Resumo com exercícios resolvidos do assunto:
|
|
|
- Eduarda Cesário Mendonça
- 7 Há anos
- Visualizações:
Transcrição
1 Resumo com exercícios resolvidos do assunto: (I) (II) Derivadas Direcionais; Vetor Gradiente. (I) Derivadas Direcionais Definição: É a taxa de variação do valor de uma função em uma determinada direção, ou seja, a derivada parcial da função com relação ao vetor que representa a direção desejada. A derivada direcional de uma função f com relação ao vetor v no ponto (x 0,y 0 ) é geralmente denotada por duas formas: v D vf xₒ, yₒ A essa altura do campeonato, você já provavelmente se familiarizou com as derivadas parciais e. Essas derivadas podem igualmente serem chamadas de derivadas direcionais nos eixos x e y, respectivamente.
2 Mas como encontrar a derivada parcial na direção de um vetor v em um determinado ponto, ou seja, como medir a taxa de variação da função f no ponto (x 0,y 0 ) sobre a reta r = (x 0,y 0 ) + t v, sendo v um vetor unitário (v 1,v 2 )? f x, y, x t = xₒ + tv₁, y t = yₒ + tv₂ = dx + dy Se derivarmos as funções x e y com relação a t, é fácil verificar que teremos: dx = v₁ dy = v₂ (xₒ, yₒ) = (xₒ, yₒ) v₁ + (xₒ, yₒ) v₂ Note que temos agora a soma de dois produtos, o que pode ser escrito como o produto escalar: (xₒ, yₒ) = ( xₒ, yₒ ) ( v₁, v₂) OBS: Como a derivada depende apenas da direção do vetor v, devemos sempre usar um vetor v unitário, ou seja, de módulo igual a 1. (II) Vetor Gradiente Definição: É o vetor que indica a direção de maior crescimento de uma função em um determinado ponto. Sempre é perpendicular às curvas de nível. O gradiente é representado pelo caractere. Denota-se o gradiente da função f no ponto xₒ, yₒ por f xₒ, yₒ. E como calcular o gradiente de uma função?
3 f xₒ, yₒ = ( xₒ, yₒ ) Percebeu que o vetor cujas componentes são as derivadas parciais da função com relação a x e y é o gradiente da função? Vamos retomar a equação do item 1.3: (xₒ, yₒ) = ( xₒ, yₒ ) ( v₁, v₂) Substituindo o primeiro vetor pelo gradiente, teremos: (xₒ, yₒ) = f xₒ, yₒ ( v₁, v₂) Essa é a equação mais importante que precisaremos utilizar para resolver problemas envolvendo esse conteúdo e os conteúdos posteriores, portanto, aprenda a usá-la, exercitando com as questões propostas a seguir. Exercícios Resolvidos a)(stewart, capítulo 14) Determine o gradiente de f, calcule-o no ponto P e determine a taxa de variação de f em P na direção do vetor v, dados: Resolução: f x, y = 5xy 2 4x 3 y, P 1,2, v =< 5 13, > a) Para determinar o gradiente de f, primeiro devemos determinar as derivadas parciais da função. = 5y2 12x 2 y = 10xy 4x3 Substituindo esses valores na equação do gradiente, obtemos: f xₒ, yₒ = ( 5yₒ 2 12xₒ 2 yₒ, 10xₒyₒ 4xₒ 3 ) Determinado o gradiente, vamos calculá-lo no ponto P(1,2), substituindo os valores das coordenadas de P na equação acima: f 1,2 = ( , ) f 1,2 = ( 4, 16)
4 Por fim, a parte mais importante do exercício, determinar a taxa de variação de f no ponto P(1,2) na direção do vetor v. O primeiro passo deve ser sempre verificar se o módulo de v é igual a 1. v = ( 5 13 )2 + ( )2 = 1 De fato, o módulo de v é igual a 1. Então, vamos calcular a derivada na direção de v, que é simplesmente o produto escalar do gradiente de f pelo vetor direcional v. D v f = f 1,2 ( 5 13, ) D v f = ( 4, 16) ( 5 13, ) D v f = (UFRJ ) Seja z = f(x,y) uma função diferenciável no ponto (1,2) e considere os vetores u = u = ( 2 2, 2 2 ) e v = ( 2 2, 2 2 ). Sabendo-se