Derivada de algumas funções elementares
|
|
|
- Adelina Fidalgo Botelho
- 8 Há anos
- Visualizações:
Transcrição
1 Universidade de Brasília Departamento de Matemática Cálculo 1 Derivada de algumas funções elementares Vamos lembrar que a função f é derivável no ponto x = a se existe o limite f f(x) f(a) f(a+) f(a) (a). 0 Conforme vimos em um texto anterior, a derivada de uma função tem diversas interpretações, dependendo do contexto. Neste texto estamos interessados somente em calcular a derivada de algumas funções elementares. Exemplo 1. Se m R e f(x) = m, para todo x R, então f (a) f(x) f(a) m m 0 = 0, para todo a R. Assim, uma função constante tem derivada em todos os pontos e esta derivada vale zero. Geometricamente, isso significa que em qualquer ponto (a, f(a)) a reta tangente ao gráfico é orizontal. Exemplo 2. Seja f(x) = mx+b, m, b R. Temos que f f(a+) f(a) [m(a+)+b] [ma+b] (a) 0 0 m = m, para todo a R. O gráfico da função f é uma reta de inclinação m e a conta acima mostra que, em cada ponto (a,f(a)), a inclinação da reta tangente ao gráfico é também igual a m. De fato, o que ocorre é que a reta tangente coincide com a própria reta. Exemplo 3. Se f(x) = x n, com n N, então para cada a R. f (a) f(x) f(a) x n a n ()(x n 1 +ax n 2 +a 2 x n 2 + +a n 2 x+a n 1 ) () = a n 1 +a a n 2 +a 2 a n 2 + +a n 2 a+a n 1 = na n 1, 1
2 Dada uma função f podemos construir uma nova função f que camaremos de função derivada de f. Esta função associa, para cada elemento a onde f é derivável, a sua derivada f (a). Quando a função f tem derivada em todos os seus pontos, o domínio da sua derivada f é o mesmo domínio de f e dizemos que a função é derivável. Exemplos 1, 2 e 3 (revistados). As funções constante, f(x) = mx+b e g(x) = x n, com n N, são deriváveis e (m) = 0, (mx+b) = m, (x n ) = nx n 1, para todo x R. Exemplo 4. Supona que f é derivável no ponto x = a e f(a) 0. Vamos verificar que a função 1/f(x) é também derivável em x = a. Para isto, primeiro simplificamos o quociente de Newton como se segue ( ) ( ) 1 1 (x) (a) f f = 1 f(x) 1 f(a) = f(a) f(x) f(x)f(a) ( ) f(x) f(a) 1 = f(x)f(a). Fazendo x a e lembrando que f é derivável obtemos ( ) 1 f(x) f(a) 1 (a) = 1 lim lim f f(x)f(a) = (a) f f(a) 2. Exemplo 5. Vamos calcular a derivada de f(x) = x n quando n é um inteiro negativo. Para isto, observe primeiro que existe m N tal que n = m. Deste modo, podemos usar os dois exemplos anteriores para calcular ( ) 1 (x n ) = (x m ) = = (xm ) mxm 1 x m (x m ) = 2 x = 2m mx m 1 = nx n 1, para todo x 0. Obviamente, no ponto x = 0 a função x n não pode ser derivável quando n é negativo, porque ela não está nem definida neste ponto. Exemplo 6. Juntando os Exemplos 3 e 5, podemos escrever (x n ) = nx n 1, sempre que n Z. Pode-se provar que (x r ) = rx r 1, para qualquer potência r R. A fórmula acima é conecida como regra da potência para derivadas. 2
3 Exemplo 7. Vamos calcular a derivada da função sen(x). Para tanto, note incialmente que a fórmula do seno de uma soma nos permite escrever Lembrando agora que sen(x+) sen(x) = sen(x)cos()+sen()cos(x) sen(x) ( ) ( ) cos() 1 sen() = sen(x) +cos(x). sen() cos() 1 lim = 1, lim = 0, (1) 0 0 podemos calcular [ ( ) ( )] cos() 1 sen() (sen(x)) sen(x) +cos(x) 0 = sen(x) 0+cos(x) 1 = cos(x). Na tarefa você vai provar que a função coseno tem como derivada a função sen(x). Assim, temos para todo x R. (sen(x)) = cos(x), (cos(x)) = sen(x), Usando somente a definição de derivada e as propriedades do limite podemos provar o seguinte resultado. Teorema 1. Se c R e as funções f e g são deriváveis em x = a, então 1. (cf) (a) = cf (a); 2. (f +g) (a) = f (a)+g (a); 3. (f g) (a) = f (a) g (a). Vamos provar o item 2 acima. Temos que (f +g) (f +g)(x) (f +g)(a) f(x)+g(x) f(a) g(a) (a) [ f(x) f(a) + g(x) g(a) ] = f (a)+g (a). Os outros itens podem ser provados de maneira análoga. Usando o teorema acima e os exemplos anteriores, podemos agora calcular a derivada de várias funções. Por exemplo ( 3sen(x)+5 x 1 ) = 3(sen(x)) +5(x 1/2 ) (x 1 ) = 3cos(x)+ 5 x 2 x + 1 x 2. 3
