (4, 1, 2 y (4, 1, 2g z (4, 1, 2 z (4, 1, 2g y (4, 1, 2 Pro. Jerônimo Monteiro 2
3 h 2(4 = x(4, 1, 2g y (4, 1, 2 g x (4, 1, 2 y (4, 1, 2 y (4, 1, 2g z (4, 1, 2 z (4, 1, 2g y (4, 1, 2 Substituindo os valores das derivadas dados na questão e lembrando que o valor do denominador já oi calculado anteriormente no item (a, temos o seguinte: h 1(4 = ( 1 h 2(4 = ( Questão 3. Nos itens a seguir, aça o que se pede: (a Mostre que, próximo do ponto (2, 1, 1, o conjunto S = {(x, y, z : x 3 y 3 + y 3 z 3 + z 3 x 3 1} é o gráico de uma unção : R 2 R com z = (x, y. (b Determine (2, 1 e (2, 1. Solução: (a Seja F (x, y, z = x 3 y 3 +y 3 z 3 +z 3 x 3 +1, deine-se o conjunto S dado como F (x, y, z = 0. A partir disso, devemos testar as hipóteses do Teorema da Função Implícita no ponto (2, 1, 1 dado para veriicar o que se pede no item (a. Sendo assim, temos o seguinte: F é de classe C 1 no conjunto aberto R 3, uma vez que é polinomial. F (2, 1, 1 = 2 3 ( ( = 0 (x, y, z = 3y3 z 2 + 3x 3 z 2 (2, 1, 1 = 3 ( = 21 0 Com isso, podemos concluir, pelo Teorema da Função Implícita, que, na vizinhança do ponto (2, 1, 1, a equação F (x, y, z = 0, isto é, o conjunto S proposto na questão, é o gráico de uma unção dierenciável : R 2 R, sendo, então, verdade que z = (x, y, dada implicitamente. (b A partir do resultado do item (a e utilizando o Toerema da Função Implícita, podemos calcular as derivadas parciais da seguinte maneira: (2, 1, 1 (2, 1 (2, 1, 1 (2, 1, 1 (2, 1 (2, 1, 1 Portanto, devemos, antes, determinar as derivadas parciais da unção F, da seguinte orma: (x, y, z = 3x2 y 3 + 3z 3 x 2 (2, 1, 1 = 3 22 ( = 0 (x, y, z = 3x3 y 2 + 3y 2 z 3 (2, 1, 1 = 3 23 ( ( = 27 Pro. Jerônimo Monteiro 3
4 Com isso, é possível calcular o que se pede, uma vez que (2, 1, 1 oi determinada no item (a. (2, 1, 1 (2, 1 0 (2, 1, 1 21 = 0 (2, 1, 1 27 (2, 1 (2, 1, Questão 4. Seja : R 3 R com (x, y, z = x 3 y + y 3 z + z 3 x 2xyz: (a Calcule (2, 1, 1. (b Encontre o plano tangente no ponto P (2, 1, 1 da superície de nível Solução: (a Temos que: (2, 1, 1 = {(x, y, z R 3 : (x, y, z = } ( (2, 1, 1, (2, 1, 1, (2, 1, 1 Sendo assim, precisamos dos valores das derivadas parciais em tais pontos, os quais são obtidos da seguinte maneira: (x, y, z = 3x2 y + z 3 2yz (2, 1, 1 = 3 22 ( ( (x, y, z = x3 + 3y 2 z 2xz (2, 1, 1 = ( = 7 (x, y, z = y3 + 3z 2 x 2xy (2, 1, 1 = ( ( 1 = 9 (2, 1, 1 = ( 9, 7, 9 (b A partir do resultado obtido no item (a e da interpretação do vetor gradiente, temos que (2, 1, 1 é um vetor normal à superície de nível de (x, y, z. Além disso, podemos perceber que o ponto P (2, 1, 1 pertence à superície (x, y, z =, uma vez que (2, 1, 1 =. Portanto, para escrever a equação do plano tangente no ponto P, basta utilizar o vetor normal obtido e esse ponto, da seguinte orma: (x 0, y 0, z 0 (x x 0, y y 0, z z 0 = 0 ( 9, 7, 9 (x 2, y + 1, z 1 = 0 9x y z 9 = 0 9x 7y 9z = 16 Questão 5. Seja S = {(x, y, z : x 3 y + y 2 z 3 + zx 2 = 3}: (a Mostre que S é o gráico de uma unção z = (x, y em uma vizinhança de P (1, 2, 1. (b Calcule (1, 2 e (1, 2. Pro. Jerônimo Monteiro 4
