Máximos e mínimos em intervalos fechados
|
|
|
- Dalila Leão Bardini
- 8 Há anos
- Visualizações:
Transcrição
1 Universidade de Brasília Departamento de Matemática Cálculo 1 Máximos e mínimos em intervalos fechados No texto em que aprendemos a Regra da Cadeia, fomos confrontados com o seguinte problema: a partir de uma lona de plástico com 6 metros de comprimento e 3 de largura, desejamos construir uma barraca com vista frontal na forma de um triângulo isósceles. Se denotarmos por h a altura da barraca, o seu volume pode ser descrito pela função V(h) = 3h 9 h, h [0,3]. Naquele texto desenvolvemos um argumento geométrico que, juntamente com a Regra da Cadeia, nos permitiu encontrar o valor de h que fornecia o maior volume possível. Apresentaremos aqui argumentos teóricos que justificam os passos lá utilizados. 3m b h 3m Vamos considerar na primeira parte da exposição uma função f qualquer. Dizemos que x 0 dom(f) é um ponto de máximo de f se f(x 0 ) f(x), x dom(f). O número f(x 0 ) é chamado valor de máximo de f. Os conceitos de ponto de mínimo e valor de mínimo da função f são definidos de maneira análoga. A nomenclatura acima é bem natural. O ponto de máximo de uma função nada mais é do que o ponto onde ela atinge o maior valor de todos, que é chamado valor de máximo. como É importante observar que nem sempre uma função tem ponto de máximo. De fato, lim x = +, x + lim x =, x a função f(x) = x não pode assumir valor máximo nem valor mínimo. Mesmo se o domínio for um conjunto limitado, as coisas podem não funcionar bem. Por exemplo, considere a função g : ( 1,1) R dada por g(x) = x. Vamos mostrar que essa função não podeassumir valor máximo. Dado qualquer número x 0 ( 1,1), temos que (1 + x 0 )/ dom(g), pois x 0 < 1. Além disso, g(x 0 ) = x 0 < 1+x 0 1 ( ) 1+x0 = g,
2 o que mostra que x = x 0 não pode ser ponto de máximo de f. Um argumento análogo mostra também que g não possui ponto de mínimo. É claro que, para a função g acima, se considerássemos o domínio como sendo o intervalo fechado [ 1,1], então o ponto x = 1 seria ponto de máximo. Porém, pode ocorrer de uma função definida em um intervalo fechado também não possuir ponto de máximo. Um exemplo pode ser construído, a partir da função acima, se definirmos { x, se x ( 1,1) h(x) = 1/, se x { 1,1}. O mesmo raciocínio usado para a função g mostra que h também não assume valor máximo (nem mínimo) no intervalo [ 1,1]. Vale notar que, ao contrário das funções que usamos nos exemplos anteriores, essa última função não é contínua. O resultado a seguir mostra que as obstruções que fazem com que uma função não tenha ponto de máximo são sempre de uma das naturezas acima, isto é, domínio ilimitado, domínio não sendo fechado ou função não sendo contínua. Teorema 1 (Teorema de Weierstrass). Se f é uma função contínua no intervalo fechado [a,b], então f assume máximo e mínimo no intervalo [a,b]. O teorema garante que, se o domínio é um intervalo fechado e a função é contínua, então ela deve possuir pelo menos um ponto de máximo e pelo menos um ponto de mínimo. A demonstração é não trivial e não será apresentada aqui. Ao invés disso, vamos ver como utilizar o teorema para resolver vários problemas em que precisamos maximizar (ou minimizar) alguma função. Esse tipo de problema é conhecido como problema de otimização. Uma pergunta natural agora é: como fazer para encontrar o ponto de máximo de uma função contínua definida em um intervalo fechado? Para trazer um pouco de luz à discussão, vamos recorrer novamente à nossa barraca. Sabemos que a função V, por ser contínua, atinge o seu maior valor em algum h 0 [0,3]. Olhando para o gráfico de V ao lado, podemos concluir que h 0 está na verdade no intervalo aberto (0,3). Note que o gráfico de V, próximo ao ponto de máximo, se parece com o cume de uma montanha. Se pensarmos na reta tangente percebemos que, no ponto (h 0,V(h 0 )), ela é uma reta horizontal, e portanto devemos ter V (h 0 ) = 0. A situação acima é geral, conforme nos mostra o próximo resultado.
