CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida
|
|
|
- Júlio César Sousa de Santarém
- 8 Há anos
- Visualizações:
Transcrição
1 CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 2: Aproximações Lineares e Diferenciais Objetivos da Aula Definir e calcular a aproximação linear de uma função derivável; Conhecer e determinar a diferencial; Aproximações Lineares Considere uma curva derivável f(x) e um ponto (p, f(p)) sobre ela. Em seguida, determinamos a reta tangente ao gráfico de f no ponto (p, f(p)), com equação y = f(p) + f (p)(x p), como na figura abaixo: Figura : Gráfico de uma função f. Se dermos um "zoom"na região próxima do ponto (p, f(p)), notamos que a curva se aproxima bastante da reta tangente, como podemos observar abaixo: Figura 2: Zoom no gráfico da função f. Figura : Zoom no gráfico da função f.
2 Dessa forma, podemos definir que a reta tangente é uma boa aproximação para a curva f(x). Logo, podemos escrever que y f(x). E assim, f(x) f(p) + f (p)(x p) Essa aproximação é chamada de aproximação linear. A função linear dada por L(x) = f(p) + f (p)(x p) é chamada de linearização de f em p, e desse modo, podemos escrever a aproximação linear como sendo dada por f(x) L(x). Exemplo. Considere f(x) = sen x. Determine a linearização de f em p = 0. Utilize essa linearização para determinar uma aproximação de sen (0, ). Utilize uma calculadora para determinar o erro cometido. Note que f (x) = cos x e que f(0) = 0 e f (0) =. Sendo assim, a linearização desejada é L(x) = f(0) + f (0)(x 0) = 0 +.(x 0) = x Assim, para determinar uma aproximação para sen (0, ), basta lembrar que L(x) f(x). Sendo assim, como L(0, ) = 0,, temos que sen (0, ) 0, Utilizando a calculadora, obtemos que sen (0, ) 0, 0, 09825, em forma de porcentagem, temos que o erro obtido na aproximação é de 9, 8%. Observação. Na física costuma -se trabalhar com aproximações lineares, como a do exemplo anterior. Quando deduzimos a fórmula para o período de um pêndulo, encontramos a seguinte equação para a aceleração tangencial a T = g sen θ Sendo que em geral, utilizamos a aproximação linear acima e definimos que sempre que θ assume valores pequenos. a T = gθ Exemplo 2. Encontre a linearização de f(x) = 5x 2 em p = 2. Note que f (x) = 5 e que f(2) = 0 2 = 8. Logo, L(x) = 8 + 5(x 2) = 5x 2 Observação 2. Quando a função é "linear", a linearização coincide com a própria função. Exemplo. Encontre a aproximação linear da função g(x) = + x em torno de x = 0 e use-a para aproximar os números 0, 95 e,. Primeiramente, precisamos determinar a linearização de g(x). Sendo assim, note que g (x) = ( + x). Logo, 2 g (0) = e como g(0) =, temos que L(x) = + (x 0) = + x Assim, a aproximação linear é dada por ou seja, L(x) f(x) + x + x Prof. Edilson Neri Prof. André Almeida 2
3 Logo, e 0, 95 = 0, 05 2, 95 0, 05 L( 0, 05) = = 0, 98, = + 0, L(0, ) = + 0 = 0, 0 Exemplo 4. Encontre a linearização da função f(x) = em p = 7. Determine a aproximação linear 2x correspondente. Note que a derivada de f(x) é dada por f (x) =. Sendo assim, f(7) = 2x2 4 e f (7) = 98. Portanto, L(x) = f(7) + f (7)(x 7) = 4 98 (x 7) = 7 x 98 A aproximação linear correspondente é dada por L(x) f(x), então: 2x 7 x 98 para x próximos de 7. 2 Diferencial Durante nosso estudo, destacamos que dy representa apenas uma notação para a derivada. O que dx faremos a seguir é interpretar dy como um quociente entre dois acréscimos. Consideremos o gráfico de dx uma função derivável y = f(x). Agora, tomemos um ponto (x, f(x)) sobre o gráfico e denotemos por dx um acréscimo em x, como mostrado abaixo: Figura 4: Agora, sabemos que o coeficiente da reta tangente ao gráfico de f é dado pela derivada em x, ou seja, f (x) = tg α. Prof. Edilson Neri Prof. André Almeida
