Resumo: Regra da cadeia, caso geral
|
|
|
- Ana Vitória Bennert Affonso
- 7 Há anos
- Visualizações:
Transcrição
1 Resumo: Regra da cadeia, caso geral Teorema Suponha que u = u(x 1,..., x n ) seja uma função diferenciável de n variáveis x 1,... x n onde cada x i é uma função diferenciável de m variáveis t 1,..., t m. Então u é uma função diferenciável de t 1,..., t m e para cada i = 1, 2,..., m. Como lembrar do resultado: u = u x 1 + u x u x n t i x 1 t i x 2 t i x n t i 1
2 Laplaciano em coordenadas polares Exercício Suponha z = f (x, y) onde x = r cos θ e y = rsenθ. Calcule o Laplaciano de f com as variavéis r, θ. Derivadas parciais em relação a r, θ: 2
3 Laplaciano em coordenadas polares, II Derivada parcial u/ r: Segunda derivada parcial 2 u/ r 2 : 3
4 Laplaciano em coordenadas polares, III Derivada parcial u/ θ: Segunda derivada parcial 2 u/ θ 2 : 4
5 Laplaciano em coordenadas polares, IV Agora, vamos calcular e simplificar (1/r 2 ) 2 u/ θ 2 lembrando da formula de u/ θ: Soma (1/r 2 ) 2 u/ θ u/ r 2 : Fim do calculo: 5
6 Teorema da função implicita Teorema Seja F definida numa bola aberta U contendo (a, b) onde F(a, b) = 0, F y (a, b) = 0 e F x e F y são funções contínuas em U, então a equação F(x, y) = 0 define y como uma função de x perto de (a, b), i.e y = f (x) e a derivada de f é dada por: dy dx = F x. F y Teorema Seja F definida numa bola aberta U contendo (a, b, c) onde F(a, b, c) = 0, F z (a, b, c) = 0 e F x, F y, F z são funções contínuas em U, então a equação F(x, y, z) = 0 define z como uma função de x, y perto de (a, b, c), i.e z = f (x, y) e as derivadas parciais de f são dadas por: F z x = x F z F z y = y F z 6
7 Derivação implicita Exercício Calcule as derivadas e derivadas parciais: 7
8 Derivadas direcionais Caso particular: a derivada direcional de f em (x 0, y 0 ) na direção do vetor unitário i = (1, 0) f é simplesmente x (x 0, y 0 ). Caso particular 2: a derivada direcional de f em (x 0, y 0 ) na direção do vetor unitário j = (0, 1) f é simplesmente y (x 0, y 0 ). Outras direções: Definição A derivada direcional de f em (x 0, y 0 ) na direção do vetor unitário u = (a, b) é f (x 0 + ha, y 0 + hb) f (x 0, y 0 ) D u f (x 0, y 0 ) = lim, h 0 h se esse limite existir. 8
9 Derivadas direcionais 9
10 10 Derivadas direcionais II Relação com a diferencial: quando f é diferenciável, calcular uma derivada direcional é facil: Teorema Seja f uma função diferenciável de x e y, então f tem derivada direcional na direção de qualquer vetor u = (a, b) e D u (x, y) = f x (x, y)a + f y (x, y)b Exercício Determine a derivada direcional de f no ponto dado e na direção indicada pelo ângulo θ,i.e na direção de u = (cos θ, senθ): 1 f (x, y) = x 2 y 3 y 4, em (2, 1), com θ = π/4 2 f (x, y) = xsen(xy) em (2, 0) com θ = π/3.
11 11 Derivadas direcionais III Relação com a diferencial: quando f é diferenciável, calcular uma derivada direcional é facil: Teorema Seja f uma função diferenciável de x e y, então f tem derivada direcional na direção de qualquer vetor u = (a, b) e Exercício D u (x, y) = f x (x, y)a + f y (x, y)b Determine a derivada direcional de f no ponto dado e na direção de v:
12 Vetor Gradiente Definição Seja f uma função de x e y, então o gradiente de f é a função f definida por f (x, y) = (f x (x, y), f y (x, y)) = f x i + f y j Gradiente e derivada direcional: Isso implica immediatamente: Caso de 3 variavéis: mesma definição. 12
13 13 Interpretação do gradiente Teorema Seja f uma função diferenciável de 2 ou 3 variáveis. O valor máximo da derivada direcional D u f ( x) é f ( x), e ocorre quando u tem a mesma direção que f ( x). Demonstração: D u f = f. u = f. u cos θ = f cos θ, onde θ é o ângulo entre u e f.