5 Solução: (a De maneira análoga à resolução da questão 3, podemos utilizar o Teorema da Função Implícita. Deinindo F (x, y, z = x 3 y + y 2 z 3 + zx 2 3, nota-se que a equação que rege S satisaz F (x, y, z = 0. Sendo assim, temos, para o ponto (1, 2, 1, o seguinte: F é de classe C 1 no aberto R 3, uma vez que é polinomial. F (1, 2, 1 = 1 3 ( 2 + ( = 0 (x, y, z = 3y2 z 2 + x 2 (1, 2, 1 = 3 ( = 13 0 Com isso, podemos concluir, pelo Teorema da Função Implícita, que, na vizinhança do ponto (1, 2, 1, a equação F (x, y, z = 0, isto é, o conjunto S proposto na questão, é o gráico de uma unção z = (x, y, dada implicitamente. (b A partir do resultado do item (a e utilizando o Toerema da Função Implícita, podemos calcular as derivadas parciais da seguinte maneira: (1, 2, 1 (1, 2 (1, 2, 1 (1, 2, 1 (1, 2 (1, 2, 1 Portanto, devemos, antes, determinar as derivadas parciais da unção F, da seguinte orma: (x, y, z = 3x2 y + 2zx (1, 2, 1 = 3 12 ( (x, y, z = x3 + 2yz 3 (1, 2, 1 = ( = Com isso, é possível calcular o que se pede, uma vez que (1, 2, 1 oi determinada no item (a. (1, 2, 1 (1, 2 (1, 2, 1 (1, 2, 1 (1, 2 (1, 2, = = 3 13 Pro. Jerônimo Monteiro 5
Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente.
Aula 15 Derivadas Direcionais e Vetor Gradiente Seja f(x, y) uma função de variáveis. Iremos usar a notação D u f(x 0, y 0 ) para: Derivada direcional de f no ponto (x 0, y 0 ), na direção do vetor unitário
Respostas sem justificativas não serão aceitas Não é permitido o uso de aparelhos eletrônicos
UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL - 018. - TURMA MA 1A VERIFICAÇÃO DE APRENDIZAGEM - PARTE Nome Legível RG CPF Respostas
Instituto de Matemática Departamento de Métodos Matemáticos
?????? @ @ @@ @@?????? @ @ @@ @@ Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Métodos Matemáticos Prova Final Unificada de Cálculo II Politécnica,Escola Química - 03/12/2013
xy 2 (b) A função é contínua na origem? Justique sua resposta! (a) Calculando o limite pela reta y = mx:
NOME: UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Instituto de Matemática PRIMEIRA PROVA UNIFICADA CÁLCULO II Politécnica, Engenharia Química e Ciência da Computação 21/05/2013. 1 a QUESTÃO : Dada a função
1. Limite. lim. Ou seja, o limite é igual ao valor da função em x 0. Exemplos: 1.1) Calcule lim x 1 x 2 + 2
1. Limite Definição: o limite de uma função f(x) quando seu argumento x tende a x0 é o valor L para o qual a função se aproxima quando x se aproxima de x0 (note que a função não precisa estar definida
Os únicos candidatos a extremantes locais são os pontos críticos de f pois o D f 2 é aberto. f
CAPÍTULO 16 Exercícios 16 1 Seja (x y) x y xy x y Os únicos candidatos a extremantes locais são os pontos críticos de pois o D é aberto De ( x x y ) x y ( y x y ) y x 1 resulta que os candidatos a extremantes
FUNÇÕES DE VÁRIAS VARIÁVEIS
FUNÇÕES DE VÁRIAS VARIÁVEIS Introdução Considere os seguintes enunciados: O volume V de um cilindro é dado por V r h onde r é o raio e h é a altura. Um circuito tem cinco resistores. A corrente deste circuito