4 Figura 5: Se chamarmos dy como sendo o acréscimo na ordenada da reta tangente, correspondente ao acréscimo dx, teremos que dy dx = tg α = f (x) ou ainda que dy = f (x)dx () Tomando y = f(x + dx) f(x), segue do que argumentamos na seção anterior que dy é uma aproximação para y. Fixando x, podemos entender () como uma função que associa cada valor de dx R a dy R dado por dy = f (x)dx. Essa função é chamada diferencial de f em x ou de y = f(x). Vejamos alguns exemplos da utilização da diferencial. Exemplo 5. Compare os valores de y e dy se y = f(x) = x + x 2 2x + e x varia de 2 para 2, 05. e Logo, Calculando y. Precisamos determinar f(2) e f(2, 05). Sendo assim, f(2) = = = 9 f(2, 05) = (2, 05) + (2, 05) 2 2.(2, 05) + = 9, y = f(2, 05) f(2) = 0, Agora, faremos o cálculo de dy. Para isso, note que dx = 2, 05 2 = 0, 05. Logo, como f (x) = x 2 +2x 2, temos que dy = f (x)dx = (x 2 + 2x 2)dx Em particular, para x = 2 e dx = 0, 05, obtemos que dy = f (x)dx = ( )0, 05 = 4.0, 05 = 0, 7 Exemplo 6. Dada a função f(x) = sen 2 (cos(2x)), calcule a diferencial dy. Utilizando a regra da cadeia obtemos que f (x) = 4sen (cos(2x)).cos(cos(2x))sen(2x). Logo, dy = f (x)dx = 4sen (cos(2x)).cos(cos(2x))sen(2x)dx Prof. Edilson Neri Prof. André Almeida 4
5 Erros Definimos o erro absoluto ε a de um valor medido ou aproximado como sendo ε a = valor real valor aproximado Em algumas situações se faz necessário obter uma melhor apresentação do impacto do erro da aproximação sobre o valor medido. Sendo assim, podemos utilizar o erro relativo, denotado por ε r e dado por Erro absoluto ε r = valor medido = ε a valor medido ou também na forma percentual,ε p, dado por ε p = erro relativo 00 A noção desses erros é útil para as aproximações de erros por diferenciais, como veremos nos seguintes exemplos: Exemplo 7. A aresta de um cubo tem 0 cm, com um possível erro de medida de 0, cm. Use a diferencial para estimar o erro máximo possível no cálculo do volume do cubo. Como a aresta do cubo foi medida e possui um erro de 0, cm, não sabemos qual é exatamente a medida dessa aresta e por enquanto, a chamaremos de x. O valor medido medido na aresta é de x 0 = 0cm. Como V (x) = x é o volume do cubo de aresta x, temos que o erro no cálculo do volume é dado por: ε a = V alorreal V alormedido = V (x) V (x 0 ) = V (x) V (0) = V dv = V (0).dx Como o erro possível em x é dx = 0, cm então, ε a V (0).0, =.0 2.0, = 0cm Logo, o erro máximo é O erro relativo é e o erro percentual é dado por ε r = ε a = 0cm dv V (0) = 0 = 0, ε p = 0, % Exemplo 8. Utilizando a diferencial, calcule um valor aproximado para o acréscimo y que a função sofre quando passa de x = a + dx =, 00. Calcule o erro. A diferencial de y é dada por dy = f (x)dx = 2xdx. Em x =, temos que dy = 2dx. Como dx = 0, 00, então dy = 0, 002 O erro que se comete na aproximação y dy é dado por Como y = (, 00) 2 2 =, 00200, então ε a = y dy ε a =, , 002 = 0, = 0 6. Prof. Edilson Neri Prof. André Almeida 5
6 Resumo Faça um resumo dos principais resultados vistos nesta aula, destacando as definições dadas. Aprofundando o conteúdo Leia mais sobre o conteúdo desta aula nas páginas do livro texto. Sugestão de exercícios Resolva os exercícios das páginas do livro texto. Prof. Edilson Neri Prof. André Almeida 6
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior
Objetivos da Aula CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 4: Aproximações Lineares e Diferenciais. Regra de L Hôspital. Definir e calcular a aproximação linear
CÁLCULO I. 1 Aproximações Lineares. Objetivos da Aula. Aula n o 16: Aproximações Lineares e Diferenciais. Regra de L'Hôspital.