que D u f 1,2 = 1 e D v f 1,2 = 3, calcule f x (1,2) e f y (1,2). Resolução: Perceba que para resolver esse problema vamos ter que percorrer o caminho oposto ao do exercício anterior. Perceba que ele fornece as derivadas direcionais, bem como os vetores, e pede as derivadas parciais com relação a x e y. Isto é, o problema quer as componentes do gradiente. Vamos usar novamente aquela equação mágicaessencialcapitalsensacional para os vetores nas direções de u e v. D u f 1,2 = f 1,2 u 1 = f 1,2 2 2, 2 2 D v f 1,2 = f 1,2 v e 3 = f 1,2 2 2, 2 2 Sendo f 1,2 = 1,2, 1,2 Com essas duas equações montamos um sistema: f x 1, f y 1,2 2 2 = 1 f x 1, f y 1,2 2 2 = 3
5 Resolvendo as equações acima temos: f 1,2 = 1,2, 1,2 = (2 2, 2) As componentes do gradiente são as derivadas parciais da função, conforme pedido no enunciado. É isso aí pessoal, espero que a partir de agora vocês tenham aprendido a resolver questões de gradiente e derivadas direcionais. Esse é um dos conteúdos que a P2 de Cálculo II cobra sempre, então é importante que você continue exercitando, fazendo questões de provas anteriores e de livros didáticos. E se você tiver que levar deste resumo apenas uma coisa, que seja a equação: (xₒ, yₒ) = f xₒ, yₒ ( v₁, v₂) Exercícios Recomendados: 1)(UFRJ ) (UFRJ ) Gabaritos: 1)a 2)0 3)-4/5 4) -4 Bons Estudos!! Dúvidas? Acesse o Solucionador na página ou mande para [email protected].
14 AULA. Vetor Gradiente e as Derivadas Direcionais LIVRO
1 LIVRO Vetor Gradiente e as Derivadas Direcionais 14 AULA META Definir o vetor gradiente de uma função de duas variáveis reais e interpretá-lo geometricamente. Além disso, estudaremos a derivada direcional
Métodos de Pesquisa Operacional
Métodos de Pesquisa Operacional Programação Linear é a parte da Pesquisa Operacional que trata da modelagem e resolução de problemas formulados com funções lineares. Programação Linear } Métodos de Resolução
Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente.
Aula 15 Derivadas Direcionais e Vetor Gradiente Seja f(x, y) uma função de variáveis. Iremos usar a notação D u f(x 0, y 0 ) para: Derivada direcional de f no ponto (x 0, y 0 ), na direção do vetor unitário
Resumo com exercícios resolvidos do assunto:
www.engenhariafacil.weebly.com Resumo com exercícios resolvidos do assunto: (I) (II) (III) (IV) Derivadas Parciais; Plano Tangente; Diferenciabilidade; Regra da Cadeia. (I) Derivadas Parciais Uma derivada
Resumo: Regra da cadeia, caso geral
Resumo: Regra da cadeia, caso geral Teorema Suponha que u = u(x 1,..., x n ) seja uma função diferenciável de n variáveis x 1,... x n onde cada x i é uma função diferenciável de m variáveis t 1,..., t
Resolução das objetivas 3ª Prova de Álgebra Linear II da UFRJ, período
www.engenhariafacil.weebly.com Resolução das objetivas 3ª Prova de Álgebra Linear II da UFRJ, período 2013.2 OBS: Todas as alternativas corretas são as letras A. 1) Para encontrar o autovetor associado
(x,y) x Exemplo: (x, y) ou f x. x = f x = 2xy. y = f y
1 DEFINIÇÃO DE Chamamos de derivada parcial quando temos uma função que envolve mais de uma variável e queremos derivar em relação a uma delas. De forma geral, basta derivarmos em relação à variável de
Capítulo 5 Derivadas Parciais e Direcionais
Capítulo 5 Derivadas Parciais e Direcionais 1. Conceitos Sabe-se que dois problemas estão relacionados com derivadas: Problema I: Taxas de variação da função. Problema II: Coeficiente angular de reta tangente.