5.1 Noção de derivada. Interpretação geométrica de derivada.
Capítulo V Derivação 5 Noção de derivada Interpretação geométrica de derivada Seja uma unção real de variável real Deinição: Chama-se taa de variação média de uma unção entre os pontos a e b ao quociente:
Respostas sem justificativas não serão aceitas. Além disso, não é permitido o uso de aparelhos eletrônicos. x 1 x 1. 1 sen x 1 (x 2 1) 2 (x 2 1) 2 sen
UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL - 07. A VERIFICAÇÃO DE APRENDIZAGEM - TURMA EL Nome Legível RG CPF Respostas sem justificativas
Derivadas Parciais Capítulo 14
Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS 14.5 Regra da Cadeia Nesta seção, aprenderemos sobre: A Regra da Cadeia e sua aplicação em diferenciação. A REGRA DA CADEIA Lembremo-nos de que a Regra
Capítulo III. Limite de Funções. 3.1 Noção de Limite. Dada uma função f, o que é que significa lim f ( x) = 5
Capítulo III Limite de Funções. Noção de Limite Dada uma unção, o que é que signiica ( 5? A ideia intuitiva do que queremos dizer com isto é: quando toma valores cada vez mais próimos de, a respectiva
MAT-2454 Cálculo Diferencial e Integral II EP-USP
MAT-454 Cálculo Diferencial e Integral II EP-USP Solução da Questão da Terceira Prova 8//06 Questão (Tipo A Valor: 3, 0 pontos). a. Determine todos os pontos da superfície de nível da função g(x, y, z)
Total Escolha 5 (cinco) questões. Justifique todas as passagens. Boa Sorte!
ā Prova de MAT 147 - Cálculo II - FEA-USP 15/10/01 Nome : GABARITO N ō USP : Professor : Oswaldo Rio Branco de Oliveira Q 1 3 4 5 6 7 Total N Escolha 5 (cinco) questões. Justifique todas as passagens.
AULA 16 Esboço de curvas (gráfico da função
Belém, 1º de junho de 015 Caro aluno, Seguindo os passos dados você ará o esboço detalhado do gráico de uma unção. Para achar o zero da unção, precisamos de teorias que você estudará na disciplina Cálculo
Resumo: Regra da cadeia, caso geral
Resumo: Regra da cadeia, caso geral Teorema Suponha que u = u(x 1,..., x n ) seja uma função diferenciável de n variáveis x 1,... x n onde cada x i é uma função diferenciável de m variáveis t 1,..., t
A Regra da Cadeia. V(h) = 3h 9 h 2, h (0,3).