4 Antes de terminar o texto vamos observar que existem outras notações para a derivada de uma função, além de f. Destacamos aqui somente uma delas, que é d f(x), embora você dx possa encontrar outras dependo do livro que está usando. Com esta outra notação temos, por exemplo, d dx xr = rx r 1, d d sen(x) = cos(x), dx dx (f(x))±g(x)) = d dx f(x)± d dx g(x). Os exemplos tratados neste texto (e na tarefa a seguir) nos permitem construir a seguinte tabela de derivadas: função derivada mx+b, com m,b R m Exemplo 2 x r, com r R rx r 1 Exemplos 3, 5 e 6 sen(x) cos(x) Exemplo 7 cos(x) sen(x) Tarefa cf(x), com c R cf (x) Teorema 1 f(x)±g(x) f (x)±g (x) Teorema 1 Você deve ter notado que a tabela acima não contempla todas as funções básicas que conecemos. Por exemplo, a função tan(x) = sen(x) não aparece na tabela. Olando para o cos(x) Teorema 1, seria natural perguntarmos se a derivada de um quociente de funções deriváveis não é o quociente das derivadas. Se assim fosse, seria fácil calcularmos a derivada da tangente, uma vez que sabemos a derivada do seno e do coseno. De fato, o produto e o quociente de funções deriváveis é ainda derivável. Contudo, as regras para calcular tais derivas são ligeiramente mais complicadas e serão objeto de um outro texto. 4
5 Tarefa Nesta tarefa vamos calcular a derivada da função coseno, a partir dos passos abaixo: 1. Lembrando que cos(x + ) = cos(x) cos() sen(x) sen(), escreva o quociente cos(x+) cos(x) em termo das expressões que aparecem na equação (1) do texto; 2. Procedendo como no Exemplo 7, faça 0 na expressão acima para calcular a derivada de cos(x). 5
A derivada de uma função
Universidade de Brasília Departamento de Matemática Cálculo 1 A derivada de uma função Supona que a função f está definida em todo um intervalo aberto contendo o ponto a R. Dizemos que f é derivável no
MAT146 - Cálculo I - Derivada de funções polinomiais, regras de derivação e derivada de funções trigonométricas
MAT146 - Cálculo I - Derivada de funções polinomiais, regras de derivação e derivada de funções trigonométricas Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira Vimos que uma função
A regra do produto e do quociente para derivadas
Universidade de Brasília Departamento de Matemática Cálculo A rera do produto e do quociente para derivadas Vimos em um texto anterior que a derivada de uma soma é a soma das derivadas, um resultado análoo
Derivada - Parte 2 - Regras de derivação
Derivada - Parte 2 - Wellington D. Previero [email protected] http://paginapessoal.utfpr.edu.br/previero Universidade Tecnológica Federal do Paraná - UTFPR Câmpus Londrina Wellington D. Previero Derivada
Derivadas 1
www.matematicaemexercicios.com Derivadas 1 Índice AULA 1 Introdução 3 AULA 2 Derivadas fundamentais 5 AULA 3 Derivada do produto e do quociente de funções 7 AULA 4 Regra da cadeia 9 www.matematicaemexercicios.com
Matemática Licenciatura - Semestre Curso: Cálculo Diferencial e Integral I Professor: Robson Sousa. Diferenciabilidade
Matemática Licenciatura - Semestre 200. Curso: Cálculo Diferencial e Integral I Professor: Robson Sousa Diferenciabilidade Usando o estudo de ites apresentaremos o conceito de derivada de uma função real
A Regra da Cadeia. V(h) = 3h 9 h 2, h (0,3).