MAT 121 : Cálculo II. Aula 27 e 28, Segunda 03/11/2014. Sylvain Bonnot (IME-USP)
MAT 121 : Cálculo II Aula 27 e 28, Segunda 03/11/2014 Sylvain Bonnot (IME-USP) 2014 1 Resumo 1 Derivadas parciais: seja f : R 2 R, a derivada parcial f x (a, b) é o limite (quando existe) lim h 0 f (a
MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari
MATEMÁTICA II Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari [email protected] DERIVADAS PARCIAIS DERIVADAS PARCIAIS Sejam z = f x, y uma função real de duas variáveis reais; x 0, y 0
Resumo com exercícios resolvidos dos assuntos:
www.engenhariafacil.weebly.com (0)- Considerações iniciais: Resumo com exercícios resolvidos dos assuntos: Máximos e mínimos absolutos e Multiplicador de Lagrange -Grande parte das funções não possui máximos
Gabarito Lista 3 Cálculo FAU
Gabarito Lista Cálculo FAU Prof. Jaime Maio 018 Questão 1. O produto vetorial entre dois vetores a = (a 1, a, a ) e b = (b 1, b, b ) em R é um terceiro vetor c, ortogonal a ambos a e b, dado por c = a
14.5 A Regra da Cadeia. Copyright Cengage Learning. Todos os direitos reservados.
14.5 A Regra da Cadeia Copyright Cengage Learning. Todos os direitos reservados. A Regra da Cadeia Lembremo-nos de que a Regra da Cadeia para uma função de uma única variável nos dava uma regra para derivar
Resolução das objetivas 3ª Prova de Álgebra Linear II da UFRJ, período
www.engenhariafacil.weebly.com Resolução das objetivas 3ª Prova de Álgebra Linear II da UFRJ, período 4. OBS: Todas as alternativas corretas são as letras A. ) Devemos utilizar o teorema que diz: (Im(A
MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari
MATEMÁTICA II Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari [email protected] CONSIDERAÇÕES INICIAIS Considere a função f x : R R tal que y = f(x). Então: Derivada: Mede a taxa de variação de
Geometria Analítica I
Geom. Analítica I Respostas do Módulo I - Aula 14 1 Geometria Analítica I 10/03/011 Respostas dos Exercícios do Módulo I - Aula 14 Aula 14 1. a. A equação do círculo de centro h, k) e raio r é x h) + y
Derivadas Parciais Capítulo 14
Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS 14.6 Derivadas Direcionais e o Vetor Gradiente Nesta seção, vamos aprender como encontrar: As taxas de variação de uma função de duas ou mais variáveis
Cálculo a Várias Variáveis I - MAT Cronograma para P2: aulas teóricas (segundas e quartas)
Cálculo a Várias Variáveis I - MAT 116 0141 Cronograma para P: aulas teóricas (segundas e quartas) Aula 10 4 de março (segunda) Aula 11 6 de março (quarta) Referências: Cálculo Vol James Stewart Seções
MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari
MATEMÁTICA II Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari [email protected] CONSIDERAÇÕES INICIAIS Considere a função f x : R R tal que y = f(x). Então: Derivada: Mede a taxa de variação de
Derivadas Parciais. Copyright Cengage Learning. Todos os direitos reservados.
14 Derivadas Parciais Copyright Cengage Learning. Todos os direitos reservados. 14.6 Derivadas Direcionais e o Vetor Gradiente Copyright Cengage Learning. Todos os direitos reservados. Derivadas Direcionais
CURSO de MATEMÁTICA (Niterói) - Gabarito
UNIVERSIDADE FEDERAL FLUMINENSE TRANSFERÊNCIA 2 o semestre letivo de 2009 e 1 o semestre letivo de 2010 CURSO de MATEMÁTICA (Niterói) - Gabarito INSTRUÇÕES AO CANDIDATO Verifique se este caderno contém:
12 AULA. ciáveis LIVRO. META Estudar derivadas de funções de duas variáveis a valores reais.
1 LIVRO Diferen- Funções ciáveis META Estudar derivadas de funções de duas variáveis a valores reais. OBJETIVOS Estender os conceitos de diferenciabilidade de funções de uma variável a valores reais. PRÉ-REQUISITOS
LISTA DE EXERCÍCIOS #5 - ANÁLISE VETORIAL EM FÍSICA
LISTA DE EXERCÍCIOS #5 - ANÁLISE VETORIAL EM FÍSICA PROBLEMAS-EXEMPLO 1. Determinar o comprimento de arco das seguintes curvas, nos intervalos especificados. (a) r(t) = t î + t ĵ, de t = a t =. Resolução
GEOMETRIA ANALÍTICA E CÁLCULO VETORIAL GEOMETRIA ANALÍTICA BÁSICA. 03/01/ GGM - UFF Dirce Uesu Pesco
GEOMETRIA ANALÍTICA E CÁLCULO VETORIAL GEOMETRIA ANALÍTICA BÁSICA 03/01/2013 - GGM - UFF Dirce Uesu Pesco CÔNICAS Equação geral do segundo grau a duas variáveis x e y onde A, B e C não são simultaneamente
. Repare que ao multiplicar os vetores (-1,1) e
Álgebra Linear II P1-2014.2 Obs: Todas as alternativas corretas são as representadas pela letra A. 1 AUTOVETORES/ AUTOVALORES Essa questão poderia ser resolvida por um sistema bem chatinho. Mas, faz mais
GABARITO COMENTADO DE PROVAS DE FÍSICA CINEMÁTICA
GABARITO COMENTADO DE PROVAS DE FÍSICA CINEMÁTICA 1ª Prova 2007 Questão 1: FÁCIL O valor de H é calculado pela equação de Torricelli: Para isso, deve-se calcular a velocidade inicial e final: (sinal negativo,
Universidade Federal do Pará Curso de Licenciatura em Matemática PARFOR Lista de Exercícios Referentes a Prova Substitutiva de Geometria Analítica
1 Universidade Federal do Pará Curso de Licenciatura em Matemática PARFOR Lista de Exercícios Referentes a Prova Substitutiva de Geometria Analítica 1. Determine a distância entre os pontos A(-2, 7) e
Aula 18. Método Multiplicadores Lagrange (continuação)
Aula 18 Método Multiplicadores Lagrange (continuação) Na aula anterior introduzimos o Método dos Multiplicadores de Lagrange, que serve para maximizar/minimizar uma função restrita a um domínio do tipo
ADA 1º BIMESTRE CICLO I 2018 MATEMÁTICA 2ª SÉRIE DO ENSINO MÉDIO
ADA º BIMESTRE CICLO I 08 MATEMÁTICA ª SÉRIE DO ENSINO MÉDIO ITEM DA ADA Um sistema de equações pode ser usado para representar situações-problemas da matemática ou do dia-a-dia. Assinale a alternativa
CÁLCULO II. Lista Semanal 3-06/04/2018
CÁLCULO II Prof. Juaci Picanço Prof. Jerônimo Monteiro Lista Semanal 3-06/04/2018 Questão 1. Um tetraedro é um sólido com quatro vértices P, Q, R e S e quatro faces triangulares e seu volume é um terço
Índice. AULA 5 Derivação implícita 3. AULA 6 Aplicações de derivadas 4. AULA 7 Aplicações de derivadas 6. AULA 8 Esboço de gráficos 9
www.matematicaemexercicios.com Derivadas Vol. 2 1 Índice AULA 5 Derivação implícita 3 AULA 6 Aplicações de derivadas 4 AULA 7 Aplicações de derivadas 6 AULA 8 Esboço de gráficos 9 www.matematicaemexercicios.com
11.5 Derivada Direcional, Vetor Gradiente e Planos Tangentes
11.5 Derivada Direcional, Vetor Gradiente e Planos Tangentes Luiza Amalia Pinto Cantão Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP [email protected] Estudos Anteriores Derivadas
POTENCIAL ELÉTRICO. Prof. Bruno Farias
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA III POTENCIAL ELÉTRICO Prof. Bruno Farias Introdução Um dos objetivos da Física é determinar
G3 de Álgebra Linear I
G de Álgebra Linear I 7 Gabarito ) Considere a transformação linear T : R R cuja matriz na base canônica E = {(,, ), (,, ), (,, )} é [T] E = a) Determine os autovalores de T e seus autovetores correspondentes
Funções de Uma Variável - 1 a Avaliação - Turma B3 31 de outubro de Prof. Armando Caputi
Funções de Uma Variável - 1 a Avaliação - Turma B 1 de outubro de 017 - Prof. Armando Caputi 1 Determine o domínio da função f(x) = arctan x x + 1 (justifique) e a equação da reta tangente ao seu gráfico
Aula 6. Doravante iremos dizer que r(t) é uma parametrização da curva, e t é o parâmetro usado para descrever a curva.