Universidade de Brasília Departamento de Matemática Cálculo 1 A Regra da Cadeia Suponha que, a partir de uma lona de plástico com 6 metros de comprimento e 3 de largura, desejamos construir uma barraca
Capítulo III. Limite de Funções. 3.1 Noção de Limite. Dada uma função f, o que é que significa lim f ( x) = 5
Capítulo III Limite de Funções. Noção de Limite Dada uma unção, o que é que signiica ( 5? A ideia intuitiva do que queremos dizer com isto é: quando toma valores cada vez mais próimos de, a respectiva
Actividade Formativa 1
Actividade Formativa 1 Resolução 1. a. Dada a função y 3+4x definida no conjunto A {x R: 2 x < 7} represente graficamente A e a sua imagem; exprima a imagem de A como um conjunto. b. Dada a função y 3
Funções de varias variáveis
F : R n R (1,,..., n ) w Funções de varias variáveis F( 1,,.., 3 ) Dom n ( F) S R S é um subconjunto de R n Eemplo 1: Seja F tal que F : R R (, ) w 1 Identiique o domínio e a imagem de F Eemplos Eemplos
Resumo com exercícios resolvidos dos assuntos:
www.engenhariafacil.weebly.com (0)- Considerações iniciais: Resumo com exercícios resolvidos dos assuntos: Máximos e mínimos absolutos e Multiplicador de Lagrange -Grande parte das funções não possui máximos
CÁLCULO I. 1 Derivada de Funções Elementares
CÁLCULO I Prof. Marcos Diniz Prof. Edilson Neri Prof. André Almeida Aula n o : Derivada das Funções Elementares. Regras de Derivação. Objetivos da Aula Apresentar a derivada das funções elementares; Apresentar
Cálculo Diferencial e Integral II Resolução do Exame/Teste de Recuperação 02 de Julho de 2018, 15:00h - versão 2 Duração: Exame (3h), Teste (1h30)
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral II do Exame/Teste de Recuperação 2 de Julho de 218, 15:h - versão 2 Duração: Exame (3h),
14 AULA. Vetor Gradiente e as Derivadas Direcionais LIVRO
1 LIVRO Vetor Gradiente e as Derivadas Direcionais 14 AULA META Definir o vetor gradiente de uma função de duas variáveis reais e interpretá-lo geometricamente. Além disso, estudaremos a derivada direcional
(x,y) x Exemplo: (x, y) ou f x. x = f x = 2xy. y = f y
1 DEFINIÇÃO DE Chamamos de derivada parcial quando temos uma função que envolve mais de uma variável e queremos derivar em relação a uma delas. De forma geral, basta derivarmos em relação à variável de
1 Derivadas Parciais de Ordem Superior Em duas variáveis Em três variáveis. 1.3 Derivadas de Ordem
Contents 1 Derivadas Parciais de Ordem Superior 1 1.1 Em duas variáveis..................................... 1 1. Em três variáveis...................................... 1 1.3 Derivadas de Ordem...................................
Aula 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 se define da seguinte maneira:
Aula 1 1. Ângulo entre duas retas no espaço Definição 1 O ângulo (r1, r ) entre duas retas r1 e r se define da seguinte maneira: (r1, r ) 0o se r1 e r são coincidentes, Se as retas são concorrentes, isto
Multiplicadores de Lagrange
Multiplicadores de Lagrange Para motivar o método, suponha que queremos maximizar uma função f (x, y) sujeito a uma restrição g(x, y) = 0. Geometricamente: queremos um ponto sobre o gráfico da curva de
s: damasceno.
Matemática II 6. Pro.: Luiz Gonzaga Damasceno E-mails: [email protected] [email protected] [email protected] http://www.damasceno.ino www.damasceno.ino damasceno.ino - Derivadas Considere
Capítulo 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 é assim definido:
Capítulo 1 1. Ângulo entre duas retas no espaço Definição 1 O ângulo (r1, r ) entre duas retas r1 e r é assim definido: (r1, r ) 0o se r1 e r são coincidentes, se as retas são concorrentes, isto é, r1
Derivadas 1 DEFINIÇÃO. A derivada é a inclinação da reta tangente a um ponto de uma determinada curva, essa reta é obtida a partir de um limite.
Derivadas 1 DEFINIÇÃO A partir das noções de limite, é possível chegarmos a uma definição importantíssima para o Cálculo, esta é a derivada. Por definição: A derivada é a inclinação da reta tangente a
13 AULA. Regra da Cadeia e Derivação Implícita LIVRO. META Derivar funções compostas e funções definidas implicitamente.
1 LIVRO Regra da Cadeia e Derivação Implícita 13 AULA META Derivar funções compostas e funções definidas implicitamente. OBJETIVOS Estender os conceitos da regra da cadeia e da derivação implícita de funções
CÁLCULO I Aula 08: Regra da Cadeia. Derivação Implícita. Derivada da Função Inversa.