CÁLCULO I Prof Marcos Diniz Prof André Almeida Prof Edilson Neri Júnior Prof Emerson Veiga Prof Tiago Coelho Aula n o 6: Aproimações Lineares e Diferenciais Regra de L'Hôspital Objetivos da Aula Denir
CÁLCULO I. 1 Concavidade. Objetivos da Aula. Aula n o 19: Concavidade. Teste da Segunda Derivada. Denir concavidade de uma função;
CÁLCULO I Prof. Marcos Diniz Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 19: Concavidade. Teste da Segunda Derivada. Objetivos da Aula Denir concavidade de uma função; Denir ponto de inexão;
CÁLCULO I. 1 Concavidade. Objetivos da Aula. Aula n o 18: Concavidade. Teste da Segunda Derivada. Denir concavidade do gráco de uma função;
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 18: Concavidade. Teste da Segunda Derivada. Objetivos da Aula Denir concavidade do gráco de uma função; Denir ponto de
CÁLCULO I. Conhecer a interpretação geométrica da derivada em um ponto. y = f(x 2 ) f(x 1 ). y x = f(x 2) f(x 1 )
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 0: Taxa de Variação. Derivadas. Reta Tangente. Objetivos da Aula Denir taxa de variação média e a derivada como a taxa
Aproximações Lineares e Diferenciais. Aproximações Lineares e Diferenciais. 1.Aproximações Lineares 2.Exemplos 3.Diferenciais 4.
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Aproximações Lineares
CÁLCULO I. 1 Derivada de Funções Elementares
CÁLCULO I Prof. Marcos Diniz Prof. Edilson Neri Prof. André Almeida Aula n o : Derivada das Funções Elementares. Regras de Derivação. Objetivos da Aula Apresentar a derivada das funções elementares; Apresentar
DIFERENCIAIS E O CÁLCULO APROXIMADO
BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL DIFERENCIAIS E O CÁLCULO APROXIMADO 1 a Edição Rio Grande 2017 Universidade Federal do Rio Grande - FURG
A Derivada. Derivadas Aula 16. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil
Derivadas Aula 16 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 04 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014104 - Engenharia Mecânica A Derivada Seja x = f(t)
Aulas n o 22: A Função Logaritmo Natural
CÁLCULO I Aulas n o 22: A Função Logaritmo Natural Prof. Edilson Neri Júnior Prof. André Almeida 1 A Função Logaritmo Natural 2 Derivadas e Integral Propriedades dos Logaritmos 3 Gráfico Seja x > 0. Definimos
CÁLCULO I. Estabelecer a relação entre continuidade e derivabilidade; Apresentar a derivada das funções elementares. f f(x + h) f(x) c c
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 11: Derivada de uma função. Continuidade e Derivabilidade. Derivada das Funções Elementares. Objetivos da Aula Denir
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 09: Regras de Derivação Objetivos da Aula Apresentar e aplicar as regras operacionais de derivação; Derivar funções utilizando diferentes
CÁLCULO I. 1 A Função Logarítmica Natural. Objetivos da Aula. Aula n o 22: A Função Logaritmo Natural. Denir a função f(x) = ln x;
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 22: A Função Logaritmo Natural Objetivos da Aula Denir a função f(x) = ln x; Calcular limites, derivadas e integral envolvendo a função
CÁLCULO I. 1 Concavidade. Objetivos da Aula. Aula n o 16: Máximos e Mínimos - 2 a Parte
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 16: Máximos e Mínimos - 2 a Parte Objetivos da Aula Denir e discutir a concavidade de uma função em um intervalo do domínio; Denir e calcular
CÁLCULO I. 1 Área entre Curvas. Objetivos da Aula. Aula n o 28: Área entre Curvas, Comprimento de Arco e Trabalho. Calcular área entre curvas;
CÁLCULO I Prof. Marcos Diniz Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 8: Área entre Curvas, Comprimento de Arco e Trabalho Objetivos da Aula Calcular área entre curvas; Calcular o comprimento
MAT146 - Cálculo I - Taxas de Variação. Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira
Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira Obserque que até o momento, tem sido visto apenas como uma notação dx para a derivada da equação y = f (x). O que faremos agora é interpretar
CÁLCULO I. 1 Funções Crescentes e Decrescentes
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 17: Crescimento e Decrescimento de funções. Teste da Primeira Derivada. Objetivos da Aula Denir funções crescentes e
Derivadas Parciais. Copyright Cengage Learning. Todos os direitos reservados.
