EXERCÍCIOS DE REVISÃO ASSUNTO : FUNÇÕES
|
|
|
- Manuela Wagner de Almada
- 8 Há anos
- Visualizações:
Transcrição
1 EXERCÍCIOS DE REVISÃO ASSUNTO : FUNÇÕES 3 a SÉRIE ENSINO MÉDIO ==================================================================================== 1) Para um número real fixo α, a função f(x) = αx é tal que f(f(1)) = -3. Calcule o valor de α. (Resp. α = 1) ) Determine conjunto de todos os valores reais de x que satisfazem a equação 11 ). log 10 x = 1 + log 10 ( x + 10 (Resp. { 11 } ) 3) Observe a figura. Nessa figura, está representado o gráfico de f(x) = k α x constantes positivas. Calcule o valor de f ( ). (Resp. : 8 3 ), sendo k e α
2 4) Observe a figura : Nela, estão representadas as retas y = ax + b e Y = cx + d. A alternativa que melhor representa o gráfico de y = (ax + b)(cx + d) é : a) c) b) d) (Resp. : a) 5) Duas funções f e g são tais que f(x) = x + 3 e f[g(x)} = 5 x. Calcule valor de g (-1). (Resp. : ) 6) Calcule a raiz da equação 3 (x/3 ) - (1/). 3 (x/3) + 1 = 0. (Resp. : 3λn (3/ ) λn3 )
3 1 a x - a 7) A expressão λ n ( ), para 0 < a < x, é igual : 1 1 n ( a λ x - a 1 x - a n ( a λ x + a 1 x + a n ( a λ x - a 1 x - a n ( a λ x + a 1 x + a n ( a λ x - a a) ) b) ) c) ) d) ) e) ) x - a (Resp. : d) 8) Calcule a soma das raízes da equação x - x - x - 4 = 0. (Resp. : 0) 9) A função f, do primeiro grau, f(x) = ax + b, é crescente e a = m m 1. Determi- ne o conjunto de valores que m pode assumir. (Resp. : m < 0 ou m > 1) 10) Todos os pontos da parábola de equação y = x + ax + 9 estão acima do eixo das abscissas. Determine os valores de a. (Resp. : a < 6 ) 11) A velocidade de uma lancha é dada por v ( t ) = 0 ( 1 - e -t/50 ), em metros por segundo.calcule o tempo gasto, em segundos, para a lancha atingir 18 m/s. Usar λ n10 =,3 (Resp. : 115 s )... 1) Se x > 0, a expressão log x + log 4 x pode ser substituída por : 1 a) log x b) 3 log x 3 c) log x d) log x 5 e) log x (Resp. : e)... 13) Determine número de raízes da equação x. x - 3x + = 0. (Resp. : 4 raízes)
4 14) Uma função f : R R é dita crescente se f (x ) f (x 1 ) sempre que x x 1. Qual das funções mostradas a seguir não é absolutamente crescente? (I) f(x) = e x (II) f(x) = x 3 (III) f(x) = x 5 (IV) f(x) = 3 (V) f(x) = 1 1 x + x + x x - x (Resp. : V ) 15) Observe a figura : Nessa figura, a parábola de vértice V é o gráfico de y = x + bx + c. Sendo AO =.(OV) e a abscissa de V diferente de zero, Calcule o valor de c. (Resp. : c = 4 )... 16) Determine o conjunto de todos os valores de x que satisfazem à desigualdade x x + x - (Resp. : { x R : x }.
5 17) Observe a figura : Nessa figura está representado o gráfico da função real de variável real y = f(x). Então, o valor de f (3 ) + f ( 5 1 ) + f ( ) pertence ao conjunto : a) { x R : - < x -1 } b) { x R : -1 < x 0 } c) { x R : 0 < x 1 } d) { x R : 1 < x } e) { x R : < x 3 } (Resp. : d ) 18) Seja b um número positivo. Considere a função f : R R dada por f ( x ) = b Se f ( f ( )) = 97 3 x + b x - 3,, se x se x b <, calcule o valor de b. b (Resp. : b = 5 ) 19) Seja f uma função real de variável real dada por f(x) = x + x - log 10 x. Calcule f (-10). (Resp. : não está definido) 3
6 0) Seja f ( x ) = 3 x 9 - x uma função real de variável real. O conjunto que 4 contém todos os valores reais de x para os quais f (x) = f (x 1) é o conjunto V. Determine o conjunto V. (Resp. : V = { x R : 0 x < } ) 1) Observe a figura Essa figura contém o gráfico da função y = f (x ) definida em A = { x R : -7 x 8 }. Qual das afirmativas abaixo, sobre a figura, é incorreta (I) A soma de todas as raízes distintas de f (x ) é negativa. (II) f (-5 ) < f (6 ). (III) f (-4 ) + f ( ) > 1. (IV) A soma de todos os valores distintos de x, x A, tais que f (x ) = 3 é um número positivo. (V) f ( 3 ) - f (- ) < 0. (Resp. : V ) ) Determine o conjunto de todos os valores reais de x que satisfazem à desigual - x + 4x - 5 x 1 dade 0. (Resp. : { x R : -5 x < 1 } )
7 3) O gráfico da função dada por f (x ) = x é : (Resp. : c ) 4) Observe a figura :
8 Determine a função cujo gráfico está nela representado. (Resp. : y = x x 3 )... 5) Seja f : R R uma função tal que f (3x + 1) = 1 x. Calcule f(a). (Resp. : 4 a 3 )... 6) Determine o conjunto solução da equação log x 1 - log x + =, onde log representa o logarítmo decimal. (Resp. : {-1,} ) 7) A solução da equação 3x+ - 3x+1 = 50 x é um número a) menor do que 3 b) entre e 1 c) entre 0 e 1 d) entre e 3 e) maior do que 3 (Resp. : c ) 8) O gráfico da função quadrática y = ax + bx + c, a 0, tem (5, 3) como o ponto mais próximo do eixo das abscissas e passa pelo ponto ( 1, 4 ). Todas as afirmativas sobre essa função estão corretas,exceto a) A função não tem raízes reais. b) Obrigatoriamente se tem a > 0. c) O eixo da simetria do gráfico é a reta x = 5. d) O gráfico passa pelo ponto ( 9,4 ). 11 e) O gráfico corta o eixo dos y no ponto ( 0, ). 3 (Resp. e ) 9) ( UFMG ) - Observe a figura.
9 O gráfico da função f(x) = ax + b está representado nessa figura. Calcule o valor de a + b. (Resp. : a + b = ) 30) Suponha se que o número f(x) de funcionários necessários para distribuir, em um dia, contas de luz entre x por cento de moradores, numa determinada cidade, seja dado pela função f(x) = 300x 150 x. Se o número de funcionários necessários para distribuir, em um dia, as contas de luz foi 75, qual foi a porcentagem de moradores que as receberam? (Resp. : 30% ) 31) Sejam f e g funções reais de variável real tais que g(x) = x 1 e a função f, do segundo grau, o gráfico representado na figura. Determine o conjunto solução da desigualdade f(x). g(x) 0. (Resp. : { x R : 1 x ou x 5 } ) 3) Considere a função definida por f(x) = 1. de f() + f ( ) - 4 f( ) x se x é racional 1- x se x é irracional. Calcule o valor (Resp. : 5 - ) 33) ( UFMG ) Seja log a 8 = - 4 3, a > 0. Calcule o valor da base a. (Resp. : a = 16 1 )
10 34) Observe o gráfico. Com base nesse gráfico, pode-se afirmar que a) x(x x) > 0 se e só se x < 0 ou x >. b) x x > 0 se e só se x < 0 ou x > 3. c) x x < 0 se e só se 0 < x < 3. d) x > x x se e só se 0 < x < 3. e) x < x x se e só se x < 0 ou x >. (Resp. : d ) 35) Determine o conjunto de todos os valores reais de m para os quais o conjunto imagem de f(x) = -x + mx - 1 é B = { y R : y }. (Resp. : {- 10, 10 } ) 36) A função do o grau, y = f(x), cujo gráfico passa pelo ponto (-1, 3) e tangen cia o eixo das abscissas no ponto (-, 0), é f(x). Determine f(x). (Resp. : f(x) = 3x + 1x + 1 ) 37) Considere a função definida por f (x) = x 3 se -1 x 1 5 se 1< x 4 x - 4 se x > 4 Calcule o valor de f (f (f ( ) ) ). (Resp. : 3 ) 38) Seja f : R R uma função dada por f(x) = + x + 1. Determine o conjunto imagem de f(x). (Resp. : Im(f) = { y R : y 3 }
11 39) Determine o conjunto de todos os números reais que satisfazem à equação log 3 x = (Resp. : { } ) 3 40) Para a função f (x ) = 5x + 3 e um número b, tem-se f ( f (b) ) = -. Calcule valor de b. (Resp. : b = )... 40) Qual é o valor de x que satisfaz a equação 4x - 6( x ) = 16? (Resp. : x = 1,5 ) 41) Observe a figura. Nessa figura, está representado o gráfico de f(x) = log a x. Calcule o valor de f(18). (Resp. : f(18) =,5 ) 4) Observe a figura :
12 Nessa figura estão representadas duas retas perpendiculares que são gráficos de y = f(x) e y = g(x). Calcule o valor máximo da função h(x) = f(x). g(x). (Resp. : 3 ) ******************************************************************* APÊNDICE : ALGUMAS FORMAS ALGÉBRICAS DE FUNÇÕES REAIS NOTÁVEIS Função constante : y = f(x) = k, onde k é número real. Função do 1 o grau : y = f(x) = ax + b, onde a e b são números reais e a 0. Função do o grau (quadrática) : y = f(x) = ax + bx + c, onde a, b e c são números reais e a 0. Função modular : y = f(x) = g(x) = g(x) -, se g(x) g(x), se g(x) 0 < 0 Função exponencial : y = f(x) = k. a g(x), onde k e a são números reais, a > 0 e a 1. Função logarítmica : y = f(x) = log a g(x), onde a é número real, a > 0 e a 1.
FUNÇÕES I Exercícios de Revisão 3 a SÉRIE - ENSINO MÉDIO
MATEMÁTICA I FUNÇÕES I Exercícios de Revisão a SÉRIE - ENSINO MÉDIO NOME :... NÚMERO :... TURMA :... 1) (PUC MG) - A soma dos números naturais que pertencem ao domínio de f(x) = igual a 1 5 - x é a) 5
PROVA DE MATEMÁTICA PRIMEIRA ETAPA MANHÃ
PROVA DE MATEMÁTICA PRIMEIRA ETAPA - 1997 - MANHÃ QUESTÃO 01 Durante o período de exibição de um filme, foram vendidos 2000 bilhetes, e a arrecadação foi de R$ 7.600,00. O preço do bilhete para adulto
FUNÇÃO DE 2 GRAU. 1, 3 e) (1,3)
FUNÇÃO DE 2 GRAU 1-(ANGLO) O vértice da parábola y= 2x²- 4x + 5 é o ponto 1 11 1, 3 e) (1,3) a) (2,5) b) (, ) c) (-1,11) d) ( ) 2-(ANGLO) A função f(x) = x²- 4x + k tem o valor mínimo igual a 8. O valor
Colégio Santa Maria Lista de exercícios 1º médio 2011 Prof: Flávio Verdugo Ferreira.
Colégio Santa Maria Lista de exercícios 1º médio 2011 Prof: Flávio Verdugo Ferreira. 1- ( VUNESP) A parábola de equação y = ax² passa pelo vértice da parábola y = 4x - x². Ache o valor de a: a) 1 b) 2
Equação de 2 grau. Assim: Øx² - 5x + 6 = 0 é um equação do 2º grau com a = 1, b = -5 e c = 6.
Rumo ao EQUAÇÃO DE 2 GRAU Equação de 2 grau A equação de 2 grau é a equação na forma ax² + bx + c = 0, onde a, b e c são números reais e x é a variável (incógnita). O valor da incógnita x é determinado
FUNÇÕES(1) FUNÇÃO POLINOMIAL DO 2º GRAU
FUNÇÕES(1) FUNÇÃO POLINOMIAL DO º GRAU 1. (Uece 015) Se a função real de variável real, definida por f(1) =, f() = 5 e f(3) =, então o valor de f() é a). b) 1. c) 1. d). f(x) = ax + bx + c, é tal que.
Capítulo 3. Função afim. ANOTAÇÕES EM AULA Capítulo 3 Função afim 1.5 CONEXÕES COM A MATEMÁTICA
Capítulo 3 Função afim 1.5 Função afim Uma função f: R R é função afim quando existem os números reais a e b tais que f(x) = ax + b para todo x R. Exemplos f(x) =, em que: a = e b = 6 g(x) = 7x, em que:
Centro de Estudos Gilberto Gualberto Ancorando a sua aprendizagem LISTA FUNÇÕES
Questão 01 - A quantidade mensalmente vendida x, em toneladas, de certo produto, relaciona-se com seu preço por tonelada p, em reais, através da equação p = 2 000 0,5x. O custo de produção mensal em reais
Capítulo 3. Fig Fig. 3.2
Capítulo 3 3.1. Definição No estudo científico e na engenharia muitas vezes precisamos descrever como uma quantidade varia ou depende de outra. O termo função foi primeiramente usado por Leibniz justamente
Lista de Função Quadrática e Módulo (Prof. Pinda)
Lista de Função Quadrática e Módulo (Prof. Pinda) 1. (Pucrj 015) Sejam as funções f(x) x 6x e g(x) x 1. O produto dos valores inteiros de x que satisfazem a desigualdade f(x) g(x) é: a) 8 b) 1 c) 60 d)
FUNÇÕES Parte 2 Disciplina: Lógica Aplicada Prof. Rafael Dias Ribeiro. Autoria: Prof. Denise Candal
FUNÇÕES Parte 2 Disciplina: Lógica Aplicada Prof. Rafael Dias Ribeiro Autoria: Prof. Denise Candal Função Quadrática ou do 2 o grau Definição: Toda função do tipo y = ax 2 + bx + c, com {a, b, c} R e a
Conjuntos Numéricos. I) Números Naturais N = { 0, 1, 2, 3,... }
Conjuntos Numéricos I) Números Naturais N = { 0, 1, 2, 3,... } II) Números Inteiros Z = {..., -2, -1, 0, 1, 2,... } Todo número natural é inteiro, isto é, N é um subconjunto de Z III) Números Racionais
FUNÇAO DO 2 GRAU. é igual a:
1. (Epcar (Afa)) O gráfico de uma função polinomial do segundo grau y f x, que tem como coordenadas do vértice (5, 2) e passa pelo ponto (4, 3), também passará pelo ponto de coordenadas a) (1, 18) b) (0,
1. Considere os conjuntos A = {0; 2} e B = {1; 2; 3}. A respeito de produto cartesiano entre dois conjuntos, assinale a alternativa correta:
. Considere os conjuntos A = {0; 2} e B = {; 2; 3}. A respeito de produto cartesiano entre dois conjuntos, assinale a alternativa correta: a. AxB = {(0; ); (0; 2); (0; 3); (2; ); (2; 2); (2; 3)} b. BxA
Matemática Básica. Fração geratriz e Sistema de numeração 1) 0, = ) 2, =
Erivaldo UDESC Matemática Básica Fração geratriz e Sistema de numeração 1) 0,353535... = 35 99 2) 2,1343434... = 2134 21 99 0 Decimal (Indo-Arábico): 2107 = 2.10 3 + 1.10 2 + 0.10 1 + 7.10 0 Número de
MÉTODOS MATEMÁTICOS. Claudia Mazza Dias Sandra Mara C. Malta
MÉTODOS MATEMÁTICOS Claudia Mazza Dias Sandra Mara C. Malta 1 Métodos Matemáticos Aulas: De 03/11 a 08/11-8:30 as 11:00h Ementa: 1. Funções 2. Eq. Diferenciais Ordinárias de 1 a ordem 3. Sistemas de Equações
Função de 1º Grau. Como construir um Gráfico. Função constante. Matemática Básica I. RANILDO LOPES Slides disponíveis no nosso SITE:
Matemática Básica Como construir um Gráfico Unidade 5. Gráficos de Funções Reais RANILDO LOPES Slides disponíveis no nosso SITE: https://ueedgartito.wordpress.com x y = f(x) x y x x 3 y x 4 y 3 y 4 x 5
b) Determinar as raízes de f(x) = g(x) quando m = 1/2. c) Determinar, em função de m, o número de raízes da equação f(x) = g(x).
1. (Fuvest 2000) a) Esboce, para x real, o gráfico da função f(x) = x - 2 + 2x + 1 - x - 6. O símbolo a indica o valor absoluto de um número real a e é definido por a = a, se a µ 0 e a = - a, se a < 0.
Resposta - Questão 01: Equação genérica do segundo grau: f(x) = ax² + bx + c. a) f(x) = x² 7x + 10 a = 1 b = 7 c = 10 I Cálculo das raízes:
1) Estude as raízes, determine o vértice, interseção com o eixo y, eixo de simetria, esboce o gráfico e estude o sinal das funções a seguir. a. f(x) = x 2 7x + 10 b. g(x) = x 2 + 4x + 4 c. y = -3x 2 +
Resposta: f(g(x)) = x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo 5, 5 5, 5 3, 3. f(g(x) = x 5.
1. (Espcex (Aman) 016) Considere as funções reais f e g, tais que f(x) = x + 4 e f(g(x)) = x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo conjunto contém todos os possíveis
E-books PCNA. Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 FUNÇÕES
E-books PCNA Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 FUNÇÕES 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 SUMÁRIO Apresentação -------------------------------------------------------2 Capítulo 3 ------------------------------------------------------
Ana Carolina Boero. Página: Sala Bloco A - Campus Santo André
Funções de uma variável real a valores reais E-mail: [email protected] Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Funções de uma variável real a valores
MATEMÁTICA A - 11o Ano Funções - Derivada (extremos, monotonia e retas tangentes) Propostas de resolução
MATEMÁTICA A - o Ano Funções - Derivada extremos, monotonia e retas tangentes) Propostas de resolução Exercícios de exames e testes intermédios. Temos que, pela definição de derivada num ponto, f ) fx)
BANCO DE QUESTÕES TURMA PM-PE FUNÇÕES
01. (ESPCEX-AMAN/016) Considere as funções reais f e g, tais que f(x) x 4 e f(g(x)) x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo conjunto contém todos os possíveis valores
Capítulo 1. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas.
Capítulo 1 Funções Sejam A e B conjuntos não vazios. Uma função com domínio A e contradomínio B é uma regra f que a cada elemento em A associa um único elemento em B. A notação usual para uma função f
Capítulo 2. f : A B. 3. A regra em (3) não define uma função de A em B porque 4 A está associado a mais de um. elemento de B.
Departamento de Matemática Disciplina MAT154 - Cálculo 1 Capítulo 2 Funções 2.1 Definição Sejam A e B conjuntos não vazios. Uma função com domínio A e contradomínio B é uma regra f que a cada elemento
Capítulo 2. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas.
Capítulo 2 Funções Sejam A e B conjuntos não vazios. Uma função com domínio A e contradomínio B é uma regra f que a cada elemento em A associa um único elemento em B. A notação usual para uma função f
CÁLCULO I. Reconhecer, através do gráco, a função que ele representa; (f + g)(x) = f(x) + g(x). (fg)(x) = f(x) g(x). f g
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 03: Operações com funções. Funções Polinominais, Racionais e Trigonométricas Objetivos da Aula Denir operações com funções; Apresentar algumas
EXERCÍCIOS ADICIONAIS
EXERCÍCIOS ADICIONAIS Capítulo Conjuntos numéricos e os números reais (x ) y Simplifique a expressão (assumindo que o denominador não é zero): 4 x y 6x A y 8x B y 8x C 4 y 6x D y Use a notação de intervalo
As funções quadráticas são usadas em diversas aplicações: - Equacionamento do movimento de um ponto com aceleração constante.
Módulo 4 FUNÇÕES QUADRÁTICAS 1. APRESENTAÇÃO As funções quadráticas são usadas em diversas aplicações: - Equacionamento do movimento de um ponto com aceleração constante. - Modelagem de trajetórias na
GOVERNO DO ESTADO DE MATO GROSSO SECRETARIA DE ESTADO DE CIÊNCIA E TECNOLOGIA UNIVERSIDADE DO ESTADO DE MATO GROSSO
GOVERNO DO ESTADO DE MATO GROSSO SECRETARIA DE ESTADO DE CIÊNCIA E TECNOLOGIA UNIVERSIDADE DO ESTADO DE MATO GROSSO FACET Faculdade de Ciências Exatas e Tecnológicas Avaliação 30/03/016 RESOLUÇÃO 01. A
MAT 0143 : Cálculo para Ciências Biológicas
MAT 0143 : Cálculo para Ciências Biológicas Aula 2/ Quarta 26/02/2014 Sylvain Bonnot (IME-USP) 2014 1 Resumo Aula 1 1 Informaçãoes gerais: Email: [email protected] Site: ver o link para MAT 2110 na pagina
Matemática Básica. Sistema de numeração. Decimal (Indo-Arábico): abc = a b c abc = 100a + 10b + c. Binário:
Erivaldo ACAFE Matemática Básica Sistema de numeração Decimal (Indo-Arábico): abc = a.10 2 + b.10 1 + c.10 0 abc = 100a + 10b + c Binário: 4 (10101) 2 = 1.2 + 0.2 + 1.2 + 0.2 + 1.2 0 3 = 16 + 0 + 4 + 0
FUNÇÃO QUADRÁTICA PROFESSOR AUGUSTO CORRÊA ENEM 2016
FUNÇÃO QUADRÁTICA PROFESSOR AUGUSTO CORRÊA ENEM 2016 FUNÇÃO QUADRÁTICA Definição: Chama-se função polinomial do 2 o grau ou função quadrática toda função f: do tipo 2 f ( x) ax bx c, com {a, b, c} e a
{ } { } { } { } { } Professor: Erivaldo. Função Composta SUPERSEMI. 01)(Aman 2013) Sejam as funções reais ( ) 2
Centro de Estudos Matemáticos Florianópolis Professor: Erivaldo Santa Catarina Função Composta SUPERSEMI 01)(Aman 013) Sejam as funções reais ( ) f x = x + 4x e gx ( ) = x 1. O domínio da função f(g(x))
Geometria Analítica. Distância entre dois pontos: (d AB ) 2 = (x B x A ) 2 + (y B y A ) 2 A( 7, 5 ) P( 5, 2 ) B( 3, 2 ) Q( 3, 4 ) d = 5.
Erivaldo UDESC Geometria Analítica Distância entre dois pontos: (d AB ) 2 = (x B x A ) 2 + (y B y A ) 2 A( 7, 5 ) B( 3, 2 ) d 2 = ( 4 ) 2 + ( 3 ) 2 d = 5 P( 5, 2 ) Q( 3, 4 ) d 2 = ( 8 ) 2 + ( 6 ) 2 d =
Humberto José Bortolossi [01] (a) (1.0) Escreva infinitos números racionais que pertençam ao intervalo
PRIMEIRA VERIFICAÇÃO DE APRENDIZAGEM Pré-Cálculo Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ Nome legível: Assinatura: [0] (a) (.0) Escreva infinitos números racionais que pertençam
A MATEMÁTICA NO PISM I PROF. KELLER LOPES A MOTIVAÇÃO
A MATEMÁTICA NO PISM I PROF. KELLER LOPES A MOTIVAÇÃO TEMAS DO PISM I 01 - GEOMETRIA PLANA Semelhança e congruência de triângulos Áreas. Razões Trigonométricas. 02 - Conjuntos Numéricos 03 - Funções Conceito
Função Quadrática e Proporcionalidade Inversa ( )
Função Quadrática e (18-01-08) F. Quadrática e Matemática e Estatística 2007/2008 Função Quadrática Chama-se função quadrática a qualquer função f de R em R dada por uma lei da forma f(x) = ax 2 + bx +
MAT 2110 : Cálculo para Química
MAT 2110 : Cálculo para Química Aula 3/ Sexta 28/02/2014 Sylvain Bonnot (IME-USP) 2014 1 Resumo Aula 2 1 Informaçãoes gerais: Site: ver o link para MAT 2110 na pagina http://www.ime.usp.br/~sylvain/courses.html
Equação de Segundo Grau. Rafael Alves
Equação de Segundo Grau Rafael Alves Equação do 2º Grau As equações são caracterizadas de acordo com o maior expoente de uma das incógnitas. 2x + 1 = 0 (Equação de 1º grau) 2x² + 2x + 6 = 0 (Equação de
Processo Seletivo Estendido 2016 LISTA FUNÇÕES - 2
Processo Seletivo Estendido 06 LISTA FUNÇÕES - Professor: Fernando de Ávila Silva Departamento de Matemática - UFPR Esta lista foi inicialmente elaborada pelo professor Alexandre Trovon UFPR) A presente
CÁLCULO FUNÇÕES DE UMA E VÁRIAS VARIÁVEIS Pedro A. Morettin, Samuel Hazzan, Wilton de O. Bussab.
Introdução Função é uma forma de estabelecer uma ligação entre dois conjuntos, sujeita a algumas condições. Antes, porém, será exposta uma forma de correspondência mais geral, chamada relação. Sejam dois
Lista 2 - Cálculo. 17 de maio de Se f e g são funções cujos grácos estão representados abaixo, sejam u(x) = f(x)g(x),
Lista 2 - Cálculo 17 de maio de 2019 1. Se f e g são funções cujos grácos estão representados abaixo, sejam u(x) = f(x)g(x), h(x) = f(g(x)) e k(x) = g(f(x)). Encontre as seguintes derivadas: (a) u (1)
LISTA DE RECUPERAÇÃO ÁLGEBRA 1 ANO 3º TRIMESTRE
LISTA DE RECUPERAÇÃO ÁLGEBRA ANO 3º TRIMESTRE ) O valor de é: A) 3 B) 3 C) 3 D) E) ) A soma das raízes reais distintas da equação x é igual a A) 0 B) C) 4 D) 6 E) 8 3) O produto das raízes da equação abaixo
Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO QUADRÁTICA PARTE 2
EIXO DE SIMETRIA... COEFICIENTES a, b E c NO GRÁFICO... SINAL DA FUNÇÃO QUADRÁTICA...4 INEQUAÇÕES DO º GRAU...9 INEQUAÇÕES PRODUTO E QUOCIENTE... 4 SISTEMA DE INEQUAÇÕES DO º GRAU... 8 REFERÊNCIA BIBLIOGRÁFICA...
Matemática. FUNÇÃO de 1 GRAU. Professor Dudan
Matemática FUNÇÃO de 1 GRAU Professor Dudan Função de 1 Grau Chama-se função polinomial do 1º grau, ou função afim, a qualquer função f de IR em IR dada por uma lei da forma : onde a e b são números reais
Matemática para Biomedicina
Matemática para Biomedicina Funções: lista de exercícios Prof. Luís Rodrigo de O. Gonçalves Copyright c 2019 Luís Rodrigo de O. Gonçalves Licenciado sob a licença Atribuição-NãoComercial 4.0 Internacional.
6. FUNÇÃO QUADRÁTICA 6.1. CONSIDERAÇÕES PRELIMINARES
47 6. FUNÇÃO QUADRÁTICA 6.1. CONSIDERAÇÕES PRELIMINARES Na figura abaixo, seja a reta r e o ponto F de um determinado plano, tal que F não pertence a r. Consideremos as seguintes questões: Podemos obter,
EXERCICIOS DE APROFUNDAMENTO MATEMATICA FUNÇÕES NUMEROS COMPLEXOS
1. (Unicamp 01) Seja r a reta de equação cartesiana x y 4. Para cada número real t tal que 0 t 4, considere o triângulo T de vértices em (0, 0), (t, 0) e no ponto P de abscissa x t pertencente à reta r,
Matemática: Funções Vestibulares UNICAMP
Matemática: Funções Vestibulares 015-011 - UNICAMP 1. (Unicamp 015) Seja r a reta de equação cartesiana x y 4. Para cada número real t tal que 0 t 4, considere o triângulo T de vértices em (0, 0), (t,
LISTA 01 MATEMÁTICA PROF. FABRÍCIO 9º ANO NOME: TURMA:
C e n t r o E d u c a c i o n a l A d v e n t i s t a M i l t o n A f o n s o Reconhecida Portaria 46 de 26/09/77 - SEC -DF CNPJ 60833910/0053-08 SGAS Qd.611 Módulo 75 CEP 70200-710 Brasília-DF Fone: (61)
Capítulo 1. Funções e grácos
Capítulo 1 Funções e grácos Denição 1. Sejam X e Y dois subconjuntos não vazios do conjunto dos números reais. Uma função de X em Y ou simplesmente uma função é uma regra, lei ou convenção que associa
MA51A - Cálculo Aplicado Prof a Diane Rizzotto Rossetto. LISTA 1 - Revisão
Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Curitiba - DAMAT MA51A - Cálculo Aplicado Prof a Diane Rizzotto Rossetto LISTA 1 - Revisão Questão 1: Se 2 x = 256, o valor de x
1) Sejam as funções f e g de R em R tais que f(x) = 2 x + 1 e f(g(x)) = 2 x - 9, o valor de g(- 2) é igual a:
COLÉGIO PEDRO II UNIDADE ESCOLAR SÃO CRISTÓVÃO III NOTA: PROFESSORES: Eduardo/ Vicente DATA: NOME: Nº: NOME: Nº: NOME: N : NOME: N : TURMA: GRUPO I: Alunos 1 ; 2 ; 3 ; 4. 1) Sejam as funções f e g de R
Matemática. FUNÇÃO de 1 GRAU. Professor Dudan
Matemática FUNÇÃO de 1 GRAU Professor Dudan Função de 1 Grau Chama-se função polinomial do 1º grau, ou função afim, a qualquer função f de IR em IR dada por uma lei da forma : onde a e b são números reais
Função do 2 o Grau. 11.Sinal da função quadrática 12.Inequação do 2 o grau
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Função do o Grau Prof.: Rogério
CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE
CURSO DE MATEMÁTICA BÁSICA Funções polinomiais Logaritmo Aula 03 Funções Polinomiais Introdução: Polinômio Para a sucessão de termos comcom, um polinômio de grau n possui a seguinte forma : Ex : Funções
Matemática. Exercícios de Revisão II. Eldimar. 1 a. 1) (CFTMG-2008) Na figura, está representado o gráfico da função f(x).
Nome: n o : E nsino: Médio S érie: T urma: Data: Prof(a): Eldimar 1 a Matemática Exercícios de Revisão II 1) (CFTMG-2008) Na figura, está representado o gráfico da função f(x). Com relação a f(x) pode-se
12)(UNIFESP/2008) A tabela mostra a distância s em centímetros que uma bola percorre descendo por um plano inclinado em t segundos.
01)(UNESP/008)Segundo a Teoria da Relatividade de Einstein, se um astronauta viajar em uma nave espacial muito rapidamente em relação a um referencial na Terra, o tempo passará mais devagar para o astronauta
CURSO ALCANCE UFPR Matemática 13/08/2016 Página 1 de 6
CURSO ALCANCE UFPR Matemática 13/08/2016 Página 1 de 6 Introdução à funções Uma função é determinada por dois conjuntos e uma regra de associação entre os elementos destes conjuntos. Os conjuntos são chamados
Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática
1 Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática MAT 101 - Fundamentos de Matemática I 2012/I 2 a Lista - Funções (Parte I) 1. Dados os conjuntos M = {1, 3, 5} e N
NOTAÇÕES MATEMÁTICAS UTILIZADAS
Prova de MTMÁTI - Modelo R R R + R + R R Q Q Z Z + Z N N f(x) f(a) log a sen α cos α tg α cotg α cossec α x n! NOTÇÕS MTMÁTIS UTILIZS - conjunto dos números reais - conjunto dos números reais não nulos
RESUMO - GRÁFICOS. O coeficiente de x, a, é chamado coeficiente angular da reta e está ligado à inclinação da reta
RESUMO - GRÁFICOS Função do Primeiro Grau - f(x) = ax + b O gráfico de uma função do 1 o grau, y = ax + b, é uma reta. O coeficiente de x, a, é chamado coeficiente angular da reta e está ligado à inclinação
Prof: Danilo Dacar
Parte A: 1. (Uece 014) Sejam f : R R a função definida por f(x) x x 1, P e Q pontos do gráfico de f tais que o segmento de reta PQ é horizontal e tem comprimento igual a 4 m. A medida da distância do segmento
n = S(n) + P(n) 10.a + b = (a+b) + (a.b) 10.a + b a b = a.b n = 10.a + b
Erivaldo ACAFE Matemática Básica Chamaremos de S(n) a soma dos algarismos do número inteiro positivo n, e de P(n) o produto dos algarismos de n. Por exemplo, se n = 47 então S(n) = 11 e P(n) 28. Se n é
ROTEIRO DE ESTUDOS Recuperação Semestral Turma(s) Professor ADM1, INF1, MET1. Pollyanna Sette Etapa(s) Disciplina 1ª e 2ª
ROTEIRO DE ESTUDOS Recuperação Semestral Turma(s) Professor ADM, INF, MET Pollyanna Sette Etapa(s) Disciplina ª e 2ª Matemática CONTEÚDOS. CONJUNTOS (LISTAS e 2/ LIVRO: CAP. 2. CONJUNTOS NUMÉRICOS (LISTAS
Definição 3.1: Seja x um número real. O módulo de x, denotado por x, é definido como: { x se x 0 x se x < 0
Capítulo 3 Módulo e Função Módular A função modular é uma função que apresenta o módulo na sua lei de formação. No entanto, antes de falarmos sobre funções modulares devemos definir o conceito de módulo,
Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Módulo I: Cálculo Diferencial e Integral Fundamentos e tópicos de revisão
Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo Módulo I: Cálculo Diferencial e Integral Fundamentos e tópicos de revisão Professora Renata Alcarde Sermarini Notas de aula do professor
2. (Ufpe 96) Seja A um conjunto com 3 elementos e B um conjunto com 5 elementos. Quantas funções injetoras de A em B existem?
1. (Unirio 99) Sejam as funções f : IR ë IR x ë y= I x I e g : IR ë IR x ë y = x - 2x - 8 Faça um esboço gráfico da função fog. 2. (Ufpe 96) Seja A um conjunto com 3 elementos e B um conjunto com 5 elementos.
SE18 - Matemática. LMAT 6B2-1- Polinômios (Operações com polinômios) Questão 1
SE18 - Matemática LMAT 6B2-1- Polinômios (Operações com polinômios) Questão 1 (Eear 2017) Considere P(x) = 2x 3 + bx 2 + cx, tal que P(1) = -2 e P(2) = 6. Assim, os valores de b e c são, respectivamente,
Exercícios de Matemática Funções Função Modular
Exercícios de Matemática Funções Função Modular TEXTO PARA A PRÓXIMA QUESTÃO (Ufsc) Na(s) questão(ões) a seguir escreva nos parênteses a soma dos itens corretos. 1. Considere a função f : IRë IR dada por
BANCO DE EXERCÍCIOS - 24 HORAS
BANCO DE EXERCÍCIOS - 24 HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº 12 EXERCÍCIOS 1) Um táxi começa uma corrida com o taxímetro marcando R$ 4,00. Cada quilômetro rodado custa
Lista de Recomendação - Verificação Suplementar Prof. Marcos Matemática
Nome: Lista de Recomendação - Verificação Suplementar Prof. Marcos Matemática 1. O valor de x, de modo que os números 3x 1, x + 3 e x + 9 estejam, nessa ordem, em PA é: 2. O centésimo número natural par
Aula 22 O teste da derivada segunda para extremos relativos.
O teste da derivada segunda para extremos relativos. MÓDULO 2 - AULA 22 Aula 22 O teste da derivada segunda para extremos relativos. Objetivo: Utilizar a derivada segunda para determinar pontos de máximo
21- EXERCÍCIOS FUNÇÕES DO SEGUNDO GRAU
1 21- EXERCÍCIOS FUNÇÕES DO SEGUNDO GRAU 1. O gráfico do trinômio y = ax 2 + bx + c. Qual a afirmativa errada? a) se a > 0 a parábola possui concavidade para cima b) se b 2 4ac > 0 o trinômio possui duas
Função Exponencial, Inversa e Logarítmica
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.1 Função Exponencial, Inversa e Logarítmica Bruno Conde Passos Engenharia Civil Rodrigo Vanderlei - Engenharia Civil Função Exponencial Dúvida: Como
Universidade Portucalense Departamento de Inovação, Ciência e Tecnologia Curso Satélite - Módulo I - Matemática
Universidade Portucalense Departamento de Inovação, Ciência e Tecnologia Curso Satélite - Módulo I - Matemática Valor Absoluto: O valor absoluto de a, representa-se por a e é a distância do número a a
1. A partir da definição, determinar a equação da parábola P, cujo foco é F = (3, 4) e cuja diretriz é L : x + y 2 = 0. (x 3) 2 + (y + 4) 2 =
QUESTÕES-AULA 18 1. A partir da definição, determinar a equação da parábola P, cujo foco é F = (3, 4) e cuja diretriz é L : x + y = 0. Solução Seja P = (x, y) R. Temos que P P d(p, F ) = d(p, L) (x 3)
UFSC. Matemática (Amarela) Resposta: = , se x < fx ( ) 2x 3, se 7 x < 8. x + 16x 51, se x. 01. Correta.
Resposta: 01 + 08 + 16 = 5 7 4, se x < fx ( ) x 3, se 7 x < 8 x + 16x 51, se x 8 01. Correta. 0. Incorreta. A imagem da função é Im = ( ; 13]. 3 04. Incorreta. f( 16) f( 6) 4 08. Correta. 16. Correta.
Matemática e suas tecnologias CONTEÚDOS POR ETAPA 1ª ETAPA 2ª ETAPA 3ª ETAPA. Função Afim Função Quadrática Função Exponencial ORIENTAÇÕES
Matemática e suas tecnologias MATEMÁTICA GLAYSON L. CARVALHO ROTEIRO DE RECUPERAÇÃO FINAL RECUP. FINAL 5 pts,75 pts 8 º ANO A B CONTEÚDOS POR ETAPA ª ETAPA ª ETAPA ª ETAPA Função Afim Função Quadrática
CÁLCULO I. Aula n o 02: Funções. Denir função e conhecer os seus elementos; Listar as principais funções e seus grácos.
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 02: Funções. Objetivos da Aula Denir função e conhecer os seus elementos; Reconhecer o gráco de uma função; Listar as
Aula 13 de Bases Matemáticas
Aula 3 de Bases Matemáticas Rodrigo Hausen Versão: 8 de julho de 206 Catálogo de Funções Reais No estudo de unções é extremamente útil conhecer as propriedades e gráicos de algumas unções reais. Função
MAT 0143 : Cálculo para Ciências Biológicas
MAT 0143 : Cálculo para Ciências Biológicas Aula 3/ Segunda 10/03/2014 Sylvain Bonnot (IME-USP) 2014 1 Resumo Aula 2 1 Informações gerais: Email: [email protected] Site: o link do MAT 0143 na pagina seguinte
UNIVERSIDADE FEDERAL DE PERNAMBUCO
CÁLCULO L1 NOTAS DA DÉCIMA PRIMEIRA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, apresentaremos o Teorema do Valor Médio e algumas de suas conseqüências como: determinar os intervalos de
12º REVISA CAESP EXATAS
1º REVISA CAESP EXATAS Nome: N o Turma: 9º ano B Prof.(ª): Debora Daiana Klering Wiest Data de Entrega: 0/09/018 Matemática/Álgebra GABARITO 01 Uma função quadrática passa pelos pontos ( 1, 0), (, 0) e
Lista 1 de Matemática - Função Quadrática 1 a Série do Ensino Médio - 2 o Bimestre de 2011
CORPO DE BOMBEIRO MILITAR DO DISTRITO FEDERAL DIRETORIA DE ENSINO E INSTRUÇÃO CENTRO DE ORIENTAÇÃO E SUPERVISÃO DO ENSINO ASSISTENCIAL COLÉGIO MILITAR DOM PEDRO II Lista 1 de Matemática - Função Quadrática
Notas de aula: Cálculo e Matemática Aplicados à Notas de aula: Gestão Ambiental
Notas de aula: Cálculo e Matemática Aplicados à Notas de aula: Gestão Ambiental 1 Funções Definição: Sejam A e B, dois conjuntos, A /0, B /0. Uma função definida em A com valores em B é uma lei que associa
MATEMÁTICA PARA TÉCNICOS
PETROBRAS INDICADA PARA TODOS CARGOS TÉCNICOS MATEMÁTICA PARA TÉCNICOS QUESTÕES RESOLVIDAS PASSO A PASSO PRODUZIDO POR EXATAS CONCURSOS www.exatas.com.br v3 ÍNDICE DE QUESTÕES MATEMÁTICA - CARGOS TÉCNICOS
Aulas particulares. Conteúdo
Conteúdo Capítulo 3...2 Funções...2 Função de 1º grau...2 Exercícios...6 Gabarito... 13 Função quadrática ou função do 2º grau... 15 Exercícios... 22 Gabarito... 29 Capítulo 3 Funções Função de 1º grau
MAT 104 Cálculo 1 Prof. Paolo Piccione. Prova 2 09 de Junho de 2010
MAT 104 Cálculo 1 Prof. Paolo Piccione Prova 2 09 de Junho de 2010 Nome: Número USP: Assinatura: Instruções A duração da prova é de uma hora e quarenta minutos. Assinale as alternativas corretas na folha
Simulado ITA. 3. O número complexo. (x + 4) (1 5x) 3x 2 x + 5
Simulado ITA 1. E m relação à teoria dos conjuntos, considere as seguintes afirmativas relacionadas aos conjuntos A, B e C: I. Se A B e B C então A C. II. Se A B e B C então A C. III. Se A B e B C então
LISTA DE REVISÃO PROVA TRIMESTRAL DE ÁLGEBRA AULAS 30 a 38 FUNÇÕES DE 1ºGRAU
LISTA DE REVISÃO PROVA TRIMESTRAL DE ÁLGEBRA AULAS 30 a 38 FUNÇÕES DE 1ºGRAU 1. (G1-014) O gráfico representa a função real definida por f(x) = a x + b. O valor de a + b é igual a A) 0,5. B) 1,0. C) 1,5.
Página 1 de 12. 1º Trimestre/ Classifique os conjuntos abaixo em vazio, unitário, finito ou infinito. a) B = {0, 1, 2,...
Página 1 de 1 1º Trimestre/015 ESCOLA TÉCNICA ESTADUAL FREDERICO GUILHERME SCHMIDT Rua Bento Gonçalves, 1171 Telefone: 359.1795 - CEP: 93010-0 São Leopoldo RS DISCIPLINA: Matemática PROFESSOR: César Lima
Matemática 41 c Resolução 42 b Resolução 43 e OBJETIVO 2001
Matemática c Numa barraca de feira, uma pessoa comprou maçãs, bananas, laranjas e peras. Pelo preço normal da barraca, o valor pago pelas maçãs, bananas, laranjas e peras corresponderia a 5%, 0%, 5% e
2 a Edição do Curso de Difusão Pré-Cálculo aos alunos de. Patricia Araripe e Pollyane Vieira. 15 de fevereiro de 2019
Função do 2 o grau: Equação e Inequação 2 a Edição do Curso de Difusão Pré-Cálculo aos alunos de graduação da ESALQ Patricia Araripe e Pollyane Vieira 15 de fevereiro de 2019 Definição (1) (Função) Dados
Funções Reais a uma Variável Real
Funções Reais a uma Variável Real 1 Introdução As funções são utilizadas para descrever o mundo real em termos matemáticos, é o que se chama de modelagem matemática para as diversas situações. Podem, por
A Ideia de Continuidade. Quando dizemos que um processo funciona de forma contínua, estamos dizendo que ele ocorre sem interrupção.
Polos Olímpicos de Treinamento Curso de Álgebra - Nível 2 Prof. Marcelo Mendes Aula 5 A Ideia de Continuidade Quando dizemos que um processo funciona de forma contínua, estamos dizendo que ele ocorre sem