CÁLCULO I Aula 08: Regra da Cadeia.. Função Inversa. Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará 1 2 3 Teorema (Regra da Cadeia) Sejam g(y) e y = f (x) duas funções deriváveis,
Teorema da Divergência e Teorema de Stokes
Teorema da Divergência e Teorema de tokes Resolução umária) 19 de Maio de 9 1. Calcule o fluxo do campo vectorial Fx, y, z) x, y, z) para fora da superfície {x, y, z) R 3 : x + y 1 + z, z 1}. a) Pela definição.
Máximos e mínimos (continuação)
UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 3 Assunto: Máximos e mínimos Palavras-chaves: máximos e mínimos, valores máximos e valores mínimos Máximos e mínimos (continuação) Sejam f
Aulas n o 22: A Função Logaritmo Natural
CÁLCULO I Aulas n o 22: A Função Logaritmo Natural Prof. Edilson Neri Júnior Prof. André Almeida 1 A Função Logaritmo Natural 2 Derivadas e Integral Propriedades dos Logaritmos 3 Gráfico Seja x > 0. Definimos
Matemática 2. Teste Final. Atenção: Esta prova deve ser entregue ao fim de 1 Hora. Deve justificar detalhadamente todas as suas respostas.
Matemática 2 Lic. em Economia, Gestão e Finanças Data: 4 de Julho de 2017 Duração: 1H Teste Final Atenção: Esta prova deve ser entregue ao fim de 1 Hora. Deve justificar detalhadamente todas as suas respostas.
Derivadas Parciais Capítulo 14
Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS Como vimos no Capítulo 4, no Volume I, um dos principais usos da derivada ordinária é na determinação dos valores máximo e mínimo. DERIVADAS PARCIAIS 14.7
RESOLUÇÕES LISTA 02. b) FALSA, pois para termos a equação de uma reta em um certo ponto a função deve ser derivável naquele ponto.
UNIVERSIDADE ESTADUAL VALE DO ACARAÚ CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS CAMPUS DA CIDAO CURSO DE MATEMÁTICA CÁLCULO NUMÉRICO JOSÉ CLAUDIMAR DE SOUSA RESOLUÇÕES LISTA 02 QUESTÃO 1 a) Pela equação
CÁLCULO II. Lista Semanal 3-06/04/2018
CÁLCULO II Prof. Juaci Picanço Prof. Jerônimo Monteiro Lista Semanal 3-06/04/2018 Questão 1. Um tetraedro é um sólido com quatro vértices P, Q, R e S e quatro faces triangulares e seu volume é um terço
= 6 lim. = lim. 2x + 2 sin(x) cos(x) 4 sin(4x) 2 x cos(x) = lim. x + ln(x) cos ) ] 3x. 3 ln. = lim x 1 x +
UFRGS - PAG Cálculo - MAT05-0/ Lista 5-04/05/0 - Soluções.a ln + 0 + ln = + + 0 =.b sin8 0 sin4 = 0 8 cos8 4 cos4 =.c.d + sin 0 cos4 = 0 + sin cos 4 sin4 = 0 + cos sin 6 cos4 = 4 0 + sin e cos = 0 + e
ANÁLISE MATEMÁTICA III A TESTE 1 10 DE OUTUBRO DE :10-16H. Duração: 50 minutos
Departamento de Matemática Secção de Álgebra e Análise Última actualização: 10/Out/2005 ANÁLISE MATEMÁTICA III A TESTE 1 10 DE OUTUBRO DE 2005 15:10-16H RESOLUÇÃO (As soluções aqui propostas não são únicas!)