14 Derivadas Parciais Copyright Cengage Learning. Todos os direitos reservados. 14.4 Planos Tangentes e Aproximações Lineares Copyright Cengage Learning. Todos os direitos reservados. Planos Tangentes
12 AULA. ciáveis LIVRO. META Estudar derivadas de funções de duas variáveis a valores reais.
1 LIVRO Diferen- Funções ciáveis META Estudar derivadas de funções de duas variáveis a valores reais. OBJETIVOS Estender os conceitos de diferenciabilidade de funções de uma variável a valores reais. PRÉ-REQUISITOS
CÁLCULO I. 1 Primitivas. Objetivos da Aula. Aula n o 18: Primitivas. Denir primitiva de uma função; Calcular as primitivas elementares.
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 8: Primitivas. Objetivos da Aula Denir primitiva de uma função; Calcular as primitivas elementares. Primitivas Em alguns problemas, é necessário
y (n) (x) = dn y dx n(x) y (0) (x) = y(x).
Capítulo 1 Introdução 1.1 Definições Denotaremos por I R um intervalo aberto ou uma reunião de intervalos abertos e y : I R uma função que possua todas as suas derivadas, a menos que seja indicado o contrário.
CÁLCULO I. Calcular o limite de uma função composta;
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 06: Limites Laterais. Limite da Função Composta. Objetivos da Aula Denir ites laterais de uma função em um ponto de seu
CÁLCULO I. Iniciaremos com o seguinte exemplo: u 2 du = cos x + u3 3 + C = cos3 x
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aulas n o 9: Técnicas de Integração II - Integrais Trigonométricas e Substituição Trigonométrica Objetivos da Aula Calcular integrais de potências
CÁLCULO I. Calcular integrais envolvendo funções trigonométricas; Apresentar a substituição trigonométrica. Iniciaremos com o seguinte exemplo:
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Prof. Emerson Veiga Prof. Tiago Coelho Aula n o 8: Integrais Trigonométricas. Substituição Trigonométrica. Objetivos da Aula Calcular
CÁLCULO I. Aula n o 02: Funções. Determinar o domínio, imagem e o gráco de uma função; Reconhecer funções pares, ímpares, crescentes e decrescentes;
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 02: Funções Objetivos da Aula Denir e reconhecer funções; Determinar o domínio, imagem e o gráco de uma função; Reconhecer funções pares,
CÁLCULO I. Efetuar transformações no gráco de uma função. Aplicando esse teste às seguintes funções, notamos que
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 03: Funções Inversas e Compostas.Transformações no Gráco de uma Função. Objetivos da Aula Denir função bijetora e função
Cálculo Diferencial e Integral 2: Aproximações Lineares. Regra da Cadeia.
Aproximações lineares. Diferenciais. Cálculo Diferencial e Integral 2: Aproximações Lineares.. Jorge M. V. Capela Instituto de Química - UNESP Araraquara, SP [email protected] Araraquara, SP - 2017 Aproximações
CÁLCULO I Aula 15: Concavidade. Teste da Segunda Derivada.
CÁLCULO I Aula 15: Concavidade.. Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará 1 Concavidade 2 Considere um intervalo I e uma função f : I R derivável cujo gráco é dado abaixo.