Universidade de Brasília Departamento de Matemática Cálculo 1 A Regra da Cadeia Suponha que, a partir de uma lona de plástico com 6 metros de comprimento e 3 de largura, desejamos construir uma barraca
3 A Reta Tangente Definição: Seja y = f(x) uma curva definida no intervalo. curva y = f(x). A reta secante s é a reta que passa pelos pontos
3 A Reta Tangente Definição: Seja y = f(x) uma curva definida no intervalo (a, b) Sejam P(p, f(p)) e Q(x, f(x)) dois pontos distintos da curva y = f(x). A reta secante s é a reta que passa pelos pontos
Derivada. Capítulo Retas tangentes e normais Número derivado
Capítulo 3 Derivada 3.1 Retas tangentes e normais Vamos considerar o problema que consiste em traçar a reta tangente e a reta normal a uma curvay= f(x) num determinado ponto (a,f(a)) da curva. Por isso
= 2 sen(x) (cos(x) (b) (7 pontos) Pelo item anterior, temos as k desigualdades. sen 2 (2x) sen(4x) ( 3/2) 3
Problema (a) (3 pontos) Sendo f(x) = sen 2 (x) sen(2x), uma função π-periódica, temos que f (x) = 2 sen(x) cos(x) sen(2x) + sen 2 (x) 2 cos(2x) = 2 sen(x) (cos(x) sen(2x) + sen(x) cos(2x) ) = 2 sen(x)
A derivada (continuação) Aula 17
A derivada (continuação) Aula 17 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 08 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica Teorema
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 09: Regras de Derivação Objetivos da Aula Apresentar e aplicar as regras operacionais de derivação; Derivar funções utilizando diferentes
Bases Matemáticas Continuidade. Propriedades do Limite de Funções. Daniel Miranda
Daniel De modo intuitivo, uma função f : A B, com A,B R é dita contínua se variações suficientemente pequenas em x resultam em variações pequenas de f(x), ou equivalentemente, se para x suficientemente
CÁLCULO I. 1 Derivada de Funções Elementares
CÁLCULO I Prof. Marcos Diniz Prof. Edilson Neri Prof. André Almeida Aula n o : Derivada das Funções Elementares. Regras de Derivação. Objetivos da Aula Apresentar a derivada das funções elementares; Apresentar
RESOLUÇÕES LISTA 02. b) FALSA, pois para termos a equação de uma reta em um certo ponto a função deve ser derivável naquele ponto.
UNIVERSIDADE ESTADUAL VALE DO ACARAÚ CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS CAMPUS DA CIDAO CURSO DE MATEMÁTICA CÁLCULO NUMÉRICO JOSÉ CLAUDIMAR DE SOUSA RESOLUÇÕES LISTA 02 QUESTÃO 1 a) Pela equação
A derivada da função inversa
A derivada da função inversa Sumário. Derivada da função inversa............... Funções trigonométricas inversas........... 0.3 Exercícios........................ 7.4 Textos Complementares................
Derivadas. Derivadas. ( e )
Derivadas (24-03-2009 e 31-03-2009) Recta Tangente Seja C uma curva de equação y = f(x). Para determinar a recta tangente a C no ponto P de coordenadas (a,f(a)), i.e, P(a, f(a)), começamos por considerar
AT4-1 - Unidade 4. Integrais 1. Cálculo Diferencial e Integral. UAB - UFSCar. Bacharelado em Sistemas de Informação. 1 Versão com 14 páginas
AT4-1 - Unidade 4 1 Cálculo Diferencial e Integral Bacharelado em Sistemas de Informação UAB - UFSCar 1 Versão com 14 páginas 1 / 14 Tópicos de AT4-1 1 2 / 14 Tópicos de AT4-1 1 3 / 14 Relação entre funções
UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, apresentaremos a noção de integral indefinidada. Também discutiremos
CÁLCULO L NOTAS DA DÉCIMA OITAVA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, apresentaremos a noção de integral indefinidada. Também discutiremos a primeira técnica de integração: mudança
UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1
UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1 PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR - 16/10/2016 CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES: 1.
MAT Aula 12/ 23/04/2014. Sylvain Bonnot (IME-USP)
MAT 0143 Aula 12/ 23/04/2014 Sylvain Bonnot (IME-USP) 2014 1 Resumo: 1 Site: http://www.ime.usp.br/~sylvain/courses.html 2 Hoje: correção da prova + derivadas. 3 Derivadas: definição de f (a) e equação
Concavidade. Universidade de Brasília Departamento de Matemática
Universidade de Brasília Departamento de Matemática Cálculo 1 Concavidade Conforme vimos anteriormente, o sinal da derivada de uma função em um intervalo nos dá informação sobre crescimento ou decrescimento
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 2: Aproximações Lineares e Diferenciais Objetivos da Aula Definir e calcular a aproximação linear de uma função derivável; Conhecer e determinar
Algumas Regras para Diferenciação
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Algumas Regras para
AT3-1 - Unidade 3. Derivadas e Aplicações 1. Cálculo Diferencial e Integral. UAB - UFSCar. Bacharelado em Sistemas de Informação
AT3-1 - Unidade 3 1 Cálculo Diferencial e Integral Bacharelado em Sistemas de Informação UAB - UFSCar 1 Versão com 34 páginas 1 / 34 Tópicos de AT3-1 1 Uma noção intuitiva Caracterização da derivada Regras
Derivadas. Slides de apoio sobre Derivadas. Prof. Ronaldo Carlotto Batista. 21 de outubro de 2013
Cálculo 1 ECT1113 Slides de apoio sobre Derivadas Prof. Ronaldo Carlotto Batista 21 de outubro de 2013 AVISO IMPORTANTE Estes slides foram criados como material de apoio às aulas e não devem ser utilizados
Diferenciabilidade de função de uma variável
Capítulo 6 Diferenciabilidade de função de uma variável Um conceito importante do Cálculo é o de derivada, que é um ite, como veremos na definição. Fisicamente o conceito de derivada está relacionado ao
Tópico 4. Derivadas (Parte 1)
Tópico 4. Derivadas (Parte 1) 4.1. A reta tangente Para círculos, a tangencia é natural? Suponha que a reta r da figura vá se aproximando da circunferência até tocá-la num único ponto. Na situação da figura
1. Funções Reais de Variável Real Vamos agora estudar funções definidas em subconjuntos D R com valores em R, i.e. f : D R R
. Funções Reais de Variável Real Vamos agora estudar funções definidas em subconjuntos D R com valores em R, i.e. f : D R R D x f(x). Uma função é uma regra que associa a cada elemento x D um valor f(x)
CÁLCULO I. 1 Regras de Derivação. Objetivos da Aula. Aula n o 12: Regras de Derivação. Apresentar e aplicar as regras operacionais de derivação;
CÁLCULO I Prof. Marcos Diniz Prof. Anré Almeia Prof. Eilson Neri Júnior Aula n o 2: Regras e Derivação Objetivos a Aula Apresentar e aplicar as regras operacionais e erivação; Derivar funções utilizano
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior
Objetivos da Aula CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 4: Aproximações Lineares e Diferenciais. Regra de L Hôspital. Definir e calcular a aproximação linear
A Derivada. Derivadas Aula 16. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil
Derivadas Aula 16 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 04 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014104 - Engenharia Mecânica A Derivada Seja x = f(t)
CÁLCULO I. 1 Regras de Derivação. Objetivos da Aula. Aula n o 12: Regras de Derivação. Apresentar e aplicar as regras operacionais de derivação;
CÁLCULO I Prof. Marcos Diniz Prof. Anré Almeia Prof. Eilson Neri Júnior Prof. Emerson Veiga Prof. Tiago Coelho Aula n o : Regras e Derivação Objetivos a Aula Apresentar e aplicar as regras operacionais
Consequências do Teorema do Valor Médio
Universidade de Brasília Departamento de Matemática Cálculo 1 Consequências do Teorema do Valor Médio Neste texto vamos demonstrar o Teorema do Valor Médio e apresentar as suas importantes consequências.
13. Taxa de variação Muitos conceitos e fenômenos físicos, econômicos, biológicos, etc. estão relacionados com taxa de variação.
3. Taxa de variação Muitos conceitos e fenômenos físicos, econômicos, biológicos, etc. estão relacionados com taxa de variação. Definição : Taxa de variação média. Considere x variável independente e y
Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente.
Aula 15 Derivadas Direcionais e Vetor Gradiente Seja f(x, y) uma função de variáveis. Iremos usar a notação D u f(x 0, y 0 ) para: Derivada direcional de f no ponto (x 0, y 0 ), na direção do vetor unitário
1. Polinómios e funções racionais
Um catálogo de funções. Polinómios e funções racionais Polinómios e funções racionais são funções que se podem construir usando apenas as operações algébricas elementares. Recordemos a definição: Definição
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 06: Continuidade de Funções Objetivos da Aula Definir função contínua; Reconhecer uma função contínua através do seu gráfico; Utilizar as
Aula n o 29:Técnicas de Integração: Integrais Trigonométricas - Substituição Trigonométrica
CÁLCULO I Aula n o 29:Técnicas de Integração: Integrais Trigonométricas - Substituição Trigonométrica Prof. Edilson Neri Júnior Prof. André Almeida 1 Integrais Trigonométricas Iniciaremos com o seguinte
1. Limite. lim. Ou seja, o limite é igual ao valor da função em x 0. Exemplos: 1.1) Calcule lim x 1 x 2 + 2
1. Limite Definição: o limite de uma função f(x) quando seu argumento x tende a x0 é o valor L para o qual a função se aproxima quando x se aproxima de x0 (note que a função não precisa estar definida
Integração por partes
Universidade de Brasília Departamento de Matemática Cálculo 1 Integração por partes Vimos nos textos anteriores que a técnica de mudança de variáveis é muito útil no cálculo de algumas primitivas. Porém,
Nome: Gabarito Data: 28/10/2015. Questão 01. Calcule a derivada da função f(x) = sen x pela definição e confirme o resultado
Fundação Universidade Federal de Pelotas Departamento de Matemática e Estatística Curso de Licenciatura em Matemática - Diurno Segunda Prova de Cálculo I Prof. Dr. Maurício Zan Nome: Gabarito Data: 8/0/05.
Séries Potências II. por Abílio Lemos. Universidade Federal de Viçosa. Departamento de Matemática UFV. Aulas de MAT
Séries Potências II por Universidade Federal de Viçosa Departamento de Matemática-CCE Aulas de MAT 147-2018 26 e 28 de setembro de 2018 Se a série de potências c n (x a) n tiver um raio de convergência
Teoremas e Propriedades Operatórias
Capítulo 10 Teoremas e Propriedades Operatórias Como vimos no capítulo anterior, mesmo que nossa habilidade no cálculo de ites seja bastante boa, utilizar diretamente a definição para calcular derivadas
Aula 5 Limites infinitos. Assíntotas verticais.
MÓDULO - AULA 5 Aula 5 Limites infinitos. Assíntotas verticais. Objetivo lim Compreender o significado dos limites infinitos lim f(x) = ±, f(x) = ± e lim f(x) = ± + Referências: Aulas 34 e 40, de Pré-Cálculo,
CÁLCULO I. Estabelecer a relação entre continuidade e derivabilidade; Apresentar a derivada das funções elementares. f f(x + h) f(x) c c
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 11: Derivada de uma função. Continuidade e Derivabilidade. Derivada das Funções Elementares. Objetivos da Aula Denir
da dx = 2 x cm2 /cm A = (5 t + 2) 2 = 25 t t + 4
Capítulo 13 Regra da Cadeia 13.1 Motivação A área A de um quadrado cujo lado mede x cm de comprimento é dada por A = x 2. Podemos encontrar a taxa de variação da área em relação à variação do lado: = 2
Integrais. ( e 12/ )
Integrais (21-04-2009 e 12/19-05-2009) Já estudámos a determinação da derivada de uma função. Revertamos agora o processo de derivação, isto é, suponhamos que nos é dada uma função F e que pretendemos
CONTINUIDADE E LIMITES INFINITOS
MATEMÁTICA I CONTINUIDADE E LIMITES INFINITOS Profa. Dra. Amanda L. P. M. Perticarrari Parte 1 Continuidade de Funções Definição Tipos de Descontinuidade Propriedades Parte 2 Limites Infinitos Definição
DCC008 - Cálculo Numérico
DCC008 - Cálculo Numérico Polinômios de Taylor Bernardo Martins Rocha Departamento de Ciência da Computação Universidade Federal de Juiz de Fora [email protected] Conteúdo Introdução Definição
Gabarito da Prova Final Unificada de Cálculo I- 2015/2, 08/03/2016. ln(ax. cos (
Gabarito da Prova Final Unificada de Cálculo I- 05/, 08/03/06. Considere a função f : (0, ) R definida por ln(ax ), se x, f(x) = 6 ln cos ( π, x 3 se 0 < x
DERIVADA. A Reta Tangente
DERIVADA A Reta Tangente Seja f uma função definida numa vizinança de a. Para definir a reta tangente de uma curva = f() num ponto P(a, f(a)), consideramos um ponto vizino Q(,), em que a e traçamos a S,
LIMITES E CONTINIDADE
MATEMÁTICA I LIMITES E CONTINIDADE Prof. Dr. Nelson J. Peruzzi Profa. Dra. Amanda L. P. M. Perticarrari Parte 1 Parte 2 Limites Infinitos Definição de vizinhança e ite Limites laterais Limite de função
CÁLCULO I. 1 Velocidade Instantânea. Objetivos da Aula. Aula n o 04: Limites e Continuidade. Denir limite de funções; Calcular o limite de uma função;
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 04: Limites e Continuidade Objetivos da Aula Denir ite de funções; Calcular o ite de uma função; Utilizar as propriedades operatórias do
12 AULA. ciáveis LIVRO. META Estudar derivadas de funções de duas variáveis a valores reais.
1 LIVRO Diferen- Funções ciáveis META Estudar derivadas de funções de duas variáveis a valores reais. OBJETIVOS Estender os conceitos de diferenciabilidade de funções de uma variável a valores reais. PRÉ-REQUISITOS
Derivadas 1 DEFINIÇÃO. A derivada é a inclinação da reta tangente a um ponto de uma determinada curva, essa reta é obtida a partir de um limite.
Derivadas 1 DEFINIÇÃO A partir das noções de limite, é possível chegarmos a uma definição importantíssima para o Cálculo, esta é a derivada. Por definição: A derivada é a inclinação da reta tangente a
Para ilustrar o conceito de limite, vamos supor que estejamos interessados em saber o que acontece à
Limite I) Noção intuitiva de Limite Os limites aparecem em um grande número de situações da vida real: - O zero absoluto, por eemplo, a temperatura T C na qual toda a agitação molecular cessa, é a temperatura
y (n) (x) = dn y dx n(x) y (0) (x) = y(x).
Capítulo 1 Introdução 1.1 Definições Denotaremos por I R um intervalo aberto ou uma reunião de intervalos abertos e y : I R uma função que possua todas as suas derivadas, a menos que seja indicado o contrário.
6.1.2 Derivada de ordem superior e derivação implícita
6.1. DERIVABILIDADE E DIFERENCIABILIDADE 111 6.1.2 Derivada de ordem superior e derivação implícita Observe que se f é derivável num subconjunto A de seu domínio D, obtemos então uma nova função g = f
Apostila Cálculo Diferencial e Integral I: Derivada
Instituto Federal de Educação, Ciência e Tecnologia da Bahia Campus Vitória da Conquista Coordenação Técnica Pedagógica Programa de Assistência e Apoio aos Estudantes Apostila Cálculo Diferencial e Integral
Cálculo Diferencial e Integral I
Cálculo Diferencial e Integral I Complementos ao texto de apoio às aulas. Amélia Bastos, António Bravo Julho 24 Introdução O texto apresentado tem por objectivo ser um complemento ao texto de apoio ao
BANCO DE DADOS DO PROFESSOR PAULO ROBERTO TEORIA DE LIMITES E DERIVADAS
LIMITES BANCO DE DADOS DO PROFESSOR PAULO ROBERTO A Teoria dos Limites, tópico introdutório e fundamental da Matemática Superior, será vista aqui, de uma forma simplificada, sem aprofundamentos, até porque,
Derivadas. Incremento e taxa média de variação
Derivadas Incremento e taxa média de variação Consideremos uma função f, dada por y f (x). Quando x varia de um valor inicial de x para um valor x, temos o incremento em x. O símbolo matemático para a
ANÁLISE MATEMÁTICA II
ANÁLISE MATEMÁTICA II Acetatos de Ana Matos Séries de Potências DMAT Séries de Potências As séries de potências são uma generalização da noção de polinómio. Definição: Sendo x uma variável e a, chama-se
DERIVAÇÃO de FUNÇÕES REAIS de VARIÁVEL REAL
DERIVAÇÃO de FUNÇÕES REAIS de VARIÁVEL REAL Derivada de uma função num ponto. Sejam f uma função denida num intervalo A R e a um ponto de acumulação de A. Cama-se derivada de f no ponto a ao ite, caso
GABARITO. 01) a) c) VERDADEIRA P (x) nunca terá grau zero, pelo fato de possuir um termo independente de valor ( 2).
01) a) P (1) = 1 + 7 1 17 1 P (1) = 1 + 7 17 P (1) = 11 P (1) é sempre igual a soma dos coeficientes de P (x) b) P (0) = 0 + 7 0 17 0 P (0) = 0 + 0 0 P (0) = P (0) é sempre igual ao termo independente
Polinômios de Legendre
Seção 5: continuação do método de resolução por séries de potências Na Seção foi exposto informalmente, através de exemplos, o método de resolução de equações diferenciais ordinárias por séries de potências.
A derivada da função inversa, o Teorema do Valor Médio e Máximos e Mínimos - Aula 18
A derivada da função inversa, o Teorema do Valor Médio e - Aula 18 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 10 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014106
Fórmulas de Taylor - Notas Complementares ao Curso de Cálculo I
Fórmulas de Taylor - Notas Complementares ao Curso de Cálculo I Gláucio Terra Sumário 1 Introdução 1 2 Notações 1 3 Notas Preliminares sobre Funções Polinomiais R R 2 4 Definição do Polinômio de Taylor
Cálculo II. Derivadas Parciais
Cálculo II Derivadas Parciais (I) (II) Definição Se f é uma função de duas variáveis, suas derivadas parciais são as funções f x e f y definidas por f x ( x, y) lim h 0 f ( x h, y) f( x,
Cálculo Numérico. Santos Alberto Enriquez-Remigio FAMAT-UFU 2015
Cálculo Numérico Santos Alberto Enriquez-Remigio FAMAT-UFU 2015 1 Capítulo 1 Solução numérica de equações não-lineares 1.1 Introdução Lembremos que todo problema matemático pode ser expresso na forma de
MAT 103 Turma Complementos de matemática para contabilidade e administração PROVA D
MAT 103 Turma 011118 Complementos de matemática para contabilidade e administração Prof. Paolo Piccione 9 de Junho de 011 PROVA D Nome: Número USP: Assinatura: Instruções A duração da prova é de uma hora
Quarta lista de exercícios da disciplina SMA0353- Cálculo I
Quarta lista de exercícios da disciplina SMA0353- Cálculo I Exercícios da Seção 2.7 1. Uma curva tem por equação y = f(x). (a) Escreva uma expressão para a inclinação da reta secante pelos pontos P (3,
Continuidade e Limite
Continuidade e Limite Antônio Calixto de Souza Filho Escola de Artes, Ciências e Humanidades Universidade de São Paulo 20 de maio de 2013 1 Remoção da indeterminação 0 0 2 3 Propriedades da derivada Derivada
Exercícios - Propriedades Adicionais do Limite Aula 10
Exercícios - Propriedades Adicionais do Limite Aula 10 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 05 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia
Capítulo 1. Funções e grácos
Capítulo 1 Funções e grácos Denição 1. Sejam X e Y dois subconjuntos não vazios do conjunto dos números reais. Uma função de X em Y ou simplesmente uma função é uma regra, lei ou convenção que associa
Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática
Universidade Federal de Viçosa Centro de Ciências Eatas e Tecnológicas Departamento de Matemática MAT 040 Estudo Dirigido de Cálculo I 07/II Encontro 5 - /09/07: Eercício : Seja f a função cujo gráfico
Cálculo Diferencial e Integral I
Provas e listas: Cálculo Diferencial e Integral I Período 204.2 Sérgio de Albuquerque Souza 4 de maio de 205 UNIVERSIDADE FEDERAL DA PARAÍBA CCEN - Departamento de Matemática http://www.mat.ufpb.br/sergio
Funções reais de variável real. Derivadas de funções reais de variável real e aplicações O essencial
Funções reais de variável real Derivadas de funções reais de variável real e aplicações O essencial Taxa média de variação Dada uma função real de variável real f e dois pontos a e b do respetivo domínio,
Resumo: Regra da cadeia, caso geral
Resumo: Regra da cadeia, caso geral Teorema Suponha que u = u(x 1,..., x n ) seja uma função diferenciável de n variáveis x 1,... x n onde cada x i é uma função diferenciável de m variáveis t 1,..., t
Limites. 2.1 Limite de uma função
Limites 2 2. Limite de uma função Vamos investigar o comportamento da função f definida por f(x) = x 2 x + 2 para valores próximos de 2. A tabela a seguir fornece os valores de f(x) para valores de x próximos
Limites - Aula 08. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil. 14 de Março de 2014
Limites - Aula 08 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 14 de Março de 2014 Primeiro Semestre de 2014 Turma 2014104 - Engenharia Mecânica Limite - Noção Intuitiva
Fórmulas de Taylor. Notas Complementares ao Curso. MAT Cálculo para Ciências Biológicas - Farmácia Noturno - 1o. semestre de 2006.
Fórmulas de Taylor Notas Complementares ao Curso MAT0413 - Cálculo para Ciências Biológicas - Farmácia Noturno - 1o. semestre de 2006 Gláucio Terra Sumário 1 Introdução 1 2 Notações 1 3 Notas Preliminares
Limites e Continuidade
MAT111 p. 1/2 Limites e Continuidade Gláucio Terra [email protected] Departamento de Matemática IME - USP Revisão MAT111 p. 2/2 MAT111 p. 3/2 Limite de uma Função num Ponto DEFINIÇÃO Sejam f : A R R,
DIFERENCIAIS E O CÁLCULO APROXIMADO
BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL DIFERENCIAIS E O CÁLCULO APROXIMADO 1 a Edição Rio Grande 2017 Universidade Federal do Rio Grande - FURG
