MATEMÁTICA PARA TÉCNICOS
|
|
|
- Nathan Van Der Vinne Bentes
- 8 Há anos
- Visualizações:
Transcrição
1 PETROBRAS INDICADA PARA TODOS CARGOS TÉCNICOS MATEMÁTICA PARA TÉCNICOS QUESTÕES RESOLVIDAS PASSO A PASSO PRODUZIDO POR EXATAS CONCURSOS v3
2 ÍNDICE DE QUESTÕES MATEMÁTICA - CARGOS TÉCNICOS - PETROBRAS Q11 (pág. 1) Q1 (pág. ) Q13 (pág. 3) Q14 (pág. 4) Q15 (pág. 5) Q16 (pág. 6) Q17 (pág. 9) Q18 (pág. 7) Q19 (pág. 11) Q0 (pág. 1) MATEMÁTICA - CARGOS TÉCNICOS - PETROBRAS 014. Q11 (pág. 13) Q1 (pág. 14) Q13 (pág. 15) Q14 (pág. 16) Q15 (pág. 18) Q16 (pág. 3) Q17 (pág. 19) Q18 (pág. ) Q19 (pág. 0) Q0 (pág. 4) MATEMÁTICA - CARGOS TÉCNICOS - PETROBRAS Q11 (pág. 5) Q1 (pág. 8) Q13 (pág. 9) Q14 (pág. 30) Q15 (pág. 6) Q16 (pág. 33) Q17 (pág. 34) Q18 (pág. 31) Q19 (pág. 35) Q0 (pág. 36) MATEMÁTICA - CARGOS TÉCNICOS - PETROBRAS 01.1 Q11 (pág. 37) Q1 (pág. 40) Q13 (pág. 39) Q14 (pág. 38) Q15 (pág. 41) Q16 (pág. 4) Q17 (pág. 44) Q18 (pág. 44) Q19 (pág. 46) Q0 (pág. 45) MATEMÁTICA - CARGOS TÉCNICOS - PETROBRAS 011. Q11 (pág. 47) Q1 (pág. 49) Q13 (pág. 50) Q14 (pág. 47) Q15 (pág. 51) Q16 (pág. 5) Q17 (pág. 53) Q18 (pág. 54) Q19 (pág. 55) Q0 (pág. 57) MATEMÁTICA - CARGOS TÉCNICOS - PETROBRAS Q11 (pág. 58) Q1 (pág. 59) Q13 (pág. 60) Q14 (pág. 61) Q15 (pág. 6) Q16 (pág. 63) Q17 (pág. 63) Q18 (pág. 64) Q19 (pág. 65) Q0 (pág. 67) MATEMÁTICA - CARGOS TÉCNICOS - PETROBRAS 010. Q11 (pág. 68) Q1 (pág. 69) Q13 (pág. 70) Q14 (pág. 7) Q15 (pág. 73) Q16 (pág. 75) Q17 (pág. 73) Q18 (pág. 76) Q19 (pág. 76) Q0 (pág. 77) MATEMÁTICA - CARGOS TÉCNICOS - PETROBRAS 010/MAIO Q6 (pág. 78) Q7 (pág. 78) Q8 (pág. 79) Q9 (pág. 80) Q30 (pág. 81) Q31 (pág. 8) Q3 (pág. 83) Q33 (pág. 85) Q34 (pág. 85) Q35 (pág. 84) Q36 (pág. 86) Q37 (pág. 87) Q38 (pág. 88) Q39 (pág. 89) Q40 (pág. 89) Q41 (pág. 90) Q4 (pág. 91) Q43 (pág. 93) Q44 (pág. 94) Q45 (pág. 96) Q46 (pág. 94) Q47 (pág. 97) Q48 (pág. 98) Q49 (pág. 99) Q50 (pág. 100)
3 MATEMÁTICA - CARGOS TÉCNICOS - PETROBRAS 010/MARÇO Q6 (pág. 101) Q7 (pág. 10) Q8 (pág. 10) Q9 (pág. 104) Q30 (pág. 105) Q31 (pág. 105) Q3 (pág. 106) Q33 (pág. 107) Q34 (pág. 108) Q35 (pág. 104) Q36 (pág. 108) Q37 (pág. 109) Q38 (pág. 109) Q39 (pág. 111) Q40 (pág. 11) Q41 (pág. 113) Q4 (pág. 114) Q43 (pág. 116) Q44 (pág. 115) Q45 (pág. 116) Q46 (pág. 117) Q47 (pág. 118) Q48 (pág. 118) Q49 (pág. 11) Q50 (pág. 119) MATEMÁTICA - CARGOS TÉCNICOS - TRANSPETRO 01. Q11 (pág. 10) Q1 (pág. 11) Q13 (pág. 1) Q14 (pág. 13) Q15 (pág. 14) Q16 (pág. 16) Q17 (pág. 17) Q18 (pág. 18) Q19 (pág. 19) Q0 (pág. 15) QUESTÕES RESOLVIDAS NESTA APOSTILA: 130
4 MATEMÁTICA 3 QUESTÃO 3 MATEMÁTICA - CARGOS TÉCNICOS - PETROBRAS Quantos valores reais de x fazem com que a expressão (x 5x 5) x 4x 60 assuma valor numérico igual a 1? (A) (B) 3 (C) 4 (D) 5 (E) 6 Para resolver esta questão você precisa pensar no seguinte problema: Em quais situações uma potenciação a b resultará em 1? Desenvolvendo esse raciocínio, há três situações que fazem a b = 1, são elas: I - Quando b = 0, pois a 0 = 1 para qualquer valor de a. II - Quando a = 1, pois 1 b = 1 para qualquer valor de b. III - Quando a = 1 e b for par, pois ( 1) b é igual a 1 quando b é par, e 1 quando b é ímpar. Entendido isso, fica fácil resolver a questão. No primeiro caso (b = 0) basta igualar o expoente a zero, ou seja: x + 4x 60 = 0 Cujas raízes são x = 6 e x = 10. No segundo caso (a = 1) basta igualarmos a base a 1: x 5x + 5 = 1 x 5x + 4 = 0 Cujas raízes são x = 1 e x = 4. No terceiro caso precisamos que a base seja igual a 1 e o expoente seja par. Para a base ser igual a 1 temos: x 5x + 5 = 1 x 5x + 6 = 0 Que tem raízes x = e x = 3. Mas agora precisamos verificar qual desses valores faz o expoente ser um número par. Substituindo x = na equação do expoente, temos: () + 4() 60 = = 48 Como 48 é um número par, x = é um valor que satisfaz nosso critério. Fazendo a mesma coisa para x = 3: (3) + 4(3) 60 = = 39 Como 39 é um número ímpar, x = 3 não satisfaz o critério. Logo, a potência do enunciado resulta em 1 para 5 valores de x, que são: x = { 10, 1,, 4, 6} ALTERNATIVA (D)
5 MATEMÁTICA 11 QUESTÃO 9 MATEMÁTICA - CARGOS TÉCNICOS - PETROBRAS Qual a equação reduzida da reta que contém a altura relativa ao lado BC do triângulo ABC, onde A, B e C são os pontos (3, 4), (1, 1) e (6, 0), respectivamente? (A) y = 5x 11 (B) y = 6x 11 (C) y = 5x + 11 (D) y = 6x 11 (E) y = 5x + 11 Em um triângulo ABC, a altura relativa ao lado BC é perpendicular a este, e passa pelo ponto A. Constatando isso você já conseguiria resolver esta questão inspecionando as alternativa, visto que somente a alternativa (A) passa pelo ponto (3, 4): y = 5x 11 y = 5(3) 11 y = 4 Substituindo x = 3 nas outras alternativas resulta em y 4, como você pode verificar. Porém, agora vamos resolver a questão do modo ortodoxo. A equação da reta que contém os pontos B e C, que são respectivamente (1, 1) e (6, 0) tem coeficiente angular m BC dado por: m BC = y c y b x c x b m BC = m BC = 1 5 Portanto a altura relativa a BC, por ser perpendicular a BC, tem um coeficiente angular m tal que: m m BC = 1 m 1 5 = 1 m = 5 E além de perpendicular à BC, a reta que procuramos passa pelo ponto A. Como sabemos que A é (3, 4) e m é 5, fica fácil encontrar a equação dessa reta: y y 0 = m(x x 0 ) y 4 = 5(x 3) y = 5x 11 ALTERNATIVA (A)
6 MATEMÁTICA 40 QUESTÃO 34 MATEMÁTICA - CARGOS TÉCNICOS - PETROBRAS 01.1 x p, se x 1 Se f(x) mx 1, se 1 x 6 é uma função contínua, 7x 4, se x 6 de domínio real, então, m p é igual a (A) 3 (C) 5 (E) 7 (B) 4 (D) 6 Como f(x) é uma função contínua, quando x tende a um determinado valor, seja pela direita ou pela esquerda, f(x) deve assumir um mesmo valor sem qualquer salto ou descontinuidade. Para x tendendo a 6, por exemplo: mx 1 = 7x + 4 m (6) 1 = 7 (6) + 4 6m 1 = m 1 = 3 m = 4 6 m = 4 De modo semelhante, para x tendendo a 1: x p = mx 1 (1) p = (4) (1) 1 p = 4 1 p = 1 Conhecidos os valores de m e p podemos calcular: m p = (4) ( 1) m p = m p = 5 ALTERNATIVA (C)
7 MATEMÁTICA 46 QUESTÃO 40 MATEMÁTICA - CARGOS TÉCNICOS - PETROBRAS 01.1 Considere as funções g(x) log x e h(x) logb x, * ambas de domínio R. 1 Se h(5), então g(b + 9) é um número real compreendido entre (A) 5 e 6 (B) 4 e 5 (C) 3 e 4 (D) e 3 Como conhecemos a função h(x), h(5) será: h(5) = log b 5 Porém, o enunciado informou que h(5) vale 1/, logo: h(5) = log b 5 1 = log b5 b 1/ = 5 b = 5 b = 5 Sabendo o valor de b podemos calcular g(b + 9), que é pedido: Resolvendo o logarítmo: Agora, perceba que: Portanto devemos ter: g(b + 9) = log (b + 9) g(b + 9) = log (5 + 9) g(b + 9) = log 34 g(b+9) = g(b + 9) 6 ALTERNATIVA (A)
Cálculo Diferencial e Integral
PETROBRAS ENGENHEIRO(A) DE PETRÓLEO JÚNIOR ENGENHEIRO(A) DE EQUIPAMENTOS JÚNIOR - ELÉTRICA QUÍMICO(A) DE PETRÓLEO JÚNIOR PROMINP - NÍVEL SUPERIOR - GRUPO G Cálculo Diferencial e Integral Questões Resolvidas
f(x) ax b definida para todo número real x, onde a e b são números reais. Sabendo que f(4) 2,
Ensino Aluno (: Nº: Turma: ª série Bimestre: º Disciplina: Espanhol Atividade Complementar Funções Compostas e Inversas Professor (: Cleber Costa Data: / /. (Eear 07) Sabe-se que a função invertível. Assim,
BANCO DE EXERCÍCIOS - 24 HORAS
BANCO DE EXERCÍCIOS - HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº GABARITO COMENTADO ) A função será y,5x +, onde y (preço a ser pago) está em função de x (número de quilômetros
O problema proposto possui alguma solução? Se sim, quantas e quais são elas?
PROVA PARA OS ALUNOS DE 3º ANO DO ENSINO MÉDIO 1) Considere o seguinte problema: Vitor ganhou R$ 3,20 de seu pai em moedas de 5 centavos, 10 centavos e 25 centavos. Se recebeu um total de 50 moedas, quantas
MATEMÁTICA A - 11o Ano Funções - Derivada (extremos, monotonia e retas tangentes) Propostas de resolução
MATEMÁTICA A - o Ano Funções - Derivada extremos, monotonia e retas tangentes) Propostas de resolução Exercícios de exames e testes intermédios. Temos que, pela definição de derivada num ponto, f ) fx)
Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b. a) a = 3, b, b R. b) a = 3 e b = 1. c) a = 3 e b 1. d) a 3
01 Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b a) a = 3, b, b R b) a = 3 e b = 1 c) a = 3 e b 1 d) a 3 1 0 y = 3x + 1 m = 3 A equação que apresenta uma reta com o mesmo coeficiente angular
Resposta - Questão 01: Equação genérica do segundo grau: f(x) = ax² + bx + c. a) f(x) = x² 7x + 10 a = 1 b = 7 c = 10 I Cálculo das raízes:
1) Estude as raízes, determine o vértice, interseção com o eixo y, eixo de simetria, esboce o gráfico e estude o sinal das funções a seguir. a. f(x) = x 2 7x + 10 b. g(x) = x 2 + 4x + 4 c. y = -3x 2 +
Integral Definida. a b x. a=x 0 c 1 x 1 c 2 x 2. x n-1 c n x n =b x
Integral definida Cálculo de área Teorema Fundamental do cálculo A integral definida origina-se do problema para determinação de áreas. Historicamente, como descrito na anteriormente, constitui-se no método
Material Teórico - Módulo de Função Exponencial. Inequações Exponenciais. Primeiro Ano - Médio
Material Teórico - Módulo de Função Exponencial Inequações Exponenciais Primeiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto 1 Generalidades sobre inequações Recordemos
Projeto de Recuperação Final - 1ª Série (EM)
Projeto de Recuperação Final - 1ª Série (EM) Matemática 1 MATÉRIA A SER ESTUDADA Nome do Fascículo Aula Ex de aula Ex da tarefa Funções Inequação do 1º grau, pág 59 2 4,5,6 Funções Inequação do 1º grau,
CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE
CURSO DE MATEMÁTICA BÁSICA Funções polinomiais Logaritmo Aula 03 Funções Polinomiais Introdução: Polinômio Para a sucessão de termos comcom, um polinômio de grau n possui a seguinte forma : Ex : Funções
Sistemas de Potência I
CONCURSO PETROBRAS ENGENHEIRO(A) EQUIPAMENTOS JÚNIOR - ELÉTRICA ENGENHEIRO(A) JÚNIOR - ÁREA: ELÉTRICA Sistemas de Potência I Questões Resolvidas QUESTÕES RETIRADAS DE PROVAS DA BANCA CESGRANRIO Produzido
Função Inversa. f(x) é invertível. Assim,
Função Inversa. (Eear 07) Sabe-se que a função a) b) 4 c) 6 d) x f(x) é invertível. Assim, 5 f () é. (Espm 07) O conjunto imagem de uma função inversível é igual ao domínio de sua x inversa. Sendo f :
CONTROLE LINEAR CONTÍNUO: PRINCÍPIOS E LUGAR DAS RAÍZES
PETROBRAS ENGENHEIRO(A) DE EQUIPAMENTOS JÚNIOR - ELETRÔNICA ENGENHEIRO(A) DE EQUIPAMENTOS JÚNIOR - ELÉTRICA ENGENHEIRO(A) JÚNIOR - ÁREA: AUTOMAÇÃO CONTROLE LINEAR CONTÍNUO: PRINCÍPIOS E LUGAR DAS RAÍZES
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito. c1 + c 2 = 1 c 1 + 4c 2 = 3. a n = n. c 1 = 1 2c 1 + 2c
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 2019.1 Gabarito Questão 01 [ 1,25 ::: (a)=0,50; (b)=0,75 ] Resolva as seguintes recorrências: (a) a n+2 5a n+1 + 4a n = 0, a 0 = 1, a 1 = 3. (b)
MATEMÁTICA. Função e Equação Logaritmo. Professor : Dêner Rocha. Monster Concursos 1
MATEMÁTICA Função e Equação Logaritmo Professor : Dêner Rocha Monster Concursos 1 Logaritmos Definição A ideia que concebeu o logarítmo é muito simples, ou seja, podemos associar o termo Logaritmo, como
Equações Exponenciais e Logarítmicas
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Equações Exponenciais e Logarítmicas
UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1
UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1 PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR - 16/10/2016 CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES: 1.
RESOLUÇÃO DA PROVA DE MATEMÁTICA - UFRGS 2019
RESOLUÇÃO DA PROVA DE MATEMÁTICA - UFRGS 2019 26. Resposta (D) I. Falsa II. Correta O número 2 é o único primo par. Se a é um número múltiplo de 3, e 2a sendo um número par, logo múltiplo de 2. Então 2a
( ) Assim, de 2013 a 2015 (2 anos) houve um aumento de 40 casos de dengue. Ou seja: = 600 casos em 2015.
Resposta da questão : [B] É fácil ver que a equação da reta s é = 3. Desse modo, a abscissa do ponto de interseção das retas p e s é tal 8 que 3 = + 3 =. 7 8 7 8 7 Portanto, temos = 3 = e a resposta é,.
Máquinas Elétricas e Acionamentos
CONCURSO PETROBRAS ENGENHEIRO(A) EQUIPAMENTOS JÚNIOR - ELÉTRICA ENGENHEIRO(A) JÚNIOR - ÁREA: ELÉTRICA Máquinas Elétricas e Acionamentos Questões Resolvidas QUESTÕES RETIRADAS DE PROVAS DA BANCA CESGRANRIO
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 2017.1 Gabarito Questão 01 [ 1,25 ] Determine as equações das duas retas tangentes à parábola de equação y = x 2 2x + 4 que passam pelo ponto (2,
Prova Escrita de MATEMÁTICA A - 12o Ano a Fase
Prova Escrita de MATEMÁTICA A - o Ano 0 - a Fase Proposta de resolução GRUPO I. Temos que P A B) P A) + P B) P A B) P A B) P A) + P B) P A B) Como A e B são independentes, então P A) P B) P A B), pelo
AmigoPai. Matemática. Exercícios de Equação de 2 Grau
AmigoPai Matemática Exercícios de Equação de Grau 1-Mai-017 1 Equações de Grau 1. (Resolvido) Identifique os coeficientes da seguinte equação do segundo grau: 3x (x ) + 17 = 0 O primeiro passo é transformar
CURSO de MATEMÁTICA (Niterói) - Gabarito
UNIVERSIDADE FEDERAL FLUMINENSE TRANSFERÊNCIA 2 o semestre letivo de 2009 e 1 o semestre letivo de 2010 CURSO de MATEMÁTICA (Niterói) - Gabarito INSTRUÇÕES AO CANDIDATO Verifique se este caderno contém:
GABARITO. 01) a) c) VERDADEIRA P (x) nunca terá grau zero, pelo fato de possuir um termo independente de valor ( 2).
01) a) P (1) = 1 + 7 1 17 1 P (1) = 1 + 7 17 P (1) = 11 P (1) é sempre igual a soma dos coeficientes de P (x) b) P (0) = 0 + 7 0 17 0 P (0) = 0 + 0 0 P (0) = P (0) é sempre igual ao termo independente
Teste Intermédio de MATEMÁTICA - 9o ano 12 de abril de 2013
Teste Intermédio de MATEMÁTICA - 9o ano 1 de abril de 013 Proposta de resolução Parte 1 1. Como 7 0,33, representando os valores na reta real, temos 11 7 11 0,33 0,7 0.4 0,37 + Logo, ordenando por ordem
Gabarito P1 - Cálculo para FAU Prof. Jaime Angulo
Gabarito P1 - Cálculo para FAU Prof. Jaime Angulo 1 a Questão [1.5] Note que x quando x ou x e x < quando < x
Exemplo: As retas r: 2x 3y = 1 e s: 10x 15y = 18 são paralelas?
4.13. Condição de Paralelismo. Analisando as retas com equação na forma geral, facilmente sabemos, pela resolução do sistema de equações, qual é a posição relativa entre as retas. Agora, se as equações
Matemática B Semi-Extensivo V. 3
Matemática Semi-Extensivo V. Exercícios 01 (x, x; (, 1; (7, d, = d, x x x x = x + 4x + 4 + x + x + 1 = x 14x + 49 + x 4x + 4 4x = 48 x = (, 0 (1, 1; G(, ; M(, 1 (x, y = x = 1 x x = 5 = y x y 1 = 1 y x
Resistência dos Materiais e Estática
CONCURSO PETROBRAS ENGENHEIRO(A) DE PETRÓLEO JÚNIOR Resistência dos Materiais e Estática Questões Resolvidas QUESTÕES RETIRADAS DE PROVAS DAS BANCAS CESGRANRIO E CESPE Produzido por Exatas Concursos www.exatas.com.br
1) (Unicamp) Três planos de telefonia celular são apresentados na tabela abaixo:
Exercícios resolvidos e comentados 1) (Unicamp) Três planos de telefonia celular são apresentados na tabela abaixo: Plano Custo fixo mensal Custo adicional por minuto A R$ 35,00 R$ 0,50 B R$ 20,00 R$ 0,80
LISTA DE EXERCÍCIOS DE RECUPERAÇÃO GEOMETRIA 2ºANO
LISTA DE EXERCÍCIOS DE RECUPERAÇÃO GEOMETRIA 2ºANO 1) Se o ponto P(2m-8, m) pertence ao eixo das ordenadas, então: a) m é um número primo b) m é primo e par c) m é um quadrado perfeito d) m = 0 e) m
Definição: Uma função de uma variável x é uma função polinomial complexa se pudermos escrevê-la na forma n
POLINÔMIO I 1. DEFINIÇÃO Polinômios de uma variável são expressões que podem ser escritas como soma finita de monômios do tipo : a t k k onde k, a podem ser números reais ou números complexos. Exemplos:
UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ FUNDAMENTOS DE MATEMÁTICA
UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ FUNDAMENTOS DE MATEMÁTICA PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR - 0/11/014 CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES:
FUNÇÕES DE 1º E 2º GRAU, EXPONENCIAIS E LOGARITMOS
PET-FÍSICA FUNÇÕES DE 1º E 2º GRAU, EXPONENCIAIS E LOGARITMOS Aula 4 TATIANA DE MIRANDA SOUZA VICTOR ABATH DA SILVA FREDERICO ALAN DA OLIVERIA CRUZ AGRADECIMENTOS Esse material foi produzido com apoio
Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira. MAT146 - Cálculo I - Integração por Frações Parciais
MAT146 - Cálculo I - Integração por Frações Parciais Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira Iremos agora desenvolver um método para resolver integrais de funções racionais,
4 de outubro de MAT140 - Cálculo I - Método de integração: Frações Parciais
MAT140 - Cálculo I - Método de integração: Frações Parciais 4 de outubro de 2015 Iremos agora desenvolver técnicas para resolver integrais de funções racionais, conhecido como método de integração por
RESOLUÇÕES LISTA 02. b) FALSA, pois para termos a equação de uma reta em um certo ponto a função deve ser derivável naquele ponto.
UNIVERSIDADE ESTADUAL VALE DO ACARAÚ CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS CAMPUS DA CIDAO CURSO DE MATEMÁTICA CÁLCULO NUMÉRICO JOSÉ CLAUDIMAR DE SOUSA RESOLUÇÕES LISTA 02 QUESTÃO 1 a) Pela equação
Apostila organizada por: Vanderlane Andrade Florindo Silvia Cristina Freitas Batista Carmem Lúcia Vieira Rodrigues Azevedo
Instituto Federal Fluminense Campus Campos Centro Programa Tecnologia Comunicação Educação (PTCE) Apostila organizada por: Vanderlane Andrade Florindo Silvia Cristina Freitas Batista Carmem Lúcia Vieira
3º. EM Prof a. Valéria Rojas Assunto: Determinante, Área do Triângulo, Equação da reta, Eq. Reduzida da Reta
1 - O uso do Determinante de terceira ordem na Geometria Analítica 1.1 - Área de um triângulo Seja o triângulo ABC de vértices A(x a, y a ), B(x b, x c ) e C(x c, y c ). A área S desse triângulo é dada
EXERCÍCIOS DE REVISÃO ASSUNTO : FUNÇÕES
EXERCÍCIOS DE REVISÃO ASSUNTO : FUNÇÕES 3 a SÉRIE ENSINO MÉDIO - 009 ==================================================================================== 1) Para um número real fixo α, a função f(x) =
Revisão de Função. Inversa e Composta. Professor Gaspar. f : 1,,3, f(x) x 2x 2 e. g(x) x 2x 4. Para qual valor de x tem f(g(x)) g(f(x))? g(x) 2x.
Revisão de Função. (Espcex (Aman) 05) Considere a função bijetora f :,,, definida por f(x) x x e seja (a,b) o ponto de intersecção de f com sua inversa. O valor numérico da expressão a b é a). b) 4. c)
Teste de Matemática A 2018 / Teste N.º 3 Matemática A. Duração do Teste: 90 minutos NÃO É PERMITIDO O USO DE CALCULADORA
Teste de Matemática A 018 / 019 Teste N.º 3 Matemática A Duração do Teste: 90 minutos NÃO É PERMITIDO O USO DE CALCULADORA 10.º Ano de Escolaridade Nome do aluno: N.º: Turma: Na resposta aos itens de escolha
Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU
FUNÇÃO IDENTIDADE... FUNÇÃO LINEAR... FUNÇÃO AFIM... 5 GRÁFICO DA FUNÇÃO DO º GRAU... 5 IMAGEM... COEFICIENTES DA FUNÇÃO AFIM... ZERO DA FUNÇÃO AFIM... 7 FUNÇÕES CRESCENTES OU DECRESCENTES... 7 SINAL DE
ELETRICIDADE E ELETROMAGNETISMO
PETROBRAS TECNICO(A) DE OPERAÇÃO JÚNIOR ELETRICIDADE E ELETROMAGNETISMO QUESTÕES RESOLVIDAS PASSO A PASSO PRODUZIDO POR EXATAS CONCURSOS www.exatas.com.br v3 RESUMÃO GRANDEZAS E UNIDADES (S.I.) t: Tempo
TESTE DE AVALIAÇÃO GLOBAL - MATEMÁTICA A 10.º ANO DURAÇÃO DO TESTE: 90 MINUTOS GRUPO I (B) (D)
TESTE DE AVALIAÇÃO GLOBAL - MATEMÁTICA A 0.º ANO DURAÇÃO DO TESTE: 90 MINUTOS GRUPO I Os cinco itens deste grupo são de escolha múltipla. Em cada um deles, são indicadas quatro opções, das quais só uma
Lista 2 - Cálculo. 17 de maio de Se f e g são funções cujos grácos estão representados abaixo, sejam u(x) = f(x)g(x),
Lista 2 - Cálculo 17 de maio de 2019 1. Se f e g são funções cujos grácos estão representados abaixo, sejam u(x) = f(x)g(x), h(x) = f(g(x)) e k(x) = g(f(x)). Encontre as seguintes derivadas: (a) u (1)
Ponto 1) Representação do Ponto
Ponto 1) Representação do Ponto Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Plano Cartesiano, sistemas de coordenadas: pontos e retas Na geometria
Lista 1- Cálculo I Lic. - Resolução
Lista 1- Cálculo I Lic. - Resolução Exercício 6: Uma molécula de açúcar comum (sacarose) pesa 5,7 10 - g e uma de água, 3 10-3 g. Qual das duas é mais pesada? Quantas vezes uma é mais pesada que a outra?
LIMITES E CONTINIDADE
MATEMÁTICA I LIMITES E CONTINIDADE Prof. Dr. Nelson J. Peruzzi Profa. Dra. Amanda L. P. M. Perticarrari Parte 1 Parte 2 Limites Infinitos Definição de vizinhança e ite Limites laterais Limite de função
UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE
www.elitecampinas.com.br Fone: (19) -71 O ELITE RESOLVE IME 004 PORTUGUÊS/INGLÊS Você na elite das universidades! UNICAMP 004 SEGUNDA FASE MATEMÁTICA www.elitecampinas.com.br Fone: (19) 51-101 O ELITE
Função Afim. Definição. Gráfico
Função Afim Definição Chama-se função polinomial do 1º grau, ou função afim, a qualquer função f de IR em IR dada por uma lei da forma f(x) = ax + b, onde a e b são números reais dados e a 0. Na função
Notas de Aula Disciplina Matemática Tópico 09 Licenciatura em Matemática Osasco -2010
. Logaritmos Definição: O logaritmo de um número real x na base n, denotado por log n x, é definido como o expoente ao qual devemos elevar o número n para obtermos como resultado o número x, ou seja log
EXERCÍCIOS ADICIONAIS
EXERCÍCIOS ADICIONAIS Capítulo Conjuntos numéricos e os números reais (x ) y Simplifique a expressão (assumindo que o denominador não é zero): 4 x y 6x A y 8x B y 8x C 4 y 6x D y Use a notação de intervalo
MATEMÁTICA. ENSINO MÉDIO - 1º ANO Função Polinomial do 1º Grau (FUNÇÃO AFIM) PROFESSOR: ALEXSANDRO DE SOUSA
E.E. Dona Antônia Valadares MATEMÁTICA ENSINO MÉDIO - 1º ANO Função Polinomial do 1º Grau (FUNÇÃO AFIM) PROFESSOR: ALEXSANDRO DE SOUSA http://donaantoniavaladares.comunidades.net Definição: Uma função
Colégio Adventista de Porto Feliz
Colégio Adventista de Porto Feliz Nome: Nº: Turma:7ºano Nota Alcançada: Disciplina: Matemática Professor(a): Rosemara 1º Bimestre Data: /03/2016 Conteúdo: POTENCIAÇÃO E RADICIAÇÃO DE NÚMEROS INTEIROS Valor
Curso: Análise e Desenvolvimento de Sistemas
Curso: Análise e Desenvolvimento de Sistemas Disciplina: Calculo para Tecnologia (Equação de 1o e 2o graus, Porcentagem, razão e proporção. Regra de três, Logaritmo, Funções Trigométricas ) Prof. Wagner
Derivadas 1
www.matematicaemexercicios.com Derivadas 1 Índice AULA 1 Introdução 3 AULA 2 Derivadas fundamentais 5 AULA 3 Derivada do produto e do quociente de funções 7 AULA 4 Regra da cadeia 9 www.matematicaemexercicios.com
NÚMEROS COMPLEXOS
NÚMEROS COMPLEXOS - 016 1. (EFOMM 016) O número complexo, z z (cos θ i sen θ), sendo i a unidade imaginária e 0 θ π, que satisfaz a inequação z i e que possui o menor argumento θ, é a) b) c) d) 5 5 z i
PROFESSOR: ALEXSANDRO DE SOUSA
E.E. Dona Antônia Valadares MATEMÁTICA ENSINO MÉDIO - 1º ANO Função Polinomial do 1º Grau (FUNÇÃO AFIM) PROFESSOR: ALEXSANDRO DE SOUSA Definição: Toda função do tipo: f(x) = ax + b (x ϵ IR) São funções
O gráfico da função constante é uma reta paralela ao eixo dos x passando pelo ponto (0, c). A imagem é o conjunto Im = {c}.
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Funções do 1 o Grau Prof.:
VESTIBULAR CEFET 2º SEMESTRE 2009 MATEMÁTICA
VESTIBULAR CEFET 2º SEMESTRE 2009 MATEMÁTICA QUESTÃO 01 O projeto de um avião de brinquedo, representado na figura abaixo, necessita de alguns ajustes em relação à proporção entre os eixos AB e CD. Para
GAAL /1 - Simulado - 3 exercícios variados de retas e planos
GAAL - 201/1 - Simulado - exercícios variados de retas e planos SOLUÇÕES Exercício 1: Considere as retas m e n de equações paramétricas m : (x, y, z) = (1, 1, 0) + t( 2, 1, ) (a) Mostre que m e n são retas
Geometria Analítica. Distância entre dois pontos: (d AB ) 2 = (x B x A ) 2 + (y B y A ) 2 A( 7, 5 ) P( 5, 2 ) B( 3, 2 ) Q( 3, 4 ) d = 5.
Erivaldo UDESC Geometria Analítica Distância entre dois pontos: (d AB ) 2 = (x B x A ) 2 + (y B y A ) 2 A( 7, 5 ) B( 3, 2 ) d 2 = ( 4 ) 2 + ( 3 ) 2 d = 5 P( 5, 2 ) Q( 3, 4 ) d 2 = ( 8 ) 2 + ( 6 ) 2 d =
Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 ESTUDO DA CIRCUNFERÊNCIA
DEFINIÇÃO... EQUAÇÃO REDUZIDA... EQUAÇÃO GERAL DA CIRCUNFERÊNCIA... 3 RECONHECIMENTO... 3 POSIÇÃO RELATIVA ENTRE PONTO E CIRCUNFERÊNCIA... 1 POSIÇÃO RELATIVA ENTRE RETA E CIRCUNFERÊNCIA... 17 PROBLEMAS
84 x a + b = 26. x + 2 x
Para a fabricação de bicicletas, uma empresa comprou unidades do produto A, pagando R$ 96,00, e unidades do produto B, pagando R$ 84,00. Sabendo-se que o total de unidades compradas foi de 6 e que o preço
AO VIVO MATEMÁTICA Professor Haroldo Filho 3 de maio, 2016 EQUAÇÕES IRRACIONAIS
MATEMÁTICA Professor Haroldo Filho de maio, 016 EQUAÇÕES IRRACIONAIS Na resolução das equações irracionais, onde a incógnita se encontra sob um radical de índice dois, seremos obrigados a elevar ao quadrado
Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU
FUNÇÃO IDENTIDADE... FUNÇÃO LINEAR... FUNÇÃO AFIM... GRÁFICO DA FUNÇÃO DO º GRAU... IMAGEM... COEFICIENTES DA FUNÇÃO AFIM... ZERO DA FUNÇÃO AFIM... 6 FUNÇÕES CRESCENTES OU DECRESCENTES... 7 SINAL DE UMA
Equações exponenciais
A UA UL LA Equações exponenciais Introdução Vamos apresentar, nesta aula, equações onde a incógnita aparece no expoente. São as equações exponenciais. Resolver uma equação é encontrar os valores da incógnita
FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 1
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ano Versão Nome: N.º Turma: Apresente o seu raciocínio de orma clara, indicando todos os cálculos que tiver de eetuar e todas as justiicações necessárias. Quando, para
Universidade Federal de Pelotas. Instituto de Física e Matemática Pró-reitoria de Ensino. Módulo de Limites. Aula 01. Projeto GAMA
Universidade Federal de Pelotas Instituto de Física e Matemática Pró-reitoria de Ensino Atividades de Reforço em Cálculo Módulo de Limites Aula 0 208/ Projeto GAMA Grupo de Apoio em Matemática Ideia Intuitiva
Matemática Básica. Fração geratriz e Sistema de numeração 1) 0, = ) 2, =
Erivaldo UDESC Matemática Básica Fração geratriz e Sistema de numeração 1) 0,353535... = 35 99 2) 2,1343434... = 2134 21 99 0 Decimal (Indo-Arábico): 2107 = 2.10 3 + 1.10 2 + 0.10 1 + 7.10 0 Número de
Soluções das Questões de Matemática do Processo Seletivo de Admissão à Escola de Aprendizes- Marinheiros PSAEAM
Soluções das Questões de Matemática do Processo Seletivo de Admissão à Escola de Aprendizes- Marinheiros PSAEAM Questão 1 Concurso 010 Sabendo que 1 grosa é equivalente a 1 dúzias, é correto afirmar que
Prova final de MATEMÁTICA - 3o ciclo a Fase
Prova final de MATEMÁTICA - o ciclo 015 - a Fase Proposta de resolução Caderno 1 1. Calculando o valor médio das temperaturas registadas, temos Resposta: Opção B 19 + 0 + + + 5 7 0 = 5 0 =,6..1. O triângulo
Lista 3.2: Retas - Planos e Distâncias PARTE 1: RETAS. 1. Verificar se os pontos P 1 (5, 5,6) e P 2 (4, 1,12) pertencem à reta r : x 3 1 = y + 1
Curso:Licenciatura em Matemática Professor: Luis Gustavo Longen Lista 3.: Retas - Planos e Distâncias PARTE 1: RETAS 1. Verificar se os pontos P 1 (5, 5,6) e P (4, 1,1) pertencem à reta r : x 3 1 = y +
Roteiro da aula. MA091 Matemática básica. Exemplo 1. Exemplo 1. Aula 30 Função inversa. Francisco A. M. Gomes. Maio de 2016.
Roteiro da aula MA091 Matemática básica Aula 30. 1 Francisco A. M. Gomes UNICAMP - IMECC 2 Maio de 2016 Francisco A. M. Gomes (UNICAMP - IMECC) MA091 Matemática básica Maio de 2016 1 / 26 Francisco A.
Esboço de Plano de Aula. Conteúdo específico: O uso do software WXMaxima nas equações do 1º Grau.
Esboço de Plano de Aula Bolsista: Rafael de Oliveira. Duração: 120 minutos. Conteúdo: Equações do 1º Grau. Conteúdo específico: O uso do software WXMaxima nas equações do 1º Grau. Objetivo geral: Permitir
Matemática E Intensivo V. 1
GABARITO Matemática E Intensivo V. Exercícios 0) 5 0) 5 Seja o termo geral = 3n, então: Par =, temos: a = 3. = 3 = Par =, temos: a = 3. = 6 = 5 Par = 3, temos: a 3 = 3. 3 = 9 = 8 Então a + a + a 3 = +
MÓDULO 2 POTÊNCIA. Capítulos do módulo:
MÓDULO 2 POTÊNCIA Sabendo que as potências tem grande importância no mundo da lógica matemática, nosso curso terá por objetivo demonstrar onde podemos utilizar esses conceitos no nosso cotidiano e vida
PETROBRAS TÉCNICO(A) DE OPERAÇÃO JÚNIOR TERMODINÂMICA QUESTÕES RESOLVIDAS PASSO A PASSO PRODUZIDO POR EXATAS CONCURSOS.
PETROBRAS TÉCNICO(A) DE OPERAÇÃO JÚNIOR TERMODINÂMICA QUESTÕES RESOLVIDAS PASSO A PASSO PRODUZIDO POR EXATAS CONCURSOS www.exatas.com.br v3 RESUMÃO GRANDEZAS E UNIDADES (S.I.) P : Pressão [Pa]; V : Volume
Provas da OMCPLP2016
Provas da OMCPLP2016 Primeiro dia 7 de outubro de 2016 1) Considere inteiros positivos distintos que são todos primos entre si (isto é, não existe um fator primo comum a todos), mas tais que quaisquer
Matemática B Extensivo V. 6
GRITO Matemática Etensivo V. 6 Eercícios 0) E 0) 0) omo essas retas são perpendiculares, temos que o coeficiente angular de uma das retas é o oposto e inverso da outra, ou seja, m reta. m reta a + a a
Racionalização de denominadores
Racionalização de denominadores Para racionalizar o denominador de uma fração, devemos multiplicar os termos desta fração por uma expressão com radical, denominado fator racionalizante, de modo a obter
Função exponencial e logarítmica
Função exponencial e logarítmica Laura Goulart UESB 17 de Fevereiro de 2019 Laura Goulart (UESB) Função exponencial e logarítmica 17 de Fevereiro de 2019 1 / 1 "É melhor um bocado seco, e com ele a tranquilidade,
f k f k, para todo k, cujo gráfico encontra-se esboçado abaixo.
9) Considere uma função f : COMISSÃO PERMANENTE DE SELEÇÃO - COPESE QUESTÕES OBJETIVAS 2, definida por f x ax bx c, sendo a, b, c, para a qual f k f k, para todo k, cujo gráfico encontra-se esboçado abaixo.
Máximos e mínimos em intervalos fechados
Universidade de Brasília Departamento de Matemática Cálculo 1 Máximos e mínimos em intervalos fechados No texto em que aprendemos a Regra da Cadeia, fomos confrontados com o seguinte problema: a partir
Funções Polinomiais com Coeficientes Complexos. Quantidade de Raízes e Consequências. 3 ano E.M. Professores Cleber Assis e Tiago Miranda
Funções Polinomiais com Coeficientes Complexos Quantidade de Raízes e Consequências 3 ano E.M. Professores Cleber Assis e Tiago Miranda Funções Polinomiais com Coeficientes Complexos Quantidade de Raízes
Resolução Lista 2 - Cálculo I
Resolução Lista 2 - Cálculo I Exercício 2 - página 35: Sabendo que = 0 e 1. encontre os valores de, Para solucionar este exercício, basta substituir os valores de s que foram pedidos no enunciado na função
CPV especializado na ESPM ESPM Resolvida Prova E 16/novembro/2014
CPV especializado na ESPM ESPM Resolvida Prova E 6/novembro/04 MATEMÁTICA. O valor da epressão + + para = 400 é igual a: 3. Se = 4, y = 3 e y = z, o valor de z é igual a: a) 0,05 b) 0,50 c) 0,0 d) 0,0
MATEMÁTICA A - 12o Ano Funções - Limites e Continuidade Propostas de resolução
MATEMÁTICA A - 2o Ano Funções - Limites e Continuidade Propostas de resolução Exercícios de exames e testes intermédios. Como a função é contínua em R, também é contínua em x 0, pelo que Temos que fx f0
FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 3
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ano Versão Nome: N.º Turma: Apresente o seu raciocínio de orma clara, indicando todos os cálculos que tiver de eetuar e todas as justiicações necessárias. Quando, para
Resposta: f(g(x)) = x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo 5, 5 5, 5 3, 3. f(g(x) = x 5.
1. (Espcex (Aman) 016) Considere as funções reais f e g, tais que f(x) = x + 4 e f(g(x)) = x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo conjunto contém todos os possíveis
Equação de 2 grau. Assim: Øx² - 5x + 6 = 0 é um equação do 2º grau com a = 1, b = -5 e c = 6.
Rumo ao EQUAÇÃO DE 2 GRAU Equação de 2 grau A equação de 2 grau é a equação na forma ax² + bx + c = 0, onde a, b e c são números reais e x é a variável (incógnita). O valor da incógnita x é determinado
CPV O cursinho que mais aprova na GV
O cursinho que mais aprova na GV FGV Administração Prova Objetiva 07/dezembro/008 MATEMÁTICA 0. Uma pesquisa de mercado sobre determinado eletrodoméstico mostrou que 7% dos entrevistados preferem a marca
RESPOSTAS DA LISTA 5 (alguns estão com a resolução ou o resumo da resolução):
Lista de Matemática Básica I - RESPOSTAS) RESPOSTAS DA LISTA alguns estão com a resolução ou o resumo da resolução): Resposta: < < < < < 8 Justificativa: observe que Também observe que: e são simétricos;