Derivada de algumas funções elementares
Universidade de Brasília Departamento de Matemática Cálculo 1 Derivada de algumas funções elementares Vamos lembrar que a função f é derivável no ponto x = a se existe o limite f f(x) f(a) f(a+) f(a) (a).
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 06: Continuidade de Funções Objetivos da Aula Definir função contínua; Reconhecer uma função contínua através do seu gráfico; Utilizar as
CÁLCULO I. 1 Assíntotas Oblíquas. Objetivos da Aula. Aula n o 19: Grácos.
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 9: Grácos. Objetivos da Aula Denir e determinar as assíntotas oblíquas ao gráco de uma função, Utilizar o Cálculo Diferencial
CÁLCULO I. 1 Construção de Grácos. Objetivo da Aula. Aula n o 20: Grácos. Utilizar o Cálculo Diferencial para esboçar o gráco de uma função.
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Prof. Emerson Veiga Prof. Tiago Coelho Aula n o 0: Grácos. Objetivo da Aula Utilizar o Cálculo Diferencial para esboçar o gráco
CÁLCULO I. Figura 1: Círculo unitário x2 + y 2 = 1
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula no 05: Funções Logarítmica, Exponencial e Hiperbólicas. Objetivos da Aula De nir as funções trigonométricas, trigonométricas
Objetivos. Exemplo 18.1 Para integrar. u = 1 + x 2 du = 2x dx. Esta substituição nos leva à integral simples. 2x dx fazemos
MÓDULO - AULA 8 Aula 8 Técnicas de Integração Substituição Simples - Continuação Objetivos Nesta aula você aprenderá a usar a substituição simples em alguns casos especiais; Aprenderá a fazer mudança de
CÁLCULO I Aula 08: Regra da Cadeia. Derivação Implícita. Derivada da Função Inversa.
CÁLCULO I Aula 08: Regra da Cadeia.. Função Inversa. Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará 1 2 3 Teorema (Regra da Cadeia) Sejam g(y) e y = f (x) duas funções deriváveis,
Aula n o 29:Técnicas de Integração: Integrais Trigonométricas - Substituição Trigonométrica
CÁLCULO I Aula n o 29:Técnicas de Integração: Integrais Trigonométricas - Substituição Trigonométrica Prof. Edilson Neri Júnior Prof. André Almeida 1 Integrais Trigonométricas Iniciaremos com o seguinte
Aula 24. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil
Polinômios de Taylor Aula 24 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 08 de Maio de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica Os polinômios
CÁLCULO I. 1 Funções Crescentes e Decrescentes
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 14: Crescimento e Decrescimento. Teste da Primeira Derivada. Objetivos da Aula Denir funções crescentes e decrescentes; Determinar os intervalos
CÁLCULO I. Figura 1: Círculo unitário x2 + y 2 = 1
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Prof. Emerson Veiga Prof. Tiago Coelho Aula no 04: Funções Trigonométricas, Logarítmica, Exponencial e Hiperbólicas. Objetivos
7. Diferenciação Implícita
7. Diferenciação Implícita ` Sempre que temos uma função escrita na forma = f(), dizemos que é uma função eplícita de, pois podemos isolar a variável dependente de um lado e a epressão da função do outro.