Curvas ou Funções Vetoriais: Aula 6 Exemplo 1. Círculo como coleção de vetores. Vetor posição de curva: r(t) = (cos t, sen t), t 2π r(t) pode ser vista como uma função vetorial: r : [, 2π] R R 2 Doravante
Operadores Diferenciais Aplicações Rebello 2014
Operadores Diferenciais Aplicações Rebello 2014 Os operadores diferenciais representam um conjunto de ferramentas indispensáveis na engenharia não só na parte de avaliar e classificar um campo vetorial
Volumes de Sólidos de Revolução
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Volumes de Sólidos
P1 de Álgebra Linear I Gabarito. 27 de Março de Questão 1)
P1 de Álgebra Linear I 20091 27 de Março de 2009 Gabarito Questão 1) Considere o vetor v = 1, 2, 1) e os pontos A = 1, 2, 1), B = 2, 1, 0) e 0, 1, 2) de R a) Determine, se possível, vetores unitários w
GAAL /1 - Simulado - 3 exercícios variados de retas e planos
GAAL - 201/1 - Simulado - exercícios variados de retas e planos SOLUÇÕES Exercício 1: Considere as retas m e n de equações paramétricas m : (x, y, z) = (1, 1, 0) + t( 2, 1, ) (a) Mostre que m e n são retas
DERIVADAS PARCIAIS. y = lim
DERIVADAS PARCIAIS Definição: Seja f uma função de duas variáveis, x e y (f: D R onde D R 2 ) e (x 0, y 0 ) é um ponto no domínio de f ((x 0, y 0 ) D). A derivada parcial de f em relação a x no ponto (x
Funções de Uma Variável - 1 a Avaliação - Turma B3 31 de outubro de Prof. Armando Caputi
Funções de Uma Variável - 1 a Avaliação - Turma B 1 de outubro de 017 - Prof. Armando Caputi 1 Determine o domínio da função g(x) = arctan ( ln(x x + ) ) (justifique) e a equação da reta tangente ao seu
A Derivada. Derivadas Aula 16. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil
Derivadas Aula 16 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 04 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014104 - Engenharia Mecânica A Derivada Seja x = f(t)
G1 de Álgebra Linear I Gabarito
G1 de Álgebra Linear I 2013.1 6 de Abril de 2013. Gabarito 1) Considere o triângulo ABC de vértices A, B e C. Suponha que: (i) o vértice B do triângulo pertence às retas de equações paramétricas r : (
Diferenciabilidade de funções reais de várias variáveis reais
Diferenciabilidade de funções reais de várias variáveis reais Cálculo II Departamento de Matemática Universidade de Aveiro 2018-2019 Cálculo II 2018-2019 Diferenciabilidade de f.r.v.v.r. 1 / 1 Derivadas
MATEMÁTICA PARA TÉCNICOS
PETROBRAS INDICADA PARA TODOS CARGOS TÉCNICOS MATEMÁTICA PARA TÉCNICOS QUESTÕES RESOLVIDAS PASSO A PASSO PRODUZIDO POR EXATAS CONCURSOS www.exatas.com.br v3 ÍNDICE DE QUESTÕES MATEMÁTICA - CARGOS TÉCNICOS
Como, neste caso, temos f(x) = 1, obviamente a primitiva é F(x) = x, pois F (x) = x = 1 = f(x).
4. INTEGRAIS 4.1 INTEGRAL INDEFINIDA A integral indefinida da função f(x), denotada por f x dx, é toda expressão da forma F(x) + C, em que F (x) = f(x) num dado intervalo [a,b] e C é uma constante arbitrária.
Aula 7 Equação Vetorial da Reta e Equação Vetorial do plano
Aula 7 Equação Vetorial da Reta e Equação Vetorial do plano Prof Luis Carlos As retas podem estar posicionadas em planos (R 2 ) ou no espaço (R 3 ). Retas no plano possuem pontos com duas coordenadas,
P1 de Álgebra Linear I
P1 de Álgebra Linear I 2008.1 Gabarito 1) Decida se cada afirmação a seguir é verdadeira ou falsa e marque COM CANETA sua resposta no quadro a seguir. Itens V F N 1.a x 1.b x 1.c x 1.d x 1.e x 1.a) Para
Total Escolha 5 (cinco) questões. Justifique todas as passagens. Boa Sorte!
ā Prova de MAT 147 - Cálculo II - FEA-USP 15/10/01 Nome : GABARITO N ō USP : Professor : Oswaldo Rio Branco de Oliveira Q 1 3 4 5 6 7 Total N Escolha 5 (cinco) questões. Justifique todas as passagens.
1. as equações paramétricas da reta que contém o ponto A e é perpendicular ao plano de equação x 2y + 3z = 17;
PROVA 1 09 de setembro de 2015 08h30 1 2 3 4 5 081 x = 1 + 3t 0811 Considere a reta L de equações paramétricas y = t z = 5 A = (5, 0, 2). Obtenha e o ponto 1. as equações paramétricas da reta que contém
Justifique todas as passagens. Boa Sorte! e L 2 : = z 1 3
3 ā Prova de Cálculo II para Oceanográfico - MAT145 01/12/2010 Nome : GABARITO N ō USP : Professor : Oswaldo Rio Branco de Oliveira Justifique todas as passagens Boa Sorte! Q 1 2 3 4 5 Extra 6 Extra 7
Multiplicadores de Lagrange
Multiplicadores de Lagrange Para motivar o método, suponha que queremos maximizar uma função f (x, y) sujeito a uma restrição g(x, y) = 0. Geometricamente: queremos um ponto sobre o gráfico da curva de
P2 de Cálculo a Várias Variáveis I MAT Data: 14 de maio de 2013
P2 de Cálculo a Várias Variáveis I MAT 62 20. Data: 4 de maio de 20 Nome: Assinatura: Matrícula: Turma: Questão Valor Nota Revisão.0 2 5.0 Teste 2.0 Total 0.0 Instruções Mantenha seu celular desligado
Resolução da 1ª Prova de Álgebra Linear II da UFRJ, período
www.engenhariafacil.net Resolução da 1ª Prova de Álgebra Linear II da UFRJ, período 2014.2 OBS: Todas as alternativas corretas são as letras A. 1) Vamos falar um pouco de interseção, união e soma de subespaços.
Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 ESTUDO DA CIRCUNFERÊNCIA
DEFINIÇÃO... EQUAÇÃO REDUZIDA... EQUAÇÃO GERAL DA CIRCUNFERÊNCIA... 3 RECONHECIMENTO... 3 POSIÇÃO RELATIVA ENTRE PONTO E CIRCUNFERÊNCIA... 1 POSIÇÃO RELATIVA ENTRE RETA E CIRCUNFERÊNCIA... 17 PROBLEMAS
MAT Cálculo Diferencial e Integral para Engenharia II 2 a Lista de Exercícios
MAT454 - Cálculo Diferencial e Integral para Engenharia II a Lista de Eercícios - 014 1. Seja f (, y) = + y + 4 e seja γ(t) = (t cos t, t sen t, t + 4), t 0. (a) Mostre que a imagem de γ está contida no
BANCO DE EXERCÍCIOS - 24 HORAS
BANCO DE EXERCÍCIOS - HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº GABARITO COMENTADO ) A função será y,5x +, onde y (preço a ser pago) está em função de x (número de quilômetros
Sabendo que f(x) é um polinômio de grau 2, utilize a formula do trapézio e calcule exatamente
MÉTODOS NUMÉRICOS E COMPUTACIONAIS II EXERCICIOS EXTRAIDOS DE PROVAS ANTERIORES EXERCICIOS RESOLVIDOS - INTEGRACAO-NUMERICA - EDO. Considere a seguinte tabela de valores de uma função f x i..5.7..5 f(x
Instituto de Matemática Departamento de Métodos Matemáticos
?????? @ @ @@ @@?????? @ @ @@ @@ Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Métodos Matemáticos Prova Final Unificada de Cálculo II Politécnica,Escola Química - 03/12/2013
5 de setembro de Gabarito. 1) Considere o ponto P = (0, 1, 2) e a reta r de equações paramétricas. r: (2 t, 1 t, 1 + t), t R.
G1 de Álgebra Linear I 20072 5 de setembro de 2007 Gabarito 1) Considere o ponto P = (0, 1, 2) e a reta r de equações paramétricas r: (2 t, 1 t, 1 + t), t R (a) Determine a equação cartesiana do plano
UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1
UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1 PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR - 16/10/2016 CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES: 1.
tenha tamanho igual a 5. Determinar o valor de k, se existir, para que os vetores u k,2,k
Vetores Questão 1 Determine o valor de k para que o vetor v (2k,k, 3k) tenha tamanho igual a 5. Questão 2 Ache w tal que w i k 2 i k 2 i j k e w 6. Questão 3 Determinar o valor de k, se existir, para que
Derivadas Parciais Capítulo 14
Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS No Exemplo 6 da Seção 14.7 maximizamos a função volume V = xyz sujeita à restrição 2xz + 2yz + xy = que expressa a condição de a área da superfície ser
Cálculo Diferencial e Integral 2: Derivadas direcionais e o vetor gradiente
Cálculo Diferencial e Integral 2: Derivadas direcionais e o vetor gradiente Jorge M. V. Capela Instituto de Química - UNESP Araraquara, SP [email protected] Araraquara, SP - 2017 1 Derivadas direcionais
Aula 13. Plano Tangente e Aproximação Linear
Aula 13 Plano Tangente e Aproximação Linear Se fx) é uma função de uma variável, diferenciável no ponto x 0, então a equação da reta tangente à curva y = fx) no ponto x 0, fx 0 )) é dada por: y fx 0 )
JOSÉ ROBERTO RIBEIRO JÚNIOR. 9 de Outubro de 2017
9 de Outubro de 2017 Vetores Ferramenta matemática que é utilizada nas seguintes disciplinas dos cursos de Engenharia: Física; Mecânica Resistência dos materiais Fenômenos do transporte Consideremos um
Disciplina : Mecânica dos fluidos I. Aula 4: Estática dos Fluidos
Curso: Engenharia Mecânica Disciplina : Mecânica dos fluidos I Aula 4: Estática dos Fluidos Prof. Evandro Rodrigo Dário, Dr. Eng. Estática dos Fluidos A pressão gerada no interior de um fluido estático
G3 de Álgebra Linear I
G3 de Álgebra Linear I 11.1 Gabarito 1) Seja A : R 3 R 3 uma transformação linear cuja matriz na base canônica é 4 [A] = 4. 4 (a) Determine todos os autovalores de A. (b) Determine, se possível, uma forma
1. Limite. lim. Ou seja, o limite é igual ao valor da função em x 0. Exemplos: 1.1) Calcule lim x 1 x 2 + 2
1. Limite Definição: o limite de uma função f(x) quando seu argumento x tende a x0 é o valor L para o qual a função se aproxima quando x se aproxima de x0 (note que a função não precisa estar definida
Plano tangente e reta normal
UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 15 Assunto: Plano tangente, reta normal, vetor gradiente e regra da cadeia Palavras-chaves: plano tangente, reta normal, gradiente, função
Aula 14. Regra da cadeia
Aula 14 Regra da cadeia Lembremos da Regra da Cadeia para funções de uma variável Considere duas funções diferenciáveis, y = f(x) e x = g(t) A derivada da função composta f (g(t)) é calculada por meio
Teorema de Green Curvas Simples Fechadas e Integral de
Cálculo III Departamento de Matemática - ICEx - UFMG Marcelo Terra Cunha Teorema de Green Agora chegamos a mais um teorema da família do Teorema Fundamental do Cálculo, mas dessa vez envolvendo integral
CURSO DE RESOLUÇÃO DE PROVAS de MATEMÁTICA da ANPEC Tudo passo a passo com Teoria e em sequência a resolução da questão! Prof.
Prof. Chico Vieira MATEMÁTICA da ANPEC Tudo Passo a Passo Teoria e Questões FICHA com LIMITES, DERIVADAS, INTEGRAIS, EDO, SÉRIES Integrais Dupla e Tripla LIMITES ANPEC QUESTÕES JÁ GRAVADAS DERIVADAS ANPEC
MAT 3210 Cálculo Diferencial e Integral II. Prova 2 B
MAT 3210 Cálculo Diferencial e Integral II Prof. Paolo Piccione 23 de Novembro de 2011 Prova 2 B Nome: Número USP: Assinatura: Instruções A duração da prova é de uma hora e quarenta minutos. Assinale as
Gabarito P2. Álgebra Linear I ) Decida se cada afirmação a seguir é verdadeira ou falsa.
Gabarito P2 Álgebra Linear I 2008.2 1) Decida se cada afirmação a seguir é verdadeira ou falsa. Se { v 1, v 2 } é um conjunto de vetores linearmente dependente então se verifica v 1 = σ v 2 para algum
Cálculo 3 Primeira Avaliação (A) 25/08/2016
Cálculo 3 Primeira Avaliação A) 25/08/2016 Nome / Matrícula: / Turma: AA Nota: de 4 pontos) 1. 1 ponto) Determine a equação do plano que é: perpendicular ao plano que passa pelos pontos 0, 1, 1), 1, 0,
Dinâmica do Movimento de Rotação
www.engenhariafacil.net Resumo com exercícios resolvidos do assunto: Dinâmica do Movimento de Rotação (1)- TORQUE, CONSIDERAÇÕES INICIAIS: Já estudamos que a atuação de forças em um corpo altera o movimento
14 de março de Dep. de Mecânica Aplicada e Computacional MECÂNICA - MAC Prof a Michèle Farage. Princípios Gerais.
MECÂNICA - 14 de março de 2011 1 2 1 2 Vetor posição Uma outra forma de representar as forças é através do vetor posição. Vetor posição r: é um vetor fixo que localiza um ponto do espaço em relação a outro
Aula 22 Derivadas Parciais - Diferencial - Matriz Jacobiana
Derivadas Parciais - Diferencial - Matriz Jacobiana MÓDULO 3 - AULA 22 Aula 22 Derivadas Parciais - Diferencial - Matriz Jacobiana Introdução Uma das técnicas do cálculo tem como base a idéia de aproximação
Universidade Estadual de Montes Claros Departamento de Ciências Exatas Curso de Licenciatura em Matemática. Notas de Aulas de
Universidade Estadual de Montes Claros Departamento de Ciências Exatas Curso de Licenciatura em Matemática Notas de Aulas de Cálculo Rosivaldo Antonio Gonçalves Notas de aulas que foram elaboradas para
Sessão 1: Generalidades
Sessão 1: Generalidades Uma equação diferencial é uma equação envolvendo derivadas. Fala-se em derivada de uma função. Portanto o que se procura em uma equação diferencial é uma função. Em lugar de começar
Instituto de Matemática - IM/UFRJ Cálculo I - MAC118 1 a Prova - Gabarito - 13/10/2016
Instituto de Matemática - IM/UFRJ Cálculo I - MAC118 1 a Prova - Gabarito - 13/10/2016 Questão 1: (2 pontos) x (a) (0.4 ponto) Calcule o ite: 2 + 3 2. x 1 x 1 ( πx + 5 ) (b) (0.4 ponto) Calcule o ite:
1 Derivadas Parciais de Ordem Superior Em duas variáveis Em três variáveis. 1.3 Derivadas de Ordem
Contents 1 Derivadas Parciais de Ordem Superior 1 1.1 Em duas variáveis..................................... 1 1. Em três variáveis...................................... 1 1.3 Derivadas de Ordem...................................
Derivadas direcionais Definição (Derivadas segundo um vector): f : Dom(f) R n R e P 0 int(dom(f)) então
Derivadas direcionais Definição (Derivadas segundo um vector): f : Dom(f) R n R e P 0 int(dom(f)) então Seja D v f(p 0 ) = lim λ 0 f(p 0 + λ v) f(p 0 ) λ v representa a derivada direcional de f segundo
GAAL /1 - Simulado - 2 produto escalar, produto vetorial, retas e planos. Exercício 1: Determine a equação do plano em cada situação descrita.
GAAL - 2013/1 - Simulado - 2 produto escalar, produto vetorial, retas e planos SOLUÇÕES Exercício 1: Determine a equação do plano em cada situação descrita. (a) O plano passa pelo ponto A = (2, 0, 2) e
Universidade Federal do Paraná
Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Matematica Prof. Juan Carlos Vila Bravo 1 ra Lista de exercicios de Cálculo Diferencial e Integral II FUNÇÕES DE VÁRIAS VARIÁVEIS
Capítulo 4 - Derivadas
Capítulo 4 - Derivadas 1. Problemas Relacionados com Derivadas Problema I: Coeficiente Angular de Reta tangente. Problema II: Taxas de variação. Problema I) Coeficiente Angular de Reta tangente I.1) Inclinação
CÁLCUL O INTEGRAIS TRIPLAS ENGENHARIA
CÁLCUL O INTEGRAIS TRIPLAS ENGENHARIA 1 INTERPRETAÇÃO GEOMÉTRICA DE Nas integrais triplas, temos funções f(x,y,z) integradas em um volume dv= dx dy dz, sendo a região de integração um paralelepípedo P=
( ) Assim, de 2013 a 2015 (2 anos) houve um aumento de 40 casos de dengue. Ou seja: = 600 casos em 2015.
Resposta da questão : [B] É fácil ver que a equação da reta s é = 3. Desse modo, a abscissa do ponto de interseção das retas p e s é tal 8 que 3 = + 3 =. 7 8 7 8 7 Portanto, temos = 3 = e a resposta é,.
Respostas sem justificativas não serão aceitas Não é permitido o uso de aparelhos eletrônicos
UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL - 018. - TURMA MA 1A VERIFICAÇÃO DE APRENDIZAGEM - PARTE Nome Legível RG CPF Respostas