CÁLCULO I. 1 Concavidade. Objetivos da Aula. Aula n o 19: Concavidade. Teste da Segunda Derivada. Denir concavidade de uma função;
CÁLCULO I Prof. Marcos Diniz Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 19: Concavidade. Teste da Segunda Derivada. Objetivos da Aula Denir concavidade de uma função; Denir ponto de inexão;
Prova de Conhecimentos Específicos 1 a QUESTÃO: (2,0 pontos)
Prova de Conhecimentos Específicos 1 a QUESTÃO: (,0 pontos) 5x Considere a função f(x)=. Determine, se existirem: x +7 (i) os pontos de descontinuidade de f; (ii) as assíntotas horizontais e verticais
Cálculo Diferencial e Integral II
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral II Ficha de trabalho 1 (versão de 6/0/009 (Esboço de Conjuntos. Topologia. Limites. Continuidade
1ª LISTA DE EXERCÍCIOS DE MÉTODOS NUMÉRICOS Prof.: Magnus Melo
ª LISTA DE EXERCÍCIOS DE MÉTODOS NUMÉRICOS Pro.: Magnus Melo Eercício. Sejam os polinômios dados abaio. Use a regra de sinais de descartes e o teorema da cota de Augustin Cauchy para pesquisar a eistência
UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL
UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL -. EXAME FINAL Nome Legível RG CPF Respostas sem justificativas não serão aceitas. Além
CURSO de MATEMÁTICA (Niterói) - Gabarito
PROAC / COSEAC. UNIVERSIDADE FEDERAL FLUMINENSE PRÓ-REITORIA DE ASSUNTOS ACADÊMICOS COSEAC-COORDENADORIA DE SELEÇÃO TRANSFERÊNCIA o semestre letivo de 007 e 1 o semestre letivo de 008 CURSO de MATEMÁTICA
Resumo com exercícios resolvidos do assunto:
www.engenhariafacil.weebly.com Resumo com exercícios resolvidos do assunto: (I) (II) (III) (IV) Derivadas Parciais; Plano Tangente; Diferenciabilidade; Regra da Cadeia. (I) Derivadas Parciais Uma derivada
raio do arco: a; ângulo central do arco: θ 0; carga do arco: Q.
Sea um arco de circunferência de raio a e ângulo central carregado com uma carga distribuída uniformemente ao longo do arco. Determine: a) O vetor campo elétrico nos pontos da reta que passa pelo centro
MAT146 - Cálculo I - Derivada de funções polinomiais, regras de derivação e derivada de funções trigonométricas
MAT146 - Cálculo I - Derivada de funções polinomiais, regras de derivação e derivada de funções trigonométricas Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira Vimos que uma função
Derivadas Parciais. Sumário. 1 Funções de Várias Variáveis. Raimundo A. R. Rodrigues Jr. 1 de agosto de Funções de Duas Variáveis.
Derivadas Parciais Raimundo A. R. Rodrigues Jr 1 de agosto de 2016 Sumário 1 Funções de Várias Variáveis 1 1.1 Funções de Duas Variáveis.............................. 1 1.2 Grácos........................................
Lista 1 - Cálculo Numérico - Zeros de funções
Lista 1 - Cálculo Numérico - Zeros de funções 1.) De acordo com o teorema de Bolzano, se uma função contínua f(x) assume valores de sinais opostos nos pontos extremos do intervalo [a, b], isto é se f(a)
Cálculo II. Resumo e Exercícios P3
Cálculo II Resumo e Exercícios P3 Resuminho Teórico e Fórmulas Parte 1 Funções de Três Variáveis w = f(x, y, z) Definida em R +, apenas um valor de w para cada (x, y, z). Domínio de Função de Três Variáveis:
Derivadas Parciais Capítulo 14
Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS No Exemplo 6 da Seção 14.7 maximizamos a função volume V = xyz sujeita à restrição 2xz + 2yz + xy = que expressa a condição de a área da superfície ser