Derivadas 1
www.matematicaemexercicios.com Derivadas 1 Índice AULA 1 Introdução 3 AULA 2 Derivadas fundamentais 5 AULA 3 Derivada do produto e do quociente de funções 7 AULA 4 Regra da cadeia 9 www.matematicaemexercicios.com
CÁLCULO I. 1 Taxa de Variação. Objetivos da Aula. Aula n o 10: Taxa de Variação, Velocidade, Aceleração e Taxas Relacionadas. Denir taxa de variação;
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 10: Taxa de Variação, Velocidade, Aceleração e Taxas Relacionadas Objetivos da Aula Denir taxa de variação; Usar as regras de derivação
MAT 121 : Cálculo II. Aula 27 e 28, Segunda 03/11/2014. Sylvain Bonnot (IME-USP)
MAT 121 : Cálculo II Aula 27 e 28, Segunda 03/11/2014 Sylvain Bonnot (IME-USP) 2014 1 Resumo 1 Derivadas parciais: seja f : R 2 R, a derivada parcial f x (a, b) é o limite (quando existe) lim h 0 f (a
AT3-1 - Unidade 3. Derivadas e Aplicações 1. Cálculo Diferencial e Integral. UAB - UFSCar. Bacharelado em Sistemas de Informação
AT3-1 - Unidade 3 1 Cálculo Diferencial e Integral Bacharelado em Sistemas de Informação UAB - UFSCar 1 Versão com 34 páginas 1 / 34 Tópicos de AT3-1 1 Uma noção intuitiva Caracterização da derivada Regras
CÁLCULO I. Apresentar e aplicar a Regra de L'Hospital.
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o : Limites Innitos e no Innito. Assíntotas. Regra de L'Hospital Objetivos da Aula Denir ite no innito e ites innitos; Apresentar alguns tipos
Tópico 4. Derivadas (Parte 1)
Tópico 4. Derivadas (Parte 1) 4.1. A reta tangente Para círculos, a tangencia é natural? Suponha que a reta r da figura vá se aproximando da circunferência até tocá-la num único ponto. Na situação da figura
MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari
MATEMÁTICA II Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari [email protected] CONSIDERAÇÕES INICIAIS Considere a função f x : R R tal que y = f(x). Então: Derivada: Mede a taxa de variação de
DERIVADAS PARCIAIS. y = lim
DERIVADAS PARCIAIS Definição: Seja f uma função de duas variáveis, x e y (f: D R onde D R 2 ) e (x 0, y 0 ) é um ponto no domínio de f ((x 0, y 0 ) D). A derivada parcial de f em relação a x no ponto (x
CÁLCULO I. 1 Funções Exponenciais e Logarítmicas
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 05: Funções Logarítmica, Exponencial e Hiperbólicas. Objetivos da Aula Denir as funções logarítmica, exponencial e hiperbólicas;
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 16: Problemas de Otimização Objetivos da Aula Utilizar o Cálculo Diferencial para resolução de problemas. 1 Problemas de Otimização Nessa
Universidade Estadual de Montes Claros Departamento de Ciências Exatas Curso de Licenciatura em Matemática. Notas de Aulas de
Universidade Estadual de Montes Claros Departamento de Ciências Exatas Curso de Licenciatura em Matemática Notas de Aulas de Cálculo Rosivaldo Antonio Gonçalves Notas de aulas que foram elaboradas para
CÁLCULO I. 1 Taxa de Variação. Objetivos da Aula. Aula n o 15: Taxa de Variação. Taxas Relacionadas. Denir taxa de variação;
CÁLCULO I Prof. Marcos Diniz Prof. Edilson Neri Prof. André Almeida Aula n o 15: Taxa de Variação. Taxas Relacionadas Objetivos da Aula Denir taxa de variação; Usar as regras de derivação no cálculo de
Respostas sem justificativas não serão aceitas. Além disso, não é permitido o uso de aparelhos eletrônicos. x 1 x 1. 1 sen x 1 (x 2 1) 2 (x 2 1) 2 sen
UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL - 07. A VERIFICAÇÃO DE APRENDIZAGEM - TURMA EL Nome Legível RG CPF Respostas sem justificativas
3 A Reta Tangente Definição: Seja y = f(x) uma curva definida no intervalo. curva y = f(x). A reta secante s é a reta que passa pelos pontos
3 A Reta Tangente Definição: Seja y = f(x) uma curva definida no intervalo (a, b) Sejam P(p, f(p)) e Q(x, f(x)) dois pontos distintos da curva y = f(x). A reta secante s é a reta que passa pelos pontos
Aula 22 Derivadas Parciais - Diferencial - Matriz Jacobiana
Derivadas Parciais - Diferencial - Matriz Jacobiana MÓDULO 3 - AULA 22 Aula 22 Derivadas Parciais - Diferencial - Matriz Jacobiana Introdução Uma das técnicas do cálