Operadores Diferenciais Aplicações Rebello 2014

Tamanho: px
Começar a partir da página:

Download "Operadores Diferenciais Aplicações Rebello 2014"

Transcrição

1 Operadores Diferenciais Aplicações Rebello 2014 Os operadores diferenciais representam um conjunto de ferramentas indispensáveis na engenharia não só na parte de avaliar e classificar um campo vetorial ou escalar mas também de quantificar alguma propriedade representada pelos mesmos. Então, vamos verificar algumas aplicações relacionadas aos operadores: Derivada Direcional É uma aplicação quase imediata do gradiente de um campo escalar. Na nossa caminhada no âmbito da matemática, aprendemos a derivar na direção x na direção y, muitas vezes até sem nos darmos conta disso, por pensarmos numa questão mais algébrica. Agora, chegou a hora de generalizarmos essa ideia, considerando uma direção qualquer. Vamos imaginar uma superfície plana que apresenta um campo de temperaturas (campo escalar) dado por T(x, y), representado graficamente pelas curvas de nível no plano x-y na figura abaixo. Podemos enriquecer a nossa representação com auxílio de um eixo perpendicular ao plano xy, criando assim uma superfície erguida a partir de cada ponto P(x,y), de forma a mostrar o perfil do campo térmico definido por T(x, y). Digamos que agora, precisamos determinar a taxa de variação térmica, no ponto P, em relação à distância na orientação indicada pela reta S.

2 Veja que o vetor f(x, y) está sobre o plano e sempre perpendicular as curvas de nível. A taxa de variação térmica em função do espaço na orientação S, damos o nome de Derivada direcional. Conforme mostra a figura anterior, ela é obtida pela projeção do vetor gradiente na direção de interesse, neste caso, orientação S. Isso pode ser quantificado por: D Us T ou ds = T. u S { produto escalar } Obs.: A diferencial ds está relacionada ao comprimento na direção s. Embora o valor da derivada direcional esteja representado no plano x-y. A interpretação mais adequada, pode ser verificada no desenho a seguir, que representa um corte, do desenho anterior, na direção do segmento de reta S. Obs.: O vetor unitário u S pode ser obtido de várias maneiras: por um vetor dado, por um ângulo (caso 2D), por dois pontos, por um vetor tangente a uma curva.

3 Vamos a um exemplo: Considere o campo térmico dado por T(x, y, z), em cujo espaço circula uma partícula com trajetória r(t). Determine a temperatura e a taxa de variação térmica, em relação ao espaço, sofrida pela partícula no instante t=2s. T(x, y, z) = x2 y e xy + 2z + 25 ( C) r(t) = [ 6 5 cos(3t), 5 5 sen(3t), 10 e t 2 ] ( m ) O primeiro passo é determinar o ponto no espaço para t = 2s r(2) = [6 5 cos(6), 5 5 sen(6), 10 e 1 ] r(2) = [1,199 ; 6,397 ; 3,679 ] (m) Agora, podemos determinar a temperatura em P usando os valores conhecidos. T(P) = (1,199)2 (6,397) e (1,199)(6,397) + 2 (3,679) + 25 Para determinar a derivada direcional, precisamos de duas informações: # O gradiente de T no ponto P ; # O vetor unitário na direção enfrentada pela partícula no instante t = 2s. Vamos ao gradiente: T = [ xy 2 10 y e xy, x x e xy, 1 2z ] Assim, no ponto P = (1,199 ; 6,397 ; 3,679), temos: T (P) = [ 3,805 ; 0,354 ; 0,369 ] ( C ) m

4 Quanto ao vetor unitário, podemos usar como referência, o vetor velocidade dr dt, que é tangente a trajetória e com certeza indica a orientação tomada pela partícula no instante considerado. Dessa forma, precisamos derivar a função r(t): v(t) = dr dt t = [ 15 sen(3t), 15 cos(3t), 5 e 2 ] Para t =2 vem: v(2) = [ 15 sen(6), 15 cos(6), 5 e 1 ] Logo: v(2) = [ 4,191 ; 14,403, 1,839 ] ( m s ) Agora, podemos obter o vetor unitário u S pela normalização da velocidade v(2): [ 4,191 ; 14,403, 1,839 ] u S (2) = 228,3928 u S (2) = [ 0,277 ; 0,953, 0,122 ] Obs.: Veja que o vetor u S, nada mais é, do que o vetor tangente unitário u T, um dos versores de Serret-Frenet já estudado. Portanto, já podemos compor a derivada direcional: ds = T. u S = [ 3,805 ; 0,354 ; 0,369 ]. [ 0,277 ; 0,953 ; 0,122 ] ds = 1,054 0,337 0,045 ds Por fim: ds = 1,436 ( C/m ) { Resfriando em relação ao espaço }

5 Obs.: Uma análise interessante, do ponto de vista técnico, seria a relação: = T. v ( C. m dt m s ) Ela nos traduz a taxa de variação térmica em relação ao tempo. Então agora vamos fazer o produto escalar usando o vetor velocidade diretamente. dt = [ 3,805 ; 0,354 ; 0,369 ]. [ 4,191 ; 14,403 ; 1,839 ] dt = 21,73 ( C s ) { Resfriando em relação ao tempo } Porém, não é traduzida como Derivada Direcional

6 Equações de Reta Normal e Plano Tangente a uma superfície por um ponto dado. Já sabemos, que uma propriedade do gradiente de uma função escalar f(x, y, z), é de ser ortogonal (normal) a superfície de nível f(x, y, z) = k. Esta propriedade será o elemento chave para os desenvolvimentos a seguir. Na figura abaixo vemos uma superfície, evidenciando o ponto PO, por onde passam uma reta normal S e um plano tangente. Reta Normal a Superfície No início de funções vetoriais, tivemos contato com a função vetorial da reta. r(t) = r o + v t, onde: r o é um vetor conhecido v representa o vetor de orientação Para produzir a equação da reta fazemos a adaptação simples: r o = OP o v = f (P o ) Veja que, o segredo é usar o vetor gradiente como orientação. Portanto podemos construir a equação vetorial da reta normal S fazendo:

7 Plano Tangente à Superfície Para deduzir a equação do plano, foi suprimida a superfície f(x, y, z) = k, de modo dar mais clareza no gráfico a seguir. Sabemos que, o vetor gradiente f (P o ) é normal a superfície e consequentemente ao plano tangente. Considerando o ponto de tangencia conhecido P o ( x O, y O, z O ) e o ponto genérico P ( x, y, z), ambos pertencente ao plano, podemos afirmar que: O vetor P O P = [ x x O, y y O, z z O ] é perpendicular ao vetor gradiente f (P o ). E portanto a equação é válida para qualquer P ( x, y, z) pertencente ao plano. f (P o ). P O P = 0 { Produto escalar } Ou seja:

8 Um exemplo torna-se necessário para mostrar a simplicidade da parte operacional. Seja a superfície superfície no ponto T( 2, 3, 7). z = 8 1 ( 4 x2 + y2 y). Determine a reta normal e o plano tangente a 3 Para que o gradiente tenha direção ortogonal, é necessário que a superfície seja de nível. Portanto, precisamos adaptar a equação dada. 4 z = 32 x 2 y2 + y 3 x2 + y2 3 y + 4 z = 32 Agora sim, temos a superfície de nível para a função: f(x, y, z) = x 2 + y2 y + 4 z. 3 Podemos então determinar seu gradiente: f = [ 2x, 2 3 y 1, 4 ] f (T) = [ 4, 1, 4 ] Para reta normal, temos que r O = T O = [ 2, 3, 7 ] Portanto, podemos construir a equação da reta : r(t) = [ 2, 3, 7 ] + [ 4, 1, 4 ]. t Finalmente: r(t) = [ 2 + 4t, 3 + t, 7 + 4t ] { reta normal } Para o plano tangente, apoiados na equação, podemos concluir: [ 4, 1, 4 ]. [ x 2, y 3, z 7 ] = 0 4(x 2) + 1(y 3) + 4( z 7) = 0 Concluindo: 4x + y + 4z 39 = 0 { plano tangente }

Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente.

Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente. Aula 15 Derivadas Direcionais e Vetor Gradiente Seja f(x, y) uma função de variáveis. Iremos usar a notação D u f(x 0, y 0 ) para: Derivada direcional de f no ponto (x 0, y 0 ), na direção do vetor unitário

Leia mais

Derivadas Parciais Capítulo 14

Derivadas Parciais Capítulo 14 Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS 14.6 Derivadas Direcionais e o Vetor Gradiente Nesta seção, vamos aprender como encontrar: As taxas de variação de uma função de duas ou mais variáveis

Leia mais

Derivadas Parciais. Copyright Cengage Learning. Todos os direitos reservados.

Derivadas Parciais. Copyright Cengage Learning. Todos os direitos reservados. 14 Derivadas Parciais Copyright Cengage Learning. Todos os direitos reservados. 14.6 Derivadas Direcionais e o Vetor Gradiente Copyright Cengage Learning. Todos os direitos reservados. Derivadas Direcionais

Leia mais

11.5 Derivada Direcional, Vetor Gradiente e Planos Tangentes

11.5 Derivada Direcional, Vetor Gradiente e Planos Tangentes 11.5 Derivada Direcional, Vetor Gradiente e Planos Tangentes Luiza Amalia Pinto Cantão Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocaba.unesp.br Estudos Anteriores Derivadas

Leia mais

Processamento de Malhas Poligonais

Processamento de Malhas Poligonais Processamento de Malhas Poligonais Tópicos Avançados em Computação Visual e Interfaces I Prof.: Marcos Lage www.ic.uff.br/~mlage mlage@ic.uff.br Conteúdo: Notas de Aula Curvas 06/09/2015 Processamento

Leia mais

Retas e planos no espaço

Retas e planos no espaço Retas e planos no espaço Jorge M. V. Capela, Marisa V. Capela Instituto de Química - UNESP Araraquara, SP capela@iq.unesp.br Araraquara, SP - 2017 1 Retas e Segmentos de Reta no Espaço 2 Equação vetorial

Leia mais

Cálculo Diferencial e Integral 2: Derivadas direcionais e o vetor gradiente

Cálculo Diferencial e Integral 2: Derivadas direcionais e o vetor gradiente Cálculo Diferencial e Integral 2: Derivadas direcionais e o vetor gradiente Jorge M. V. Capela Instituto de Química - UNESP Araraquara, SP capela@iq.unesp.br Araraquara, SP - 2017 1 Derivadas direcionais

Leia mais

Diferenciabilidade de funções reais de várias variáveis reais

Diferenciabilidade de funções reais de várias variáveis reais Diferenciabilidade de funções reais de várias variáveis reais Cálculo II Departamento de Matemática Universidade de Aveiro 2018-2019 Cálculo II 2018-2019 Diferenciabilidade de f.r.v.v.r. 1 / 1 Derivadas

Leia mais

14.5 A Regra da Cadeia. Copyright Cengage Learning. Todos os direitos reservados.

14.5 A Regra da Cadeia. Copyright Cengage Learning. Todos os direitos reservados. 14.5 A Regra da Cadeia Copyright Cengage Learning. Todos os direitos reservados. A Regra da Cadeia Lembremo-nos de que a Regra da Cadeia para uma função de uma única variável nos dava uma regra para derivar

Leia mais

CSE-MME Revisão de Métodos Matemáticos para Engenharia

CSE-MME Revisão de Métodos Matemáticos para Engenharia CSE-MME Revisão de Métodos Matemáticos para Engenharia Engenharia e Tecnologia Espaciais ETE Engenharia e Gerenciamento de Sistemas Espaciais L.F.Perondi Engenharia e Tecnologia Espaciais ETE Engenharia

Leia mais

Sistema de Coordenadas Intrínsecas

Sistema de Coordenadas Intrínsecas Sistema de Coordenadas Intrínsecas Emílio G. F. Mercuri a a Professor do Departamento de Engenharia Ambiental, Universidade Federal do Paraná, Curitiba, Paraná Resumo Depois da introdução a cinemática

Leia mais

(a) Determine a velocidade do barco em qualquer instante.

(a) Determine a velocidade do barco em qualquer instante. NOME: UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Instituto de Matemática PRIMEIRA PROVA UNIFICADA CÁLCULO II Politécnica, Engenharia Química - 10/10/2013. 1 a QUESTÃO : Um barco a vela de massa m = 1 parte

Leia mais

Total. UFRGS - INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT Turma A /1 Prova da área I

Total. UFRGS - INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT Turma A /1 Prova da área I UFRGS - INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT01168 - Turma A - 019/1 Prova da área I 1-6 7 8 Total Nome: Ponto extra: ( )Wikipédia ( )Apresentação ( )Nenhum Tópico: Cartão:

Leia mais

Vetor Tangente, Normal e Binormal. T(t) = r (t)

Vetor Tangente, Normal e Binormal. T(t) = r (t) CVE 0003 - - CÁLCULO VETORIAL - - 2011/2 Vetor Tangente, Normal e Binormal Lembre-se que se C é uma curva suave dada pela função vetorial r(t), então r (t) é contínua e r (t) 0. Além disso, o vetor r (t)

Leia mais

14 AULA. Vetor Gradiente e as Derivadas Direcionais LIVRO

14 AULA. Vetor Gradiente e as Derivadas Direcionais LIVRO 1 LIVRO Vetor Gradiente e as Derivadas Direcionais 14 AULA META Definir o vetor gradiente de uma função de duas variáveis reais e interpretá-lo geometricamente. Além disso, estudaremos a derivada direcional

Leia mais

Lista de Exercícios de Cálculo 3 Terceira Semana

Lista de Exercícios de Cálculo 3 Terceira Semana Lista de Exercícios de Cálculo 3 Terceira Semana Parte A 1. Reparametrize as curvas pelo parâmetro comprimento de arco medido a partir do ponto t = 0 na direção crescente de t. (a) r(t) = ti + (1 3t)j

Leia mais

9 AULA. Curvas Espaciais LIVRO. META Estudar as curvas no espaço (R 3 ). OBJETIVOS Descrever o movimento de objetos no espaço.

9 AULA. Curvas Espaciais LIVRO. META Estudar as curvas no espaço (R 3 ). OBJETIVOS Descrever o movimento de objetos no espaço. 1 LIVRO Curvas Espaciais META Estudar as curvas no espaço (R 3 ). OBJETIVOS Descrever o movimento de objetos no espaço. PRÉ-REQUISITOS Funções vetoriais (Aula 08). Curvas Espaciais.1 Introdução Na aula

Leia mais

Resumo: Regra da cadeia, caso geral

Resumo: Regra da cadeia, caso geral Resumo: Regra da cadeia, caso geral Teorema Suponha que u = u(x 1,..., x n ) seja uma função diferenciável de n variáveis x 1,... x n onde cada x i é uma função diferenciável de m variáveis t 1,..., t

Leia mais

Cálculo Diferencial e Integral 1 Lista de Exercícios Aplicação de Derivadas

Cálculo Diferencial e Integral 1 Lista de Exercícios Aplicação de Derivadas Cálculo Diferencial e Integral 1 Lista de Exercícios Aplicação de Derivadas 1) Esboce o gráfico da função f(x) = x + e responda qual é a taxa de variação média dessa função quando x varia de 0 para 4?

Leia mais

Cálculo II Lista 4. com respostas

Cálculo II Lista 4. com respostas Cálculo II Lista 4. com respostas Exercício 1. Esboce a curva de nível de f(x, ) que passa pelo ponto P e desenhe o vetor gradiente de f em P: (a) f(x, ) = x ; P = ( 2, 2); 2 (b) f(x, ) = x 2 + 4 2 ; P

Leia mais

Funções Vetoriais. Copyright Cengage Learning. Todos os direitos reservados.

Funções Vetoriais. Copyright Cengage Learning. Todos os direitos reservados. 13 Funções Vetoriais Copyright Cengage Learning. Todos os direitos reservados. 1 13.4 Movimento no Espaço: Velocidade e Aceleração Copyright Cengage Learning. Todos os direitos reservados. Movimento no

Leia mais

Bacharelado Engenharia Civil. Disciplina:Física Geral e Experimental I 1 período Prof.a: Msd. Érica Muniz

Bacharelado Engenharia Civil. Disciplina:Física Geral e Experimental I 1 período Prof.a: Msd. Érica Muniz Bacharelado Engenharia Civil Disciplina:Física Geral e Experimental I 1 período Prof.a: Msd. Érica Muniz Cálculo Vetorial Grandeza Vetorial Algumas vezes necessitamos mais que um número e uma unidade para

Leia mais

Aula 6. Doravante iremos dizer que r(t) é uma parametrização da curva, e t é o parâmetro usado para descrever a curva.

Aula 6. Doravante iremos dizer que r(t) é uma parametrização da curva, e t é o parâmetro usado para descrever a curva. Curvas ou Funções Vetoriais: Aula 6 Exemplo 1. Círculo como coleção de vetores. Vetor posição de curva: r(t) = (cos t, sen t), t 2π r(t) pode ser vista como uma função vetorial: r : [, 2π] R R 2 Doravante

Leia mais

x n+1 = 1 2 x n (2 valores) Considere a equação recursiva no modelo de Fisher, Wright e Haldane

x n+1 = 1 2 x n (2 valores) Considere a equação recursiva no modelo de Fisher, Wright e Haldane .9.8.7.6.5.4.3.2.1 1 22/11/211 1 o teste A41N1 - Análise Matemática - BIOQ Nome... N o... 1. (2 valores) Calcule a soma da série 9 1 + 9 1 + 9 1 +... 9 1 + 9 1 + 9 1 + = 9 1 1 + 1 1 + 1 1 + 1 «1 +... =

Leia mais

Cálculo II. Resumo e Exercícios P3

Cálculo II. Resumo e Exercícios P3 Cálculo II Resumo e Exercícios P3 Resuminho Teórico e Fórmulas Parte 1 Funções de Três Variáveis w = f(x, y, z) Definida em R +, apenas um valor de w para cada (x, y, z). Domínio de Função de Três Variáveis:

Leia mais

denomina-se norma do vetor (x 1,..., x n ). (Desigualdade de Schwarz) Quaisquer que sejam os vetores u e v de R n, tem-se

denomina-se norma do vetor (x 1,..., x n ). (Desigualdade de Schwarz) Quaisquer que sejam os vetores u e v de R n, tem-se Teoria FUNÇÕES VETORIAIS Geometria do Espaço R n : O espaço R n é um espaço vetorial sobre R com as operações de soma e multiplicação por escalar definidas coordenada a coordenada. O número (x 1,..., x

Leia mais

2 Propriedades geométricas de curvas parametrizadas no R 4

2 Propriedades geométricas de curvas parametrizadas no R 4 2 Propriedades geométricas de curvas parametrizadas no R 4 Nesse capítulo trataremos dos conceitos básicos de geometria diferencial referentes à curvas parametrizadas no R 4. 2.1 Curvas Parametrizadas

Leia mais

CANDIDATO: DATA: 20 / 01 / 2010

CANDIDATO: DATA: 20 / 01 / 2010 UNIVERSIDADE ESTADUAL DO CEARÁ - UECE SECRETARIA DE EDUCAÇÃO A DISTÂNCIA - SEaD Universidade Aberta do Brasil UAB LICENCIATURA PLENA EM MATEMÁTICA SELEÇÃO DE TUTORES PRESENCIAIS CANDIDATO: DATA: 0 / 0

Leia mais

Cálculo a Várias Variáveis I - MAT Cronograma para P2: aulas teóricas (segundas e quartas)

Cálculo a Várias Variáveis I - MAT Cronograma para P2: aulas teóricas (segundas e quartas) Cálculo a Várias Variáveis I - MAT 116 0141 Cronograma para P: aulas teóricas (segundas e quartas) Aula 10 4 de março (segunda) Aula 11 6 de março (quarta) Referências: Cálculo Vol James Stewart Seções

Leia mais

Plano tangente a uma superficie: G(f).

Plano tangente a uma superficie: G(f). Plano tangente a uma supericie: G. O plano tangente ao gráico de uma unção num ponto é o plano que contem todas as retas tangentes ao gráico de que passam pelo ponto. Se todas as retas tangente a esse

Leia mais

Derivadas Parciais p. Derivadas Parciais & Aplicações

Derivadas Parciais p. Derivadas Parciais & Aplicações Derivadas Parciais p. Derivadas Parciais & Aplicações Derivadas e Integrais de Quantidades vetoriais Todas as regras aprendidas na derivação e integração de quantidades escalares são válidas na derivação

Leia mais

O Triedro de Frenet. MAT Cálculo Diferencial e Integral II Daniel Victor Tausk

O Triedro de Frenet. MAT Cálculo Diferencial e Integral II Daniel Victor Tausk O Triedro de Frenet MAT 2454 - Cálculo Diferencial e Integral II Daniel Victor Tausk Seja γ : I IR 3 uma curva de classe C 3 definida num intervalo I IR. Assuma que γ é regular, ou seja, γ (t) 0 para todo

Leia mais

Funções vetoriais. I) Funções vetoriais a valores reais:

Funções vetoriais. I) Funções vetoriais a valores reais: Funções vetoriais I) Funções vetoriais a valores reais: f: I R t f( n R (f 1 (,f (,...,f n () I = intervalo da reta real denominada domínio da função vetorial f = {conjunto de todos os valores possíveis

Leia mais

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-454 Cálculo Diferencial e Integral II Escola Politécnica) Segunda Lista de Eercícios - Professor: Equipe de Professores BONS ESTUDOS!

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia II 2 a Lista de Exercícios

MAT Cálculo Diferencial e Integral para Engenharia II 2 a Lista de Exercícios MAT2454 - Cálculo Diferencial e Integral para Engenharia II 2 a Lista de Exercícios - 2012 1. Ache as derivadas parciais de primeira ordem das funções: ( y (a) f(x, y) = arctg (b) f(x, y) = ln(1+cos x)

Leia mais

Gabarito da Primeira Prova MAT Tipo A

Gabarito da Primeira Prova MAT Tipo A Gabarito da Primeira Prova MAT-2454 - Tipo A 10 de Outubro de 2011 -A- Questão 1. Apenas uma das funções f ou g abaixo admite plano tangente a seu gráfico no ponto P = 0,0,0): x 2 y fx,y) = x 2 +y2, se

Leia mais

Instituto de Matemática Departamento de Métodos Matemáticos

Instituto de Matemática Departamento de Métodos Matemáticos ?????? @ @ @@ @@?????? @ @ @@ @@ Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Métodos Matemáticos Prova Final Unificada de Cálculo II Politécnica,Escola Química - 03/12/2013

Leia mais

Capítulo 5 Derivadas Parciais e Direcionais

Capítulo 5 Derivadas Parciais e Direcionais Capítulo 5 Derivadas Parciais e Direcionais 1. Conceitos Sabe-se que dois problemas estão relacionados com derivadas: Problema I: Taxas de variação da função. Problema II: Coeficiente angular de reta tangente.

Leia mais

GAAL /1 - Simulado - 2 produto escalar, produto vetorial, retas e planos. Exercício 1: Determine a equação do plano em cada situação descrita.

GAAL /1 - Simulado - 2 produto escalar, produto vetorial, retas e planos. Exercício 1: Determine a equação do plano em cada situação descrita. GAAL - 2013/1 - Simulado - 2 produto escalar, produto vetorial, retas e planos SOLUÇÕES Exercício 1: Determine a equação do plano em cada situação descrita. (a) O plano passa pelo ponto A = (2, 0, 2) e

Leia mais

Geometria analítica: descobrindo a reta que tange duas circunferências e entendendo a construção geométrica.

Geometria analítica: descobrindo a reta que tange duas circunferências e entendendo a construção geométrica. Geometria analítica: descobrindo a reta que tange duas circunferências e entendendo a construção geométrica. Sobre Ontem estava pensando em algumas funções interessantes para implementar em um editor de

Leia mais

Física Geral Grandezas

Física Geral Grandezas Física Geral Grandezas Grandezas físicas possuem um valor numérico e significado físico. O valor numérico é um múltiplo de um padrão tomado como unidade. Comprimento (m) Massa (kg) Tempo (s) Corrente elétrica

Leia mais

Derivadas Parciais Capítulo 14

Derivadas Parciais Capítulo 14 Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS No Exemplo 6 da Seção 14.7 maximizamos a função volume V = xyz sujeita à restrição 2xz + 2yz + xy = que expressa a condição de a área da superfície ser

Leia mais

Total. UFRGS - INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT Turma A /1 Prova da área I

Total. UFRGS - INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT Turma A /1 Prova da área I UFRG - INTITUTO DE MTEMÁTIC Departamento de Matemática Pura e plicada MT1168 - Turma - 19/1 Prova da área I 1-6 7 8 Total Nome: Ponto extra: ( )Wikipédia ( )presentação ( )Nenhum Tópico: Cartão: Regras

Leia mais

UNIVERSIDADE FEDERAL DE ITAJUBÁ Pró-Reitoria de Graduação - PRG Coordenação de Processos Seletivos COPS

UNIVERSIDADE FEDERAL DE ITAJUBÁ Pró-Reitoria de Graduação - PRG Coordenação de Processos Seletivos COPS UNIVERSIDADE FEDERAL DE ITAJUBÁ Pró-Reitoria de Graduação - PRG Coordenação de Processos Seletivos COPS PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR 28/06/2015 Física

Leia mais

Nome:... Q N Assinatura:... 1 RG:... 2 N o USP:... 3 Turma: Teórica... 4 Professor: Edson Vargas... Total

Nome:... Q N Assinatura:... 1 RG:... 2 N o USP:... 3 Turma: Teórica... 4 Professor: Edson Vargas... Total 1 a Prova de MAT036 - Geometria Diferencial I IME - 9/09/016 Nome:................................................... Q N Assinatura:............................................... 1 RG:......................................................

Leia mais

1ª.$Prova$de$Física$1$ $FCM$05016$Gabarito$ 2013$ $ $ Nota$ Questões$ 1ª.$ a)$1,0$ b)$1,0$ c)$0,5$ 2ª.$ 2,5...3,0$ $ 3ª.$ a)$0,75$ b)$0,75$

1ª.$Prova$de$Física$1$ $FCM$05016$Gabarito$ 2013$ $ $ Nota$ Questões$ 1ª.$ a)$1,0$ b)$1,0$ c)$0,5$ 2ª.$ 2,5...3,0$ $ 3ª.$ a)$0,75$ b)$0,75$ 1ª.ProvadeFísica1 FCM05016Gabarito 013 NomedoAluno NúmeroUSP Valordas Nota Questões 1ª. a)1,0 b)1,0 c)0,5 ª.,5...3,0 3ª. a)0,75 b)0,75 c)1,00 4ª.,5 NotaFinal BoaProva Aprovaésemconsulta. Asrespostasfinaisdevemserescritascomcaneta.

Leia mais

Cinemática em 2D e 3D

Cinemática em 2D e 3D Cinemática em 2D e 3D o vetores posição, velocidade e aceleração o movimento com aceleração constante, movimento de projéteis o Cinemática rotacional, movimento circular uniforme Movimento 2D e 3D Localizar

Leia mais

CÁLCULO II. Lista Semanal 3-06/04/2018

CÁLCULO II. Lista Semanal 3-06/04/2018 CÁLCULO II Prof. Juaci Picanço Prof. Jerônimo Monteiro Lista Semanal 3-06/04/2018 Questão 1. Um tetraedro é um sólido com quatro vértices P, Q, R e S e quatro faces triangulares e seu volume é um terço

Leia mais

Universidade Estadual de Montes Claros Departamento de Ciências Exatas Curso de Licenciatura em Matemática. Notas de Aulas de

Universidade Estadual de Montes Claros Departamento de Ciências Exatas Curso de Licenciatura em Matemática. Notas de Aulas de Universidade Estadual de Montes Claros Departamento de Ciências Exatas Curso de Licenciatura em Matemática Notas de Aulas de Cálculo Rosivaldo Antonio Gonçalves Notas de aulas que foram elaboradas para

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia II 2 a lista de exercícios

MAT Cálculo Diferencial e Integral para Engenharia II 2 a lista de exercícios MAT454 - Cálculo Diferencial e Integral para Engenharia II a lista de exercícios - 009 1. Ache as derivadas parciais de primeira ordem das funções: ( y (a) f(x, y) = arctg (b) f(x, y) = ln(1 + cos x) (xy

Leia mais

Ricardo Bianconi. Fevereiro de 2015

Ricardo Bianconi. Fevereiro de 2015 Seções Cônicas Ricardo Bianconi Fevereiro de 2015 Uma parte importante da Geometria Analítica é o estudo das curvas planas e, em particular, das cônicas. Neste texto estudamos algumas propriedades das

Leia mais

1: Grandezas vetoriais e grandezas escalares

1: Grandezas vetoriais e grandezas escalares 1 1: Grandezas vetoriais e grandezas escalares A Física lida com um amplo conjunto de grandezas Dentro dessa gama enorme de grandezas existem algumas cuja caracterização completa requer tão somente um

Leia mais

Nome: Gabarito Data: 28/10/2015. Questão 01. Calcule a derivada da função f(x) = sen x pela definição e confirme o resultado

Nome: Gabarito Data: 28/10/2015. Questão 01. Calcule a derivada da função f(x) = sen x pela definição e confirme o resultado Fundação Universidade Federal de Pelotas Departamento de Matemática e Estatística Curso de Licenciatura em Matemática - Diurno Segunda Prova de Cálculo I Prof. Dr. Maurício Zan Nome: Gabarito Data: 8/0/05.

Leia mais

Exercícios Referentes à 1ª Avaliação

Exercícios Referentes à 1ª Avaliação UNIVESIDADE FEDEAL DO PAÁ CUSO DE LICENCIATUA EM MATEMÁTICA PLANO NACIONAL DE FOMAÇÃO DE DOCENTES DA EDUCAÇÃO BÁSICA - PAFO Docente: Município: Discente: 5ª Etapa: Janeiro -fevereiro - ) Calcule as integrais

Leia mais

Mecânica 1. Guia de Estudos P2

Mecânica 1. Guia de Estudos P2 Mecânica 1 Guia de Estudos P2 Conceitos 1. Cinemática do Ponto Material 2. Cinemática dos Sólidos 1. Cinemática do Ponto Material a. Curvas Definição algébrica: A curva parametriza uma função de duas ou

Leia mais

FACULDADE PITÁGORAS DE LINHARES Prof. Esp. Thiago Magalhães

FACULDADE PITÁGORAS DE LINHARES Prof. Esp. Thiago Magalhães VETORES NO PLANO E NO ESPAÇO INTRODUÇÃO Cumpre de início, distinguir grandezas escalares das grandezas vetoriais. Grandezas escalares são aquelas que para sua perfeita caracterização basta informarmos

Leia mais

TEORIA CONSTRUINDO E ANALISANDO GRÁFICOS 812EE 1 INTRODUÇÃO

TEORIA CONSTRUINDO E ANALISANDO GRÁFICOS 812EE 1 INTRODUÇÃO CONSTRUINDO E ANALISANDO GRÁFICOS 81EE 1 TEORIA 1 INTRODUÇÃO Os assuntos tratados a seguir são de importância fundamental não somente na Matemática, mas também na Física, Química, Geografia, Estatística

Leia mais

Lista de Exercícios 1

Lista de Exercícios 1 UFS - PROMAT Disciplina: Geometria Diferencial Professor: Almir Rogério Silva Santos Lista de Exercícios. Seja α : I R 3 uma curva regular. (a) Mostre que α é uma reta se α (t) e α (t) são linearmente

Leia mais

O Eletromagnetismo é um ramo da física ou da engenharia elétrica onde os fenômenos elétricos e magnéticos são estudados.

O Eletromagnetismo é um ramo da física ou da engenharia elétrica onde os fenômenos elétricos e magnéticos são estudados. 1. Análise Vetorial O Eletromagnetismo é um ramo da física ou da engenharia elétrica onde os fenômenos elétricos e magnéticos são estudados. Os princípios eletromagnéticos são encontrados em diversas aplicações:

Leia mais

Total. UFRGS - INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT Turma D /2 Prova da área I

Total. UFRGS - INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT Turma D /2 Prova da área I UFRG - INTITUTO DE MATEMÁTIA Departamento de Matemática Pura e Aplicada MAT01168 - Turma D - 018/ Prova da área I 1-6 7 8 Total Nome: artão: Regras Gerais: Não é permitido o uso de calculadoras, telefones

Leia mais

Total. UFRGS - INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT Turma A /2 Prova da área I

Total. UFRGS - INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT Turma A /2 Prova da área I UFRGS - INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT01168 - Turma A - 017/ Prova da área I 1-6 7 8 Total Nome: Cartão: Regras Gerais: Não é permitido o uso de calculadoras, telefones

Leia mais

Geometria Analítica. Prof Marcelo Maraschin de Souza

Geometria Analítica. Prof Marcelo Maraschin de Souza Geometria Analítica Prof Marcelo Maraschin de Souza Vetor Definido por dois pontos Seja o vetor AB de origem no ponto A(x 1, y 1 ) e extremidade no ponto B(x 2, y 2 ). Qual é a expressão algébrica que

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO

UNIVERSIDADE FEDERAL DE PERNAMBUCO CÁLCULO L1 NOTAS DA TERCEIRA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula introduziremos o conceito de derivada e a definição de uma reta tangente ao gráfico de uma função. Também apresentaremos

Leia mais

Em todas as questões, está fixado um sistema ortogonal (O, i, j, k) com base ( i, j, k) positiva.

Em todas as questões, está fixado um sistema ortogonal (O, i, j, k) com base ( i, j, k) positiva. 1 Em todas as questões, está fixado um sistema ortogonal (O, i, j, k) com base ( i, j, k) positiva a1q1: Sejam r uma reta, A e B dois pontos distintos não pertencentes a r Seja L o lugar geométrico dos

Leia mais

MAT Cálculo II - FEA, Economia Calcule os seguintes limites, caso existam. Se não existirem, explique por quê: xy. (i) lim.

MAT Cálculo II - FEA, Economia Calcule os seguintes limites, caso existam. Se não existirem, explique por quê: xy. (i) lim. MAT0147 - Cálculo II - FEA, Economia - 2011 Prof. Gláucio Terra 2 a Lista de Exercícios 1. Calcule os seguintes limites, caso existam. Se não existirem, explique por quê: xy x 2 y (a) lim (f) lim (x,y)

Leia mais

1 Vetores no Plano e no Espaço

1 Vetores no Plano e no Espaço 1 Vetores no Plano e no Espaço Definimos as componentes de um vetor no espaço de forma análoga a que fizemos com vetores no plano. Vamos inicialmente introduzir um sistema de coordenadas retangulares no

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho de Carvalho Revisão Analise Vetorial e Sist. de Coord. Revisão básica álgebra vetorial e Sist. de Coordenadas (Páginas 1 a 22 no Livro texto) Objetivo: Introduzir notação que será usada neste e nos próximos

Leia mais

UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA LISTA DE EXERCÍCIOS DE MAT243-CÁLCULO III

UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA LISTA DE EXERCÍCIOS DE MAT243-CÁLCULO III UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA LISTA DE EXERCÍCIOS DE MAT243-CÁLCULO III Capítulo 1 Vetores no Rn 1. Sejam u e v vetores tais que e u v = 2 e v = 1. Calcule v u v. 2. Sejam u

Leia mais

VETORES. DEFINIÇÃO DE GRANDEZA É tudo aquilo que pode ser medido Exemplos: Comprimento Aceleração Força Velocidade

VETORES. DEFINIÇÃO DE GRANDEZA É tudo aquilo que pode ser medido Exemplos: Comprimento Aceleração Força Velocidade 1 DEFINIÇÃO DE GRANDEZA É tudo aquilo que pode ser medido Exemplos: Comprimento Aceleração Força Velocidade GRANDEZAS ESCALARES São grandezas que se caracterizam apenas por um valor acompanhado uma unidade

Leia mais

MAT CÁLCULO 2 PARA ECONOMIA. Geometria Analítica

MAT CÁLCULO 2 PARA ECONOMIA. Geometria Analítica MT0146 - CÁLCULO PR ECONOMI SEMESTRE DE 016 LIST DE PROBLEMS Geometria nalítica 1) Sejam π 1 e π os planos de equações, respectivamente, x + y + z = e x y + z = 1. Seja r a reta formada pela interseção

Leia mais

Apresentaremos as equações do plano: Equação vetorial e Equação geral do. = AB e v. C A u B. ) não-colineares do plano.

Apresentaremos as equações do plano: Equação vetorial e Equação geral do. = AB e v. C A u B. ) não-colineares do plano. CAPÍTULO VIII PLANO Consideremos em V 3 o sistema de referência (O, i, j, k ), onde E = ( i, j, k ) é base ortonormal positiva e O(0, 0, 0). 8.1. EQUAÇÕES DO PLANO plano. Apresentaremos as equações do

Leia mais

Lista 3: Geometria Analítica

Lista 3: Geometria Analítica Lista 3: Geometria Analítica A. Ramos 25 de abril de 2017 Lista em constante atualização. 1. Equação da reta e do plano; 2. Ângulo entre retas e entre planos. Resumo Equação da reta Equação vetorial. Uma

Leia mais

PROGRAMA DE NIVELAMENTO ITEC/PROEX - UFPA EQUIPE FÍSICA ELEMENTAR DISCIPLINA: FÍSICA ELEMENTAR CONTEÚDO: CÁLCULO APLICADO A CINEMÁTICA

PROGRAMA DE NIVELAMENTO ITEC/PROEX - UFPA EQUIPE FÍSICA ELEMENTAR DISCIPLINA: FÍSICA ELEMENTAR CONTEÚDO: CÁLCULO APLICADO A CINEMÁTICA PROGRAMA DE NIVELAMENTO ITEC/PROEX - UFPA EQUIPE FÍSICA ELEMENTAR DISCIPLINA: FÍSICA ELEMENTAR CONTEÚDO: CÁLCULO APLICADO A CINEMÁTICA TÓPICOS A SEREM ABORDADOS O que é cinemática? Posição e Deslocamento

Leia mais

MAT 121 : Cálculo II. Aula 27 e 28, Segunda 03/11/2014. Sylvain Bonnot (IME-USP)

MAT 121 : Cálculo II. Aula 27 e 28, Segunda 03/11/2014. Sylvain Bonnot (IME-USP) MAT 121 : Cálculo II Aula 27 e 28, Segunda 03/11/2014 Sylvain Bonnot (IME-USP) 2014 1 Resumo 1 Derivadas parciais: seja f : R 2 R, a derivada parcial f x (a, b) é o limite (quando existe) lim h 0 f (a

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia II 2 a Lista de Exercícios

MAT Cálculo Diferencial e Integral para Engenharia II 2 a Lista de Exercícios MAT454 - Cálculo Diferencial e Integral para Engenharia II a Lista de Eercícios - 014 1. Seja f (, y) = + y + 4 e seja γ(t) = (t cos t, t sen t, t + 4), t 0. (a) Mostre que a imagem de γ está contida no

Leia mais

x 2 x 2 + y 4. O ponto (1, 1)

x 2 x 2 + y 4. O ponto (1, 1) Universidade Federal do Rio de Janeiro Instituto de Matemática Disciplina: Cálculo II Data: 13/05/2014 SEGUNDA PROVA UNIFICADA 1. Considere os seguintes limites: i) lim (x,y) (1,0) Então: xy x 2 + y 2

Leia mais

Vetores e Geometria Analítica

Vetores e Geometria Analítica Vetores e Geometria Analítica Vetores ECT2102 Prof. Ronaldo Carlotto Batista 28 de março de 2016 Sistema de coordenadas e distâncias Nesse curso usaremos o sistema de coordenadas cartesiano destro em três

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Vetores. Mateus Barros 3º Período Engenharia Civil

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Vetores. Mateus Barros 3º Período Engenharia Civil CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2018.1 Vetores Mateus Barros 3º Período Engenharia Civil Definição O que é um vetor? Um vetor é um segmento de reta orientado, que representa uma grandeza

Leia mais

MAT0326 Geometria Diferencial I

MAT0326 Geometria Diferencial I MAT036 Geometria Diferencial I Segunda Prova 06/11/01 Soluções Questão 1 Valor: 3.0 pontos. Considere a superfície S, de Enneper, parametrizada por Xu, v = u u3 3 + uv, v v3 3 + u v, u v. a. Determine

Leia mais

FÍSICA B ª SÉRIE EXERCÍCIOS COMPLEMENTARES ALUNO

FÍSICA B ª SÉRIE EXERCÍCIOS COMPLEMENTARES ALUNO EXERCÍCIOS COMPLEMENTARES ALUNO TURMA: FÍSICA B - 2012 1ª SÉRIE DATA: / / 1) Analise as afirmativas abaixo sobre o conceito de grandezas escalares e vetoriais. I Uma grandeza é chamada de escalar quando

Leia mais

Grandeza Vetorial. Curso de Engenharia Civil Física Geral e Experimental I. Considerações. Vetores- Unidade 2 Prof.a : Msd Érica Muniz 1 período

Grandeza Vetorial. Curso de Engenharia Civil Física Geral e Experimental I. Considerações. Vetores- Unidade 2 Prof.a : Msd Érica Muniz 1 período Curso de Engenharia Civil Física Geral e Experimental I Vetores- Unidade 2 Prof.a : Msd Érica Muniz 1 período Grandeza Vetorial Algumas vezes necessitamos mais que um número e uma unidade para representar

Leia mais

Álgebra Linear I - Aula 5. Roteiro

Álgebra Linear I - Aula 5. Roteiro Álgebra Linear I - Aula 5 1. Produto misto. 2. Equação paramétrica da reta. 3. Retas paralelas e reversas. 4. Equação paramétrica do plano. 5. Ortogonalizade. Roteiro 1 Produto Misto Dados três vetores

Leia mais

ESPAÇOS VETORIAIS EUCLIDIANOS

ESPAÇOS VETORIAIS EUCLIDIANOS ESPAÇOS VETORIAIS EUCLIDIANOS Produto interno em espaços vetoriais Estamos interessados em formalizar os conceitos de comprimento de um vetor e ângulos entre dois vetores. Esses conceitos permitirão uma

Leia mais

8.1 Áreas Planas. 8.2 Comprimento de Curvas

8.1 Áreas Planas. 8.2 Comprimento de Curvas 8.1 Áreas Planas Suponha que uma certa região D do plano xy seja delimitada pelo eixo x, pelas retas x = a e x = b e pelo grá co de uma função contínua e não negativa y = f (x) ; a x b, como mostra a gura

Leia mais

Cálculo II. Resumo Teórico Completo

Cálculo II. Resumo Teórico Completo Cálculo II Resumo Teórico Completo Cálculo 2 A disciplina visa estudar funções e gráficos, de forma semelhante a Cálculo 1, mas expande o estudo para funções de mais de uma variável, bem como gráficos

Leia mais

Introdução ao Cálculo Vetorial

Introdução ao Cálculo Vetorial Introdução ao Cálculo Vetorial Segmento Orientado É o segmento de reta com um sentido de orientação. Por exemplo AB onde: A : origem e B : extremidade. Pode-se ter ainda o segmento BA onde: B : origem

Leia mais

Chamaremos AC de vetor soma (um Vetor resultante) dos vetores AB e BC. Essa soma não é uma soma algébrica comum.

Chamaremos AC de vetor soma (um Vetor resultante) dos vetores AB e BC. Essa soma não é uma soma algébrica comum. Vetores Uma partícula que se move em linha reta pode se deslocar em apenas uma direção, sendo o deslocamento positivo em uma e negativo na outra direção. Quando uma partícula se move em três dimensões,

Leia mais

f R e P o D. Vimos que (Po x

f R e P o D. Vimos que (Po x Universidade Salvador UNIFACS Crsos de Engenharia Cálclo IV Proa: Ilka Reboças Freire Cálclo Vetorial Teto 0: Derivada Direcional e Gradiente. A Derivada Direcional Consideremos a nção escalar : D R R

Leia mais

Física Geral Grandezas

Física Geral Grandezas Física Geral Grandezas Grandezas físicas possuem um valor numérico e significado físico. O valor numérico é um múltiplo de um padrão tomado como unidade. Comprimento (m) Massa (kg) Tempo (s) Corrente elétrica

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia II 3 a lista de exercícios

MAT Cálculo Diferencial e Integral para Engenharia II 3 a lista de exercícios MAT 454 - Cálculo Diferencial e Integral para Engenharia II a lista de exercícios - 7. Ache os pontos do hiperbolóide x y + z = onde a reta normal é paralela à reta que une os pontos (,, ) e (5,, 6)..

Leia mais

CONTEÚDOS PARA BANCA MATEMÁTICA II. EDITAL Mestres e Doutores

CONTEÚDOS PARA BANCA MATEMÁTICA II. EDITAL Mestres e Doutores CONTEÚDOS PARA BANCA MATEMÁTICA II EDITAL 07-2010 Mestres e Doutores 1- Trigonometria: identidades trigonométricas e funções circulares; a) Defina função periódica e encontre o período das funções circulares,

Leia mais

Universidade Federal de Rio de Janeiro. Gabarito da Segunda Prova de Cálculo II

Universidade Federal de Rio de Janeiro. Gabarito da Segunda Prova de Cálculo II Universidade Federal de Rio de Janeiro Instituto de Matemática Departamento de Métodos Matemáticos Prof. Jaime E. Muñoz Rivera Gabarito da Segunda Prova de Cálculo II Rio de Janeiro 5 de outubro de 007

Leia mais

Aula 3 VETORES. Introdução

Aula 3 VETORES. Introdução Aula 3 VETORES Introdução Na Física usamos dois grupos de grandezas: as grandezas escalares e as grandezas vetoriais. São escalares as grandezas que ficam caracterizadas com os seus valores numéricos e

Leia mais

MAT Lista de exercícios

MAT Lista de exercícios 1 Curvas no R n 1. Esboce a imagem das seguintes curvas para t R a) γ(t) = (1, t) b) γ(t) = (t, cos(t)) c) γ(t) = (t, t ) d) γ(t) = (cos(t), sen(t), 2t) e) γ(t) = (t, 2t, 3t) f) γ(t) = ( 2 cos(t), 2sen(t))

Leia mais

Derivadas Parciais - parte 2. x + 2 z. y = 1

Derivadas Parciais - parte 2. x + 2 z. y = 1 Quarta Lista de Exercícios Cálculo II - Engenharia de Produção ( extraída do livro C ÁLCULO - vol, James Stewart ) Derivadas Parciais - parte 1) Verifique que a função u = 1/ x + y + z é uma solução da

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia II 2 a lista de exercícios

MAT Cálculo Diferencial e Integral para Engenharia II 2 a lista de exercícios MAT2454 - Cálculo Diferencial e Integral para Engenharia II 2 a lista de exercícios - 2011 1. Ache as derivadas parciais de primeira ordem das funções: ( y (a) f(x, y) =arctg (b) f(x, y) = ln(1 + cos x)

Leia mais

Questão 1. (2,5 pontos)

Questão 1. (2,5 pontos) ESCOLA DE CIÊNCIAS E TECNOLOGIA UFN POVA DE EPOSIÇÃO DE CÁLCULO ECT 11 Turma 4/1/14 Profs. onaldo e Gabriel Nome Legível: Assintatura: Instruções: Q1 1. Leia todas as instruções antes de qualquer outra

Leia mais

A Derivada. Derivadas Aula 16. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

A Derivada. Derivadas Aula 16. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil Derivadas Aula 16 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 04 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014104 - Engenharia Mecânica A Derivada Seja x = f(t)

Leia mais