14.5 A Regra da Cadeia. Copyright Cengage Learning. Todos os direitos reservados.
14.5 A Regra da Cadeia Copyright Cengage Learning. Todos os direitos reservados. A Regra da Cadeia Lembremo-nos de que a Regra da Cadeia para uma função de uma única variável nos dava uma regra para derivar
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior
Objetivos da Aula CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 4: Aproximações Lineares e Diferenciais. Regra de L Hôspital. Definir e calcular a aproximação linear
L I S TA 6 - D E R I VA D A S PA R C I A I S E D I R E C I O N A I S, P L A N O TA N G E N T E E P O L I N Ô M I O S D E TAY L O R
6 L I S TA 6 - D E R I VA D A S PA R C I A I S E D I R E C I O N A I S, P L A N O TA N G E N T E E P O L I N Ô M I O S D E TAY L O R Prof. Benito Frazão Pires questões. Calcule as derivadas parciais de
Prova Escrita de MATEMÁTICA A - 12o Ano a Fase
Prova Escrita de MATEMÁTICA A - o Ano 00 - a Fase Proposta de resolução GRUPO I. Como A e B são acontecimentos incompatíveis, temos que A B, ou seja, P A B 0 Como P A B P A + P B P A B P A B + P A B P
Cálculo Diferencial e Integral II
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral II Exame/Teste de Recuperação v2-8h - 29 de Junho de 215 Duração: Teste - 1h3m; Exame -
= 2 sen(x) (cos(x) (b) (7 pontos) Pelo item anterior, temos as k desigualdades. sen 2 (2x) sen(4x) ( 3/2) 3
Problema (a) (3 pontos) Sendo f(x) = sen 2 (x) sen(2x), uma função π-periódica, temos que f (x) = 2 sen(x) cos(x) sen(2x) + sen 2 (x) 2 cos(2x) = 2 sen(x) (cos(x) sen(2x) + sen(x) cos(2x) ) = 2 sen(x)
Geometria Analítica. Estudo do Plano. Prof Marcelo Maraschin de Souza
Geometria Analítica Estudo do Plano Prof Marcelo Maraschin de Souza Plano Equação Geral do Plano Seja A(x 1, y 1, z 1 ) um ponto pertencente a um plano π e n = a, b, c, n 0, um vetor normal (ortogonal)
Prova Escrita de MATEMÁTICA A - 12o Ano a Fase
Prova Escrita de MATEMÁTICA A - o Ano 00 - a Fase Proposta de resolução GRUPO I. Como só existem bolas azuis e roxas, e a probabilidade de extrair uma bola da caixa, e ela ser azul é igual a, então existem
CAPÍTULO 13 (G F )(X) = X, X A (F G)(Y ) = Y, Y B. F G = I da e G F = I db,
CAPÍTULO 3 TEOREMA DA FUNÇÃO INVERSA 3 Introdução A função identidade em R n é a função que a cada elemento de R n associa o próprio elemento ie I d : R n R n X x x n I d X X x x n A função identidade
( x)(x 2 ) n = 1 x 2 = x
Página 1 de 7 Instituto de Matemática - IM/UFRJ Gabarito prova final unificada - Escola Politécnica / Escola de Química - 10/12/2009 Questão 1: (.0 pontos) (a) (1.0 ponto) Seja a função f(x) = x, com x
Universidade Federal do Rio Grande do Norte. Métodos Computacionais Marcelo Nogueira
Universidade Federal do Rio Grande do Norte Métodos Computacionais Marcelo Nogueira Raízes de Equações Algébricas Achar a raiz de uma unção signiica achar um número tal que 0 Algumas unções podem ter suas
CÁLCULO I. 1 A Função Logarítmica Natural. Objetivos da Aula. Aula n o 22: A Função Logaritmo Natural. Denir a função f(x) = ln x;
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 22: A Função Logaritmo Natural Objetivos da Aula Denir a função f(x) = ln x; Calcular limites, derivadas e integral envolvendo a função
Prova Escrita de MATEMÁTICA A - 12o Ano Época especial
Prova Escrita de MATEMÁTICA A - 2o Ano 20 - Época especial Proposta de resolução GRUPO I. O declive da reta AB é dado por: m AB = y B y A x B x A = 2 = 2 + = Como retas paralelas têm o mesmo declive, de
Plano tangente a uma superficie: G(f).