3 Teorema. Se x 0 dom(f) é um ponto de máximo (ou mínimo) da função f e f é derivável em x = x 0, então f (x 0 ) = 0. Demonstração. A justificativa geométrica foi apresentada logo acima. Para a prova formal, suponha que x 0 dom(f) é um ponto de máximo e que f (x 0 ) existe. Como f(x 0 ) f(x) para todo x dom(f), temos que f (x 0 ) = lim x x 0 f(x) f(x 0 ) x x 0 0, pois o numerador é não positivo e (x x 0 ) < 0. Na expressão acima estamos usando o fato de que, como f (x 0 ) existe, tanto faz tomar o limite pela esquerda, pela direita, ou mesmo x x 0. Fazendo o limite pela direita, obtemos f (x 0 ) = lim x x + 0 f(x) f(x 0 ) x x 0 0, visto que agora (x x 0 ) > 0 e o numerador continua sendo não positivo. As duas desigualdades acima implicam que f (x 0 ) = 0. O resultado acima motiva a seguinte definição: Definição 1. O ponto x 0 (a,b) dom(f) é chamado ponto crítico de f se uma das situações abaixo ocorre 1. f (x 0 ) = 0. f (x 0 ) não existe. Observe que os pontos críticos estão sempre no interior do domínio da função. Para entender a importância deles, suponha que f : [a,b] R é uma função contínua. De acordo com o Teorema 1, o ponto de máximo x 0 [a,b] existe. Se x 0 (a,b), então ele um ponto crítico de f. Deste modo, os candidatos o ponto de máximo (ou mínimo) de f são os pontos críticos e os pontos a e b do extremos do domínio. Exemplo 1. Vamos encontrar o ponto de máximo da função V(h) = 3h 9 h, h [0,3]. O primeiro passo é determinar os pontos críticos. Para tanto, calculamos V (h) = 3 9 h 3h 9 h, h (0,3). Como V possui derivada em todos os pontos de (0,3), os possíveis pontos críticos são aqueles pontos onde a derivada se anula. Isso ocorre somente em h 0 = 3/. Logo, o ponto 3
4 de máximo de V pertence ao conjunto {0,h 0,3}. Como V(0) = V(3) = 0 e V(h 0 ) > 0, concluímos que h 0 é o ponto de máximo de V no intervalo [0,3]. É importante lembrar que, na formulação original do problema da barraca, o domínio da função era o intervalo aberto (0,3). Isso porque quando h = 0 ou h = 3, teríamos barracas não habitáveis, porque o volume seria igual a zero. O que fizemos foi acrescentar estes dois pontos ao domínio da função de modo a poder aplicar o Teorema 1. Feito isso, é importante garantir que o ponto que resolve o problema de fato fica no intervalo aberto. Isso vai garantir que este problema de otimização de fato tem solução. Exemplo. Vamos encontrar os pontos de máximo e mínimo da função f(x) = x( ln(x)), x [1,e ]. Eles existem porque a função é contínua e o domínio é um intervalo fechado. Para determinar os pontos críticos em (1,e ) calculamos a derivada ( f (x) = ( ln(x))+x 1 ) = 1 ln(x), x (1,e ). x Novamente, como f éderivável, ospontoscríticos são somente asraízes da equação f (x) = 0 que pertencem ao intervalo (1,e ). Fazendo as contas, obtemos somente x = e. Os candidatos à máximo (ou mínimo) estão no conjunto {1,e,e }. Uma vez que f(1) =, f(e) = e, f(e ) = e ( lne ) = e ( lne) = 0, concluímos que o ponto x = e é o ponto de máximo e x = e é o ponto de mínimo de f. O fato do mínimo ocorrer em x = e mostra que é importante não esquecer de calcular a função também nos pontos do extremo do intervalo de definição. Exemplo 3. Vamos considerar agora f(x) = x+ x, x [0,3]. Observe inicialmente que, como a função y y não é derivável em y = 0, o mesmo ocorre para a função f no ponto x =. Assim, este é um ponto crítico da função f. Se x (0,), temos que f(x) = x+( x) = x+, de modo que f (x) = 1. Por outro lado, no intervalo (,3), temos que f(x) = x+(x ) = 3x, de modo que f (x) = 3. Assim, o único ponto crítico no intervalo (0,3) é o ponto x =. As considerações acima mostram que os candidatos à pontos de máximo e mínimo são {0,,3}. Uma vez que f(0) =, f() = 4, f(3) = 7, concluímos que x = 0 é ponto de mínimo e x = 3 é ponto de máximo de f. 4
5 Tarefa A partir de uma cartolina medindo vamos construir uma caixa sem tampa como segue: recortamos quadrados de lado x em cada um dos vértices da cartolina e dobramos as abas. 1. Verifique que a função V(x), que fornece o volume da caixa em função de x, é dada por V(x) = x(10 x)(16 x), x (0,5).. Determine os pontos críticos da função V no intervalo (0, 5). 3. Explique por que a função V, quando considerada no intervalo [0,5], tem ponto de máximo. Em seguida, calcule este ponto. 4. Determine as dimensões da caixa de maior volume que pode ser construída com o processo do enunciado. 5
A Regra da Cadeia. V(h) = 3h 9 h 2, h (0,3).
Universidade de Brasília Departamento de Matemática Cálculo 1 A Regra da Cadeia Suponha que, a partir de uma lona de plástico com 6 metros de comprimento e 3 de largura, desejamos construir uma barraca
Concavidade. Universidade de Brasília Departamento de Matemática
Universidade de Brasília Departamento de Matemática Cálculo 1 Concavidade Conforme vimos anteriormente, o sinal da derivada de uma função em um intervalo nos dá informação sobre crescimento ou decrescimento
Consequências do Teorema do Valor Médio
Universidade de Brasília Departamento de Matemática Cálculo 1 Consequências do Teorema do Valor Médio Neste texto vamos demonstrar o Teorema do Valor Médio e apresentar as suas importantes consequências.
O Teorema do Valor Médio
Universidade de Brasília Departamento de Matemática Cálculo 1 O Teorema do Valor Médio Começamos este texto enunciando um importante resultado sobre derivadas: Teorema do Valor Médio. Suponha que f é uma
Aula 22 O teste da derivada segunda para extremos relativos.
O teste da derivada segunda para extremos relativos. MÓDULO 2 - AULA 22 Aula 22 O teste da derivada segunda para extremos relativos. Objetivo: Utilizar a derivada segunda para determinar pontos de máximo
Derivadas Parciais Capítulo 14
Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS Como vimos no Capítulo 4, no Volume I, um dos principais usos da derivada ordinária é na determinação dos valores máximo e mínimo. DERIVADAS PARCIAIS 14.7
MAT140 - Cálculo I - Máximos e Mínimos Locais e Globais, Pontos Críticos e o Teste da Derivada Primeira
MAT140 - Cálculo I - Máximos e Mínimos Locais e Globais, Pontos Críticos e o Teste da Derivada Primeira 4 de novembro de 2015 Vimos que a derivada de uma função em um ponto é a inclinação da reta tangente
Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Aplicações da Derivada
1) Velocidade e Aceleração 1.1 Velocidade Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Aplicações da Derivada Suponhamos que um corpo se move em
Cálculo 1 A Turma F1 Prova VR
Cálculo 1 A 2017.2 Turma F1 Prova VR Nome (MAIÚSCULO): Matrícula: O IMPORTANTE É O RACIOCÍNIO, PORTANTO DEIXE-O TODO NA PROVA. RESPOSTAS SEM AS DEVIDAS JUSTIFICATIVAS SERÃO DESCONSIDERADAS. (1) Esboce
MAT146 - Cálculo I - Esboço de Gráficos. Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira
Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira Nas aulas anteriores, estudamos várias ferramentas (Teste da Derivada Primeira, Teste da Derivada Segunda, Existência de Pontos Críticos,
Multiplicadores de Lagrange
Multiplicadores de Lagrange Para motivar o método, suponha que queremos maximizar uma função f (x, y) sujeito a uma restrição g(x, y) = 0. Geometricamente: queremos um ponto sobre o gráfico da curva de
O Teorema do Valor Intermediário
Universidade de Brasília Departamento de Matemática Cálculo 1 O Teorema do Valor Intermediário Suponha que f é uma função contínua em todo o intervalo fechado [a,b]. Isto significa que, para todo c (a,b),
12. Diferenciação Logarítmica
2. Diferenciação Logarítmica A diferenciação logarítmica é uma técnica útil para diferenciar funções compostas de potências, produtos e quocientes de funções. Esta técnica consiste em executar os seguintes
CÁLCULO I. Lista Semanal 01 - Gabarito
CÁLCULO I Prof. Márcio Nascimento Prof. Marcos Diniz Questão 1. Nos itens abaixo, diga se o problema pode ser resolvido com seus conhecimentos de ensino médio (vamos chamar de pré-cálculo) ou se são necessários
Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente.
Aula 15 Derivadas Direcionais e Vetor Gradiente Seja f(x, y) uma função de variáveis. Iremos usar a notação D u f(x 0, y 0 ) para: Derivada direcional de f no ponto (x 0, y 0 ), na direção do vetor unitário
LISTA DE EXERCÍCIOS Cálculo I -A- Humberto José Bortolossi
LISTA DE EXERCÍCIOS Cálculo I -A- Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ 17 Crescimento e decrescimento de funções, máximos e mínimos globais, máximos e mínimos locais, o teorema
Aula 25. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil
Assíntotas, Esboço de Gráfico e Aplicações Aula 25 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 09 de Maio de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia
Aula 2 A distância no espaço
MÓDULO 1 - AULA 2 Objetivos Aula 2 A distância no espaço Determinar a distância entre dois pontos do espaço. Estabelecer a equação da esfera em termos de distância. Estudar a posição relativa entre duas
Aula 21 Máximos e mínimos relativos.
Aula 21 Objetivo Utilizar o conceito de derivada para determinar pontos de máximo e mínimo relativos de funções. Quando olhamos uma montanha, identificamos facilmente os picos da montanha e os fundos dos
A derivada de uma função
Universidade de Brasília Departamento de Matemática Cálculo 1 A derivada de uma função Supona que a função f está definida em todo um intervalo aberto contendo o ponto a R. Dizemos que f é derivável no
CÁLCULO I. 1 A Função Logarítmica Natural. Objetivos da Aula. Aula n o 22: A Função Logaritmo Natural. Denir a função f(x) = ln x;
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 22: A Função Logaritmo Natural Objetivos da Aula Denir a função f(x) = ln x; Calcular limites, derivadas e integral envolvendo a função
UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1
UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1 PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR - 16/10/2016 CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES: 1.
CAPÍTULO 13 (G F )(X) = X, X A (F G)(Y ) = Y, Y B. F G = I da e G F = I db,
CAPÍTULO 3 TEOREMA DA FUNÇÃO INVERSA 3 Introdução A função identidade em R n é a função que a cada elemento de R n associa o próprio elemento ie I d : R n R n X x x n I d X X x x n A função identidade
Lista 2 - Cálculo. 17 de maio de Se f e g são funções cujos grácos estão representados abaixo, sejam u(x) = f(x)g(x),
Lista 2 - Cálculo 17 de maio de 2019 1. Se f e g são funções cujos grácos estão representados abaixo, sejam u(x) = f(x)g(x), h(x) = f(g(x)) e k(x) = g(f(x)). Encontre as seguintes derivadas: (a) u (1)
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 2017.1 Gabarito Questão 01 [ 1,25 ] Determine as equações das duas retas tangentes à parábola de equação y = x 2 2x + 4 que passam pelo ponto (2,
1 A Equação Fundamental Áreas Primeiras definições Uma questão importante... 7
Conteúdo 1 4 1.1- Áreas............................. 4 1.2 Primeiras definições...................... 6 1.3 - Uma questão importante.................. 7 1 EDA Aula 1 Objetivos Apresentar as equações diferenciais
x 2 + (x 2 5) 2, x 0, (1) 5 + y + y 2, y 5. (2) e é positiva em ( 2 3 , + ), logo x = 3
Página 1 de 4 Instituto de Matemática - IM/UFRJ Cálculo Diferencial e Integral I - MAC 118 Gabarito segunda prova - Escola Politécnica / Escola de Química - 13/06/2017 Questão 1: (2 pontos) Determinar
A equação da circunferência
A UA UL LA A equação da circunferência Introdução Nas duas últimas aulas você estudou a equação da reta. Nesta aula, veremos que uma circunferência desenhada no plano cartesiano também pode ser representada
MAT146 - Cálculo I - Teorema do Valor Médio
Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira Motivação Suponha que uma função real f, definida em um intervalo I, seja derivável em todo I. Sabemos que se f é uma função constante,
Prova de Conhecimentos Específicos 1 a QUESTÃO: (2,0 pontos)
Prova de Conhecimentos Específicos 1 a QUESTÃO: (,0 pontos) 5x Considere a função f(x)=. Determine, se existirem: x +7 (i) os pontos de descontinuidade de f; (ii) as assíntotas horizontais e verticais
Humberto José Bortolossi [01] (a) (1.0) Escreva infinitos números racionais que pertençam ao intervalo
PRIMEIRA VERIFICAÇÃO DE APRENDIZAGEM Pré-Cálculo Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ Nome legível: Assinatura: [0] (a) (.0) Escreva infinitos números racionais que pertençam
MAT CÁLCULO 2 PARA ECONOMIA. Geometria Analítica
MT0146 - CÁLCULO PR ECONOMI SEMESTRE DE 016 LIST DE PROBLEMS Geometria nalítica 1) Sejam π 1 e π os planos de equações, respectivamente, x + y + z = e x y + z = 1. Seja r a reta formada pela interseção
3. Limites e Continuidade
3. Limites e Continuidade 1 Conceitos No cálculo de limites, estamos interessados em saber como uma função se comporta quando a variável independente se aproxima de um determinado valor. Em outras palavras,
Cálculo 1 - Quinta Lista de Exercícios Derivadas
Cálculo 1 - Quinta Lista de Exercícios Derivadas Prof. Fabio Silva Botelho November 2, 2017 1. Seja f : D = R\{ 7/5} R onde 1 5x+7. Seja x D. Utilizando a definição de derivada, calcule f (x). Calcule
MATEMÁTICA A - 11o Ano Funções - Derivada (extremos, monotonia e retas tangentes) Propostas de resolução
MATEMÁTICA A - o Ano Funções - Derivada extremos, monotonia e retas tangentes) Propostas de resolução Exercícios de exames e testes intermédios. Temos que, pela definição de derivada num ponto, f ) fx)
O domínio [ 1, 1] é simétrico em relação a origem.
QUESTÕES-AULA 33 1. Determine quais das funções abaixo são pares, quais são impares e quais não são pares nem impares. Justifique as suas respostas. (a) g : [ 3, 3] R, x x 3 (b) h : ( 3, 3) R, x x 3 x
CÁLCULO I. 1 Derivada de Funções Elementares
CÁLCULO I Prof. Marcos Diniz Prof. Edilson Neri Prof. André Almeida Aula n o : Derivada das Funções Elementares. Regras de Derivação. Objetivos da Aula Apresentar a derivada das funções elementares; Apresentar
= 2 sen(x) (cos(x) (b) (7 pontos) Pelo item anterior, temos as k desigualdades. sen 2 (2x) sen(4x) ( 3/2) 3
Problema (a) (3 pontos) Sendo f(x) = sen 2 (x) sen(2x), uma função π-periódica, temos que f (x) = 2 sen(x) cos(x) sen(2x) + sen 2 (x) 2 cos(2x) = 2 sen(x) (cos(x) sen(2x) + sen(x) cos(2x) ) = 2 sen(x)
UNIVERSIDADE FEDERAL DE PERNAMBUCO
CÁLCULO L1 NOTAS DA DÉCIMA PRIMEIRA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, apresentaremos o Teorema do Valor Médio e algumas de suas conseqüências como: determinar os intervalos de
Questão (a) 4.(b) 5.(a) 5.(b) 6.(a) 6.(b) 6.(c) 7 Cotação
Faculdade de Ciências Exatas e da Engenharia PROVA DE AVALIAÇÃO DE CONHECIMENTOS E COMPETÊNCIAS PARA ADMISSÃO AO ENSINO SUPERIOR PARA MAIORES DE ANOS - 018 Matemática - 1/0/018 Atenção: Justifique os raciocínios
15 AULA. Máximos e Mínimos LIVRO. META Encontrar os pontos de máximo e mínimo de uma função de duas variáveis a valores reais.
1 LIVRO Máximos e Mínimos 1 AULA META Encontrar os pontos de máximo e mínimo de uma função de duas variáveis a valores reais. OBJETIVOS Maximizar e/ou minimizar função de duas variáveis a valores reais.
MAT146 - Cálculo I - Problemas de Otimização
Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira Um problema de otimização é aquele onde se procura determinar os valores extremos de uma função, isto é, o maior ou o menor valor que
Teoremas e Propriedades Operatórias
Capítulo 10 Teoremas e Propriedades Operatórias Como vimos no capítulo anterior, mesmo que nossa habilidade no cálculo de ites seja bastante boa, utilizar diretamente a definição para calcular derivadas
UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL
UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL -. EXAME FINAL Nome Legível RG CPF Respostas sem justificativas não serão aceitas. Além
Derivada de algumas funções elementares
Universidade de Brasília Departamento de Matemática Cálculo 1 Derivada de algumas funções elementares Vamos lembrar que a função f é derivável no ponto x = a se existe o limite f f(x) f(a) f(a+) f(a) (a).
Gabarito P1 - Cálculo para FAU Prof. Jaime Angulo
Gabarito P1 - Cálculo para FAU Prof. Jaime Angulo 1 a Questão [1.5] Note que x quando x ou x e x < quando < x
Cálculo Numérico. Santos Alberto Enriquez-Remigio FAMAT-UFU 2015
Cálculo Numérico Santos Alberto Enriquez-Remigio FAMAT-UFU 2015 1 Capítulo 1 Solução numérica de equações não-lineares 1.1 Introdução Lembremos que todo problema matemático pode ser expresso na forma de
Teorema de Pitágoras
Teorema de Pitágoras Luan Arjuna 1 Introdução Uma das maiores preocupações dos matemáticos da antiguidade era a determinação de comprimentos: desde a altura de um edifício até a distância entre duas cidades,
A Equivalência entre o Teorema do Ponto Fixo de Brouwer e o Teorema do Valor Intermediário
A Equivalência entre o Teorema do Ponto Fixo de Brouwer e o Teorema do Valor Intermediário Renan de Oliveira Pereira, Ouro Preto, MG, Brasil Wenderson Marques Ferreira, Ouro Preto, MG, Brasil Eder Marinho
Esboço de Gráfico - Exemplos e Regras de L Hospital Aula 23
Esboço de Gráfico - s e Regras de L Hospital Aula 23 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 06 de Maio de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia
BANCO DE EXERCÍCIOS - 24 HORAS
BANCO DE EXERCÍCIOS - HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº GABARITO COMENTADO ) A função será y,5x +, onde y (preço a ser pago) está em função de x (número de quilômetros
Derivadas Parciais Capítulo 14
Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS No Exemplo 6 da Seção 14.7 maximizamos a função volume V = xyz sujeita à restrição 2xz + 2yz + xy = que expressa a condição de a área da superfície ser
CÁLCULO I. 1 Funções Crescentes e Decrescentes
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 17: Crescimento e Decrescimento de funções. Teste da Primeira Derivada. Objetivos da Aula Denir funções crescentes e
Derivadas 1
www.matematicaemexercicios.com Derivadas 1 Índice AULA 1 Introdução 3 AULA 2 Derivadas fundamentais 5 AULA 3 Derivada do produto e do quociente de funções 7 AULA 4 Regra da cadeia 9 www.matematicaemexercicios.com
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito. c1 + c 2 = 1 c 1 + 4c 2 = 3. a n = n. c 1 = 1 2c 1 + 2c
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 2019.1 Gabarito Questão 01 [ 1,25 ::: (a)=0,50; (b)=0,75 ] Resolva as seguintes recorrências: (a) a n+2 5a n+1 + 4a n = 0, a 0 = 1, a 1 = 3. (b)
CÁLCULO I. Lista Semanal 01 - Gabarito
CÁLCULO I Prof. Tiago Coelho Prof. Emerson Veiga Questão 1. Esboce as seguintes regiões no plano xy: (a) 0 < x 6. A região representa todas os pontos onde x assume valores entre 0 e 6, sendo aberto em
UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Instituto de Matemática PRIMEIRA PROVA UNIFICADA CÁLCULO I POLITÉCNICA E ENGENHARIA QUÍMICA 13/12/2012.
UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Instituto de Matemática PRIMEIRA PROVA UNIFICADA CÁLCULO I POLITÉCNICA E ENGENHARIA QUÍMICA 13/12/2012. GABARITO 1 a Questão. (3.0 pontos). (a) Calcule: lim x 0 +
Concavidade e pontos de inflexão Aula 20
Concavidade e pontos de inflexão Aula 20 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 22 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica
MATEMÁTICA A - 12o Ano Funções - Limites e Continuidade Propostas de resolução
MATEMÁTICA A - 2o Ano Funções - Limites e Continuidade Propostas de resolução Exercícios de exames e testes intermédios. Como a função é contínua em R, também é contínua em x 0, pelo que Temos que fx f0
Técnicas de. Integração
Técnicas de Capítulo 7 Integração TÉCNICAS DE INTEGRAÇÃO f ( xdx ) a Na definição de integral definida, trabalhamos com uma função f definida em um intervalo limitado [a, b] e supomos que f não tem uma
ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 12º ANO DE ESCOLARIDADE MATEMÁTICA A. Aula nº 1 do plano nº 12
ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA º ANO DE ESCOLARIDADE MATEMÁTICA A Aula nº do plano nº Resolver os eercícios 35, 355, 358, 360, 36, 364 das páginas 67 a 7 Conceito de derivada de uma função
Derivadas. Derivadas. ( e )
Derivadas (24-03-2009 e 31-03-2009) Recta Tangente Seja C uma curva de equação y = f(x). Para determinar a recta tangente a C no ponto P de coordenadas (a,f(a)), i.e, P(a, f(a)), começamos por considerar
MAT Cálculo I - POLI Gabarito da P2 - A
MAT 45 - Cálculo I - POLI - 006 Gabarito da P - A Questão A) Calcule (.0) (a) lim ( cos() ) / (.0) (b) 0 ( ( π ) ) cos + e d (a) Tem-se, ( π/4, π/4) \ {0}: (cos ) / = ep( ln(cos )). Pondo f() =. ln(cos
Funções de Uma Variável - 1 a Avaliação - Turma B3 31 de outubro de Prof. Armando Caputi
Funções de Uma Variável - 1 a Avaliação - Turma B 1 de outubro de 017 - Prof. Armando Caputi 1 Determine o domínio da função g(x) = arctan ( ln(x x + ) ) (justifique) e a equação da reta tangente ao seu
MAT-2454 Cálculo Diferencial e Integral II EP-USP
MAT-454 Cálculo Diferencial e Integral II EP-USP Solução da Questão da Terceira Prova 8//06 Questão (Tipo A Valor: 3, 0 pontos). a. Determine todos os pontos da superfície de nível da função g(x, y, z)
UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO. Realização:
UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO Realização: Fortaleza, Fevereiro/2010 1. LIMITES 1.1. Definição Geral Se os valores de f(x) puderem
Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A Funções e Gráficos Generalidades. Funções polinomiais. Função módulo.
Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A Funções e Gráficos Generalidades. Funções polinomiais. Função módulo. Trabalho de casa nº 14 1. Um cilindro como o da figura tem 10 cm de
Índice. AULA 5 Derivação implícita 3. AULA 6 Aplicações de derivadas 4. AULA 7 Aplicações de derivadas 6. AULA 8 Esboço de gráficos 9
www.matematicaemexercicios.com Derivadas Vol. 2 1 Índice AULA 5 Derivação implícita 3 AULA 6 Aplicações de derivadas 4 AULA 7 Aplicações de derivadas 6 AULA 8 Esboço de gráficos 9 www.matematicaemexercicios.com
O limite de uma função
Universidade de Brasília Departamento de Matemática Cálculo 1 O ite de uma função Se s(t) denota a posição de um carro no instante t > 0, então a velocidade instantânea v(t) pode ser obtida calculando-se
CÁLCULO I. 1 Funções Crescentes e Decrescentes
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 14: Crescimento e Decrescimento. Teste da Primeira Derivada. Objetivos da Aula Denir funções crescentes e decrescentes; Determinar os intervalos
Resumo das aulas dos dias 4 e 11 de abril e exercícios sugeridos
MAT 1351 Cálculo para funções uma variável real I Curso noturno de Licenciatura em Matemática 1 semestre de 2016 Docente: Prof. Dr. Pierluigi Benevieri Resumo das aulas dos dias 4 e 11 de abril e exercícios
A = B, isto é, todo elemento de A é também um elemento de B e todo elemento de B é também um elemento de A, ou usando o item anterior, A B e B A.
Capítulo 1 Números Reais 1.1 Conjuntos Numéricos Um conjunto é uma coleção de elementos. A relação básica entre um objeto e o conjunto é a relação de pertinência: quando um objeto x é um dos elementos
3. Tem-se: Como não pode ser, então. ( não pode ser porque se assim fosse a probabilidade de sair a face numerada com o número
EXAME NACIONAL DO ENSINO SECUNDÁRIO MATEMÁTICA A PROVA MODELO N.º 1 PROPOSTA DE RESOLUÇÃO 12.º ANO DE ESCOLARIDADE Site: http://recursos-para-matematica.webnode.pt/ Facebook: https://www.facebook.com/recursos.para.matematica
Prova Escrita de MATEMÁTICA A - 12o Ano a Fase
Prova Escrita de MATEMÁTICA A - o Ano 00 - a Fase Proposta de resolução GRUPO I. Como só existem bolas azuis e roxas, e a probabilidade de extrair uma bola da caixa, e ela ser azul é igual a, então existem
Matemática I. 1 Propriedades dos números reais
Matemática I 1 Propriedades dos números reais O conjunto R dos números reais satisfaz algumas propriedades fundamentais: dados quaisquer x, y R, estão definidos a soma x + y e produto xy e tem-se 1 x +
Nome: Nº. Página 1 de 9
Nome: Nº Página 1 de 9 Página 2 de 9 1. Uma urna contém 5 bolas, numeradas de 1 a 5 e indistinguíveis ao tato. Retiram-se sucessivamente 3 bolas com reposição e em cada extração anota-se o número obtido.
Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema III Trigonometria e Números Complexos. Tarefa nº 5 do plano de trabalho nº 1
Escola Secundária com 3º ciclo D. Dinis 1º Ano de Matemática A Tema III Trigonometria e Números Complexos Tarefa nº 5 do plano de trabalho nº 1 1. Na figura está representado o gráfico da função g, de
13. Taxa de variação Muitos conceitos e fenômenos físicos, econômicos, biológicos, etc. estão relacionados com taxa de variação.
3. Taxa de variação Muitos conceitos e fenômenos físicos, econômicos, biológicos, etc. estão relacionados com taxa de variação. Definição : Taxa de variação média. Considere x variável independente e y
Aula 5 Derivadas parciais
Aula 5 Derivadas parciais MÓDULO 1 AULA 5 Objetivos Aprender a calcular as derivadas parciais de funções de várias variáveis. Conecer a interpretação geométrica desse conceito. Introdução Ao longodas quatro
Funções de Uma Variável - 1 a Avaliação - Turma B3 31 de outubro de Prof. Armando Caputi
Funções de Uma Variável - 1 a Avaliação - Turma B 1 de outubro de 017 - Prof. Armando Caputi 1 Determine o domínio da função f(x) = arctan x x + 1 (justifique) e a equação da reta tangente ao seu gráfico
AT3-1 - Unidade 3. Derivadas e Aplicações 1. Cálculo Diferencial e Integral. UAB - UFSCar. Bacharelado em Sistemas de Informação
AT3-1 - Unidade 3 1 Cálculo Diferencial e Integral Bacharelado em Sistemas de Informação UAB - UFSCar 1 Versão com 34 páginas 1 / 34 Tópicos de AT3-1 1 Uma noção intuitiva Caracterização da derivada Regras
6.1.2 Derivada de ordem superior e derivação implícita
6.1. DERIVABILIDADE E DIFERENCIABILIDADE 111 6.1.2 Derivada de ordem superior e derivação implícita Observe que se f é derivável num subconjunto A de seu domínio D, obtemos então uma nova função g = f
A derivada da função inversa, o Teorema do Valor Médio e Máximos e Mínimos - Aula 18
A derivada da função inversa, o Teorema do Valor Médio e - Aula 18 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 10 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014106
LIMITES E CONTINUIDADE
LIMITES E CONTINUIDADE 1 LIMITE Marina Vargas R. P. Gonçalves a a Departamento de Matemática, Universidade Federal do Paraná, [email protected], http:// www.estruturas.ufpr.br Definição 1.1 O limite
Universidade Federal de Pelotas. Instituto de Física e Matemática Pró-reitoria de Ensino. Módulo de Limites. Aula 01. Projeto GAMA
Universidade Federal de Pelotas Instituto de Física e Matemática Pró-reitoria de Ensino Atividades de Reforço em Cálculo Módulo de Limites Aula 0 208/ Projeto GAMA Grupo de Apoio em Matemática Ideia Intuitiva
Cálculo II. Derivadas Parciais
Cálculo II Derivadas Parciais (I) (II) Definição Se f é uma função de duas variáveis, suas derivadas parciais são as funções f x e f y definidas por f x ( x, y) lim h 0 f ( x h, y) f( x,