14 Gradiente e superfícies de nível Caso de z = f (x, y): 1 O gradiente f (x, y) indica a direção de maior crescimento da função f. 2 O gradiente f (x, y) é ortogonal às curvas de nível. Demonstração: seja t r(t) = (x(t), y(t)) uma curva dentro de f (x, y) = k = constante. Então d dt f (x(t), y(t)) = 0 = f (x(t), y(t)).(x (t), y (t)). 14
15 Gradiente e superfícies de nível Caso de f (x, y, z): 1 O gradiente f (x, y, z) indica a direção de maior crescimento da função f. 2 O gradiente f (x, y, z) é ortogonal às curvas de nível. Demonstração: seja t r(t) = (x(t), y(t), z(t)) uma curva dentro de f (x, y, z) = k = constante. Então d dt f (x(t), y(t), z(t)) = 0 = f (x(t), y(t), z(t)).(x (t), y (t), z (t)). 15
16 16 Plano tangente à superfície de nível Equação do plano tangente: é o plano passando por (x 0, y 0, z 0 ), ortogonal a f (x 0, y 0, z 0 ) Equação da reta normal: é a reta passando por (x 0, y 0, z 0 ), na direção de f (x 0, y 0, z 0 ) Equação paramétrica: (x, y, z) = (x 0, y 0, z 0 ) + t. f (x 0, y 0, z 0 ), t R
17 17 Caso particular:plano tangente ao gráfico de z = f (x, y) O gráfico z = f (x, y) pode ser visto também como uma superfície de nivél ( G(x, y, z) ) = 0 para a função G(x, y, z) = f (x, y) z cujo gradiente f é x, f y, 1 Equação do plano tangente: é o plano passando por (x 0, y 0, z 0 ), ortogonal a f (x 0, y 0, z 0 ) ( f x, f ) y, 1.(x x 0, y y 0, z z 0 ) = 0 Equação ( da reta ) normal: é a reta passando por (x 0, y 0, z 0 ), na direção f de x, f y, 1
18 18 Gradiente: exercícios Exercício Determine a taxa de variação máxima de f no ponto dado e a direção onde ocorre.
Cálculo Diferencial e Integral 2: Derivadas direcionais e o vetor gradiente
Cálculo Diferencial e Integral 2: Derivadas direcionais e o vetor gradiente Jorge M. V. Capela Instituto de Química - UNESP Araraquara, SP [email protected] Araraquara, SP - 2017 1 Derivadas direcionais
Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente.
Aula 15 Derivadas Direcionais e Vetor Gradiente Seja f(x, y) uma função de variáveis. Iremos usar a notação D u f(x 0, y 0 ) para: Derivada direcional de f no ponto (x 0, y 0 ), na direção do vetor unitário
14 AULA. Vetor Gradiente e as Derivadas Direcionais LIVRO
1 LIVRO Vetor Gradiente e as Derivadas Direcionais 14 AULA META Definir o vetor gradiente de uma função de duas variáveis reais e interpretá-lo geometricamente. Além disso, estudaremos a derivada direcional
Derivadas Parciais. Copyright Cengage Learning. Todos os direitos reservados.
14 Derivadas Parciais Copyright Cengage Learning. Todos os direitos reservados. 14.6 Derivadas Direcionais e o Vetor Gradiente Copyright Cengage Learning. Todos os direitos reservados. Derivadas Direcionais
11.5 Derivada Direcional, Vetor Gradiente e Planos Tangentes
11.5 Derivada Direcional, Vetor Gradiente e Planos Tangentes Luiza Amalia Pinto Cantão Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP [email protected] Estudos Anteriores Derivadas
Derivadas Parciais Capítulo 14
Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS 14.6 Derivadas Direcionais e o Vetor Gradiente Nesta seção, vamos aprender como encontrar: As taxas de variação de uma função de duas ou mais variáveis
MAT 121 : Cálculo II. Aula 27 e 28, Segunda 03/11/2014. Sylvain Bonnot (IME-USP)
MAT 121 : Cálculo II Aula 27 e 28, Segunda 03/11/2014 Sylvain Bonnot (IME-USP) 2014 1 Resumo 1 Derivadas parciais: seja f : R 2 R, a derivada parcial f x (a, b) é o limite (quando existe) lim h 0 f (a
Aula 6. Doravante iremos dizer que r(t) é uma parametrização da curva, e t é o parâmetro usado para descrever a curva.
Curvas ou Funções Vetoriais: Aula 6 Exemplo 1. Círculo como coleção de vetores. Vetor posição de curva: r(t) = (cos t, sen t), t 2π r(t) pode ser vista como uma função vetorial: r : [, 2π] R R 2 Doravante
Diferenciabilidade de funções reais de várias variáveis reais
Diferenciabilidade de funções reais de várias variáveis reais Cálculo II Departamento de Matemática Universidade de Aveiro 2018-2019 Cálculo II 2018-2019 Diferenciabilidade de f.r.v.v.r. 1 / 1 Derivadas
Cálculo II. Resumo Teórico Completo
Cálculo II Resumo Teórico Completo Cálculo 2 A disciplina visa estudar funções e gráficos, de forma semelhante a Cálculo 1, mas expande o estudo para funções de mais de uma variável, bem como gráficos
MAT Lista de exercícios
1 Curvas no R n 1. Esboce a imagem das seguintes curvas para t R a) γ(t) = (1, t) b) γ(t) = (t, cos(t)) c) γ(t) = (t, t ) d) γ(t) = (cos(t), sen(t), 2t) e) γ(t) = (t, 2t, 3t) f) γ(t) = ( 2 cos(t), 2sen(t))
Cálculo 3 Primeira Avaliação (A) 25/08/2016
Cálculo 3 Primeira Avaliação A) 25/08/2016 Nome / Matrícula: / Turma: AA Nota: de 4 pontos) 1. 1 ponto) Determine a equação do plano que é: perpendicular ao plano que passa pelos pontos 0, 1, 1), 1, 0,
Derivadas direcionais Definição (Derivadas segundo um vector): f : Dom(f) R n R e P 0 int(dom(f)) então
Derivadas direcionais Definição (Derivadas segundo um vector): f : Dom(f) R n R e P 0 int(dom(f)) então Seja D v f(p 0 ) = lim λ 0 f(p 0 + λ v) f(p 0 ) λ v representa a derivada direcional de f segundo
14.5 A Regra da Cadeia. Copyright Cengage Learning. Todos os direitos reservados.
14.5 A Regra da Cadeia Copyright Cengage Learning. Todos os direitos reservados. A Regra da Cadeia Lembremo-nos de que a Regra da Cadeia para uma função de uma única variável nos dava uma regra para derivar
CÁLCULO I Aula 08: Regra da Cadeia. Derivação Implícita. Derivada da Função Inversa.
CÁLCULO I Aula 08: Regra da Cadeia.. Função Inversa. Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará 1 2 3 Teorema (Regra da Cadeia) Sejam g(y) e y = f (x) duas funções deriváveis,
Cálculo II Lista 4. com respostas
Cálculo II Lista 4. com respostas Exercício 1. Esboce a curva de nível de f(x, ) que passa pelo ponto P e desenhe o vetor gradiente de f em P: (a) f(x, ) = x ; P = ( 2, 2); 2 (b) f(x, ) = x 2 + 4 2 ; P
MAT Cálculo Diferencial e Integral para Engenharia II 2 a lista de exercícios
MAT454 - Cálculo Diferencial e Integral para Engenharia II a lista de exercícios - 009 1. Ache as derivadas parciais de primeira ordem das funções: ( y (a) f(x, y) = arctg (b) f(x, y) = ln(1 + cos x) (xy
DERIVADAS PARCIAIS. y = lim
DERIVADAS PARCIAIS Definição: Seja f uma função de duas variáveis, x e y (f: D R onde D R 2 ) e (x 0, y 0 ) é um ponto no domínio de f ((x 0, y 0 ) D). A derivada parcial de f em relação a x no ponto (x
MAT 3210 Cálculo Diferencial e Integral II. Prova SUB C
MAT 3210 Cálculo Diferencial e Integral II Prof. Paolo Piccione 25 de Novembro de 2011 Prova SUB C Nome: Número USP: Assinatura: Instruções A duração da prova é de uma hora e quarenta minutos. Assinale
MAT 3210 Cálculo Diferencial e Integral II. Prova SUB D
MAT 3210 Cálculo Diferencial e Integral II Prof. Paolo Piccione 25 de Novembro de 2011 Prova SUB D Nome: Número USP: Assinatura: Instruções A duração da prova é de uma hora e quarenta minutos. Assinale
Plano tangente e reta normal
UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 15 Assunto: Plano tangente, reta normal, vetor gradiente e regra da cadeia Palavras-chaves: plano tangente, reta normal, gradiente, função
MAT 1351 : Cálculo para Funções de Uma Variável Real I. Sylvain Bonnot (IME-USP)
MAT 1351 : Cálculo para Funções de Uma Variável Real I Sylvain Bonnot (IME-USP) 2016 1 Aplicação das derivadas: Equações diferenciais Teorema As soluções da equação y = 0 num intervalo (a, b) são exatamente
MAT Cálculo Diferencial e Integral para Engenharia II 2 a Lista de Exercícios
MAT454 - Cálculo Diferencial e Integral para Engenharia II a Lista de Eercícios - 014 1. Seja f (, y) = + y + 4 e seja γ(t) = (t cos t, t sen t, t + 4), t 0. (a) Mostre que a imagem de γ está contida no
Lista de Exercícios de Funções de Várias Variáveis
Lista de Exercícios de Funções de Várias Variáveis 29 de dezembro de 2016 2 Sumário 1 Sequências e Séries InnitasP1) 5 1.1 Sequências............................. 5 1.1.1 Digitado por:luele Ribeiro de
4 o Roteiro de Atividades: reforço da segunda parte do curso de Cálculo II Instituto de Astronomia e Geofísica
4 o Roteiro de Atividades: reforço da segunda parte do curso de Cálculo II Instituto de Astronomia e Geofísica Objetivo do Roteiro Pesquisa e Atividades: Teoremas de diferenciabilidade de funções, Vetor
1 Diferenciabilidade e derivadas direcionais
UFPR - Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Matemática CM048 - Cálculo II - Matemática Diurno Prof. Zeca Eidam Nosso objetivo nestas notas é provar alguns resultados
Fazer os exercícios 35, 36, 37, 38, 39, 40, 41, 42 e 43 da 1 a lista.
MAT 2454 - Cálculo II - POLI - 2 a Lista de Exercícios 2 o semestre de 2002 Fazer os exercícios 35, 36, 37, 38, 39, 40, 41, 42 e 43 da 1 a lista. 1. Calcule w t e w pela regra da cadeia e confira os resultados
PROFESSOR: RICARDO SÁ EARP
LISTA DE EXERCÍCIOS SOBRE TRABALHO, CAMPOS CONSERVATIVOS, TEOREMA DE GREEN, FLUXO DE UM CAMPO AO LONGO DE UMA CURVA, DIVERGÊNCIA E ROTACIONAL DE UM CAMPO NO PLANO, FUNÇÕES HARMÔNICAS PROFESSOR: RICARDO
MAT1153 / LISTA DE EXERCÍCIOS : CAMPOS CONSERVATIVOS, INTEGRAIS DE LINHA, TRABALHO E TEOREMA DE GREEN
MAT1153 / 2008.1 LISTA DE EXERCÍCIOS : CAMPOS CONSERVATIVOS, INTEGRAIS DE LINHA, TRABALHO E TEOREMA DE GREEN OBS: Faça os exercícios sobre campos conservativos em primeiro lugar. (1 Fazer exercícios 1:(c,
Aula 6 Derivadas Direcionais e o Vetor Gradiente
Aula 6 Derivadas Direcionais e o Vetor Gradiente MA211 - Cálculo II Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade Estadual
Resumo dos resumos de CDI-II
Resumo dos resumos de DI-II 1 Topologia e ontinuidade de Funções em R n 1 Limites direccionais: Se lim f(x, mx) x 0 não existe, ou existe mas depende de m, então não existe lim f(x, y) (x,y) (0,0) 2 Produto
I. Derivadas Parciais, Diferenciabilidade e Plano Tangente
1. MAT - 0147 CÁLCULO DIFERENCIAL E INTEGRAL II PARA ECONOMIA a LISTA DE EXERCÍCIOS - 017 I. Derivadas Parciais, Diferenciabilidade e Plano Tangente 1) Calcule as derivadas parciais de primeira ordem das
MAT 121 : Cálculo Diferencial e Integral II. Sylvain Bonnot (IME-USP)
MAT 121 : Cálculo Diferencial e Integral II Sylvain Bonnot (IME-USP) 2014 1 Informações gerais Prof.: Sylvain Bonnot Email: [email protected] Minha sala: IME-USP, 151-A (Bloco A) Site: ver o link para
MAT Cálculo II - FEA, Economia Calcule os seguintes limites, caso existam. Se não existirem, explique por quê: xy. (i) lim.
MAT0147 - Cálculo II - FEA, Economia - 2011 Prof. Gláucio Terra 2 a Lista de Exercícios 1. Calcule os seguintes limites, caso existam. Se não existirem, explique por quê: xy x 2 y (a) lim (f) lim (x,y)
Aula 14. Regra da cadeia
Aula 14 Regra da cadeia Lembremos da Regra da Cadeia para funções de uma variável Considere duas funções diferenciáveis, y = f(x) e x = g(t) A derivada da função composta f (g(t)) é calculada por meio
A integral definida Problema:
A integral definida Seja y = f(x) uma função definida e limitada no intervalo [a, b], e tal que f(x) 0 p/ todo x [a, b]. Problema: Calcular (definir) a área, A,da região do plano limitada pela curva y
Derivadas Parciais Capítulo 14
Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS 14.5 Regra da Cadeia Nesta seção, aprenderemos sobre: A Regra da Cadeia e sua aplicação em diferenciação. A REGRA DA CADEIA Lembremo-nos de que a Regra
Derivada - Parte 2 - Regras de derivação
Derivada - Parte 2 - Wellington D. Previero [email protected] http://paginapessoal.utfpr.edu.br/previero Universidade Tecnológica Federal do Paraná - UTFPR Câmpus Londrina Wellington D. Previero Derivada
Cálculo a Várias Variáveis I - MAT Cronograma para P2: aulas teóricas (segundas e quartas)
Cálculo a Várias Variáveis I - MAT 116 0141 Cronograma para P: aulas teóricas (segundas e quartas) Aula 10 4 de março (segunda) Aula 11 6 de março (quarta) Referências: Cálculo Vol James Stewart Seções
PARTE 10 REGRA DA CADEIA
PARTE 10 REGRA DA CADEIA 10.1 Introdução Em Cálculo 1A, quando queríamos derivar a função h(x = (x 2 3x + 2 37, fazíamos uso da regra da cadeia, que é uma das mais importantes regras de derivação e nos
Derivadas Parciais - parte 2. x + 2 z. y = 1
Quarta Lista de Exercícios Cálculo II - Engenharia de Produção ( extraída do livro C ÁLCULO - vol, James Stewart ) Derivadas Parciais - parte 1) Verifique que a função u = 1/ x + y + z é uma solução da
Lista de Exercícios de Cálculo Infinitesimal II
Lista de Exercícios de Cálculo Infinitesimal II 10 de Setembro de 2003 Questão 1 Determine as representações explícitas em coordenadas polares das seguintes curvas: a) O círculo de raio a centrado em (a,
CURSO DE RESOLUÇÃO DE PROVAS de MATEMÁTICA da ANPEC Tudo passo a passo com Teoria e em sequência a resolução da questão! Prof.
Prof. Chico Vieira MATEMÁTICA da ANPEC Tudo Passo a Passo Teoria e Questões FICHA com LIMITES, DERIVADAS, INTEGRAIS, EDO, SÉRIES Integrais Dupla e Tripla LIMITES ANPEC QUESTÕES JÁ GRAVADAS DERIVADAS ANPEC
a definição de derivada parcial como limite do que aplicar as regras de derivação.)
2 a LISTA DE MAT 2454 - CÁLCULO II - POLI 2 o semestre de 2003. Ache as derivadas parciais de primeira ordem das funções : (a f(x, y = arctg y (b f(x, y, z, t = x y x z t 2. Seja f : IR IR uma função derivável.
Resumo com exercícios resolvidos do assunto:
www.engenhariafacil.weebly.com Resumo com exercícios resolvidos do assunto: (I) (II) (III) (IV) Derivadas Parciais; Plano Tangente; Diferenciabilidade; Regra da Cadeia. (I) Derivadas Parciais Uma derivada
A derivada (continuação) Aula 17
A derivada (continuação) Aula 17 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 08 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica Teorema
Cálculo 2. Guia de Estudos P1
Cálculo 2 Guia de Estudos P1 Resuminho Teórico e Fórmulas Parte 1 Cônicas Conceito: Cônicas são formas desenhadas em duas dimensões, considerando apenas os eixos x (horizontal) e y (vertical). Tipos de
Universidade Estadual de Montes Claros Departamento de Ciências Exatas Curso de Licenciatura em Matemática. Notas de Aulas de
Universidade Estadual de Montes Claros Departamento de Ciências Exatas Curso de Licenciatura em Matemática Notas de Aulas de Cálculo Rosivaldo Antonio Gonçalves Notas de aulas que foram elaboradas para
Cálculo Diferencial e Integral II Resolução do Exame/Teste de Recuperação 02 de Julho de 2018, 15:00h - versão 2 Duração: Exame (3h), Teste (1h30)
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral II do Exame/Teste de Recuperação 2 de Julho de 218, 15:h - versão 2 Duração: Exame (3h),
Capítulo 5 Derivadas Parciais e Direcionais
Capítulo 5 Derivadas Parciais e Direcionais 1. Conceitos Sabe-se que dois problemas estão relacionados com derivadas: Problema I: Taxas de variação da função. Problema II: Coeficiente angular de reta tangente.
Lista de Exercícios de Cálculo 3 Sexta Semana
Lista de Exercícios de Cálculo 3 Sexta Semana Parte A 1. (i) Encontre o gradiente das funções abaixo; (ii) Determine o gradiente no ponto P dado; (iii) Determine a taxa de variação da função no ponto P
Universidade Federal da Bahia
Universidade Federal da Bahia Instituto de Matemática DISCIPLINA: MATA3 - CÁLCULO B UNIDADE II - LISTA DE EXERCÍCIOS Atualiada 13.1 Coordenadas Polares [1] Dados os pontos P 1 (3, 5π 3 ), P ( 3, 33 ),
Lista 1. (1,0). (Neste caso, usar a definição de derivada parcial é menos trabalhoso do que aplicar as regras de derivação.
UFPR - Universidade Federal do Paraná Departamento de Matemática CM04 - Cálculo II Prof. José Carlos Eidam Lista Derivadas parciais, gradiente e diferenciabilidade. Ache as derivadas parciais de primeira
5. Determine o conjunto dos pontos em que a função dada é diferenciável. Justifique.
4 ā Lista de Exercícios de SMA-332- Cálculo II 1. Mostre que as funções dadas são diferenciáveis. a) f(x, y) = xy b) f(x, y) = x + y c) f(x, y) = x 2 y 2 d) f(x, y) = 1 xy e) f(x, y) = 1 x + y f) f(x,
MAT Cálculo Diferencial e Integral para Engenharia II 2 a Lista de Exercícios
MAT2454 - Cálculo Diferencial e Integral para Engenharia II 2 a Lista de Exercícios - 2012 1. Ache as derivadas parciais de primeira ordem das funções: ( y (a) f(x, y) = arctg (b) f(x, y) = ln(1+cos x)
Cálculo Diferencial e Integral II
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral II Ficha de trabalho 1 (versão de 6/0/009 (Esboço de Conjuntos. Topologia. Limites. Continuidade
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 09: Regras de Derivação Objetivos da Aula Apresentar e aplicar as regras operacionais de derivação; Derivar funções utilizando diferentes
Total Escolha 5 (cinco) questões. Justifique todas as passagens. Boa Sorte!
ā Prova de MAT 147 - Cálculo II - FEA-USP 15/10/01 Nome : GABARITO N ō USP : Professor : Oswaldo Rio Branco de Oliveira Q 1 3 4 5 6 7 Total N Escolha 5 (cinco) questões. Justifique todas as passagens.
Derivadas Parciais - parte 1. 1) Determine as derivadas parciais de primeira ordem da função.
Terceira Lista de Exercícios Cálculo II - Engenharia de Produção ( extraída do livro C ÁLCULO - vol 2 James Stewart ) Derivadas Parciais - parte 1 1) Determine as derivadas parciais de primeira ordem da
MAT Cálculo Diferencial e Integral para Engenharia II 1 a lista de exercícios
MAT454 - Cálculo Diferencial e Integral para Engenharia II 1 a lista de exercícios - 008 POLINÔMIO DE TAYLOR 1. Utilizando o polinômio de Taylor de ordem, calcule um valor aproximado e avalie o erro: a)
Processamento de Malhas Poligonais
Processamento de Malhas Poligonais Tópicos Avançados em Computação Visual e Interfaces I Prof.: Marcos Lage www.ic.uff.br/~mlage [email protected] Conteúdo: Notas de Aula Curvas 06/09/2015 Processamento
Observação: i.e. é abreviação da expressão em latim istum est, que significa isto é.
Um disco de raio R rola, sem deslizar, com velocidade angular ω constante ao longo de um plano horizontal, sendo que o centro da roda descreve uma trajetória retilínea. Suponha que, a partir de um instante
1. Determine o valor do integral curvilíneo do campo F (x, y, z) = xzî + xĵ + y k ao longo da linha (L), definida por: { x 2 /4 + y 2 /25 = 1 z = 2
Análise Matemática IIC Ficha 6 - Integrais Curvilíneos de campos de vectores. Teorema de Green. Integrais de Superfície. Teorema de Stokes. Teorema da Divergência. 1. Determine o valor do integral curvilíneo
1. Superfícies Quádricas
. Superfícies Quádricas álculo Integral 44. Identifique e esboce as seguintes superfícies quádricas: (a) x + y + z = (b) x + z = 9 x + y + z = z (d) x + y = 4 z (e) (z 4) = x + y (f) y = x z = + y (g)
Análise Matemática 2 FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO. Mestrado Integrado em Engenharia Electrotécnica e de Computadores
FAULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO Mestrado Integrado em Engenharia Electrotécnica e de omputadores Análise Matemática 2 Apontamentos das aulas teóricas - Integrais de Linha 29/21 Maria do
Prova de Conhecimentos Específicos 1 a QUESTÃO: (2,0 pontos)
Prova de Conhecimentos Específicos 1 a QUESTÃO: (,0 pontos) 5x Considere a função f(x)=. Determine, se existirem: x +7 (i) os pontos de descontinuidade de f; (ii) as assíntotas horizontais e verticais
Lista 2. (d) f (x, y) = x y x
UFPR - Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Matemática CM048 - Cálculo II - Matemática Diurno - 207/ Prof. Zeca Eidam Lista 2 Funções reais de duas e três variáveis.
UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 16. F (t 0 ) = f (g(t 0 )).g (t 0 ) F (t) = f (g(t)).g (t)
Assunto: Regra da cadeia UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 16 Palavras-chaves: derivada,derivadas parciais, função composta, regra da cadeia Regra da Cadeia Os teoremas que
Integral de linha de campo vectorial. Sejam : C uma curva dada por r(t) = (x(t), y(t), z(t)), com. e F : Dom( F ) R 3 R 3
Integral de linha de campo vectorial Sejam : C uma curva dada por r(t) = (x(t), y(t), z(t)), com t [a, b]. e F : Dom( F ) R 3 R 3 F = (F 1, F 2, F 3 ) um campo vectorial contínuo cujo Dom( F ) contem todos
Justifique todas as passagens. f v (0,0) = f(0,0) v.
2 ā Prova de Cálculo II para Oceanográfico - MAT145 27/10/2010 Nome : GABARITO N ō USP : Professor : Oswaldo Rio Branco de Oliveira Justifique todas as passagens Q 1 2 3 4 5 6 7 Total N 1. Dê exemplos
(*) livro Cálculo Diferencial e Integral de Funções de Várias Variáveis, de Diomara e Cândida
Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Matemática Lista de Cálculo II- Funções de Várias Variáveis (*) livro Cálculo Diferencial e Integral de Funções de Várias
Lista de Exercícios de Cálculo 3 Terceira Semana
Lista de Exercícios de Cálculo 3 Terceira Semana Parte A 1. Reparametrize as curvas pelo parâmetro comprimento de arco medido a partir do ponto t = 0 na direção crescente de t. (a) r(t) = ti + (1 3t)j
INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO
INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-454 Cálculo Diferencial e Integral II (Escola Politécnica) Primeira Lista de Exercícios - Professor: Equipe de Professores BONS ESTUDOS!.
2 o semestre de Calcule os seguintes limites, caso existam. Se não existirem, justifique por quê:
MAT2454 - Cálculo II - POLI - 2 a Lista de Eercícios 2 o semestre de 2004. Calcule os seguintes ites, caso eistam. Se não eistirem, justifique por quê: (a) (b) (c) (d) (e) y 2 + y 2 (f) 2 y cos( 2 + y
MAT 111 Cálculo Diferencial e Integral I. Prova 2 14 de Junho de 2012
MAT 111 Cálculo Diferencial e Integral I Prof. Paolo Piccione Prova 2 14 de Junho de 2012 Nome: Número USP: Assinatura: Instruções A duração da prova é de duas horas. Assinale as alternativas corretas
MAT 111 Cálculo Diferencial e Integral I. Prova 2 14 de Junho de 2012
MAT 111 Cálculo Diferencial e Integral I Prof. Paolo Piccione Prova 2 14 de Junho de 2012 Nome: Número USP: Assinatura: Instruções A duração da prova é de duas horas. Assinale as alternativas corretas
Retas e planos no espaço
Retas e planos no espaço Jorge M. V. Capela, Marisa V. Capela Instituto de Química - UNESP Araraquara, SP [email protected] Araraquara, SP - 2017 1 Retas e Segmentos de Reta no Espaço 2 Equação vetorial
Exercícios de Cálculo - Prof. Ademir
Exercícios de Cálculo - Prof. Ademir Funções, limites e continuidade. Considere f : IR IR definida por f(x) = x 4x + 3. (a) Faça um esboço do gráfico de f. (b) Determine os valores de x para os quais f(x)..
Derivada. Capítulo Retas tangentes e normais Número derivado
Capítulo 3 Derivada 3.1 Retas tangentes e normais Vamos considerar o problema que consiste em traçar a reta tangente e a reta normal a uma curvay= f(x) num determinado ponto (a,f(a)) da curva. Por isso
MAT Cálculo Diferencial e Integral para Engenharia II 2 a lista de exercícios
MAT2454 - Cálculo Diferencial e Integral para Engenharia II 2 a lista de exercícios - 2011 1. Ache as derivadas parciais de primeira ordem das funções: ( y (a) f(x, y) =arctg (b) f(x, y) = ln(1 + cos x)
6 AULA. Equações Paramétricas LIVRO. META Estudar funções que a cada ponto do domínio associa um par ordenado
1 LIVRO Equações Paramétricas 6 AULA META Estudar funções que a cada ponto do domínio associa um par ordenado de R 2 OBJETIVOS Estudar movimentos de partículas no plano. PRÉ-REQUISITOS Ter compreendido