Plano tangente a uma supericie: G. O plano tangente ao gráico de uma unção num ponto é o plano que contem todas as retas tangentes ao gráico de que passam pelo ponto. Se todas as retas tangente a esse
Aula 7 Equação Vetorial da Reta e Equação Vetorial do plano
Aula 7 Equação Vetorial da Reta e Equação Vetorial do plano Prof Luis Carlos As retas podem estar posicionadas em planos (R 2 ) ou no espaço (R 3 ). Retas no plano possuem pontos com duas coordenadas,
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 09: Regras de Derivação Objetivos da Aula Apresentar e aplicar as regras operacionais de derivação; Derivar funções utilizando diferentes
CÁLCULO II. Lista Semanal 4-13/04/2018. Questão 1. Considere a curva cuja equação equação vetorial é dada por:
CÁLCULO II Prof. Juaci Picanço Prof. Jerônimo Monteiro Lista Semanal - 13/0/018 Questão 1. Considere a curva cuja equação equação vetorial é dada por: r(t) = (sen t)i + ( cos t)j + e t k. (a) Determine
DERIVADAS PARCIAIS. y = lim
DERIVADAS PARCIAIS Definição: Seja f uma função de duas variáveis, x e y (f: D R onde D R 2 ) e (x 0, y 0 ) é um ponto no domínio de f ((x 0, y 0 ) D). A derivada parcial de f em relação a x no ponto (x
MAT Cálculo Diferencial e Integral para Engenharia II 2 o semestre de Prova Substitutiva - 03/12/2012. Gabarito - TURMA A
MAT 25 - Cálculo Diferencial e Integral para Engenaria II 2 o semestre de 2012 - Prova Substitutiva - 0/12/2012 Gabarito - TURMA A Questão 1. pontos) Seja a função fx,y) = ) x5 sen x +y x 2 +y 2, se x,y)
Instituto de Matemática - IM/UFRJ Gabarito da Primeira Prova Unificada de Cálculo I Politécnica e Engenharia Química
Página de 5 Questão : (3.5 pontos) Calcule: + Instituto de Matemática - IM/UFRJ Politécnica e Engenharia Química 3 2 + (a) 3 + 2 + + ; + (b) ; + (c) 0 +(sen )sen ; (d) f (), onde f() = e sen(3 + +). (a)
Cálculo II. Resumo Teórico Completo
Cálculo II Resumo Teórico Completo Cálculo 2 A disciplina visa estudar funções e gráficos, de forma semelhante a Cálculo 1, mas expande o estudo para funções de mais de uma variável, bem como gráficos
Aula 5 Derivadas parciais
Aula 5 Derivadas parciais MÓDULO 1 AULA 5 Objetivos Aprender a calcular as derivadas parciais de funções de várias variáveis. Conecer a interpretação geométrica desse conceito. Introdução Ao longodas quatro
Apresentaremos as equações do plano: Equação vetorial e Equação geral do. = AB e v. C A u B. ) não-colineares do plano.
CAPÍTULO VIII PLANO Consideremos em V 3 o sistema de referência (O, i, j, k ), onde E = ( i, j, k ) é base ortonormal positiva e O(0, 0, 0). 8.1. EQUAÇÕES DO PLANO plano. Apresentaremos as equações do
Derivadas Parciais. Copyright Cengage Learning. Todos os direitos reservados.
14 Derivadas Parciais Copyright Cengage Learning. Todos os direitos reservados. 14.6 Derivadas Direcionais e o Vetor Gradiente Copyright Cengage Learning. Todos os direitos reservados. Derivadas Direcionais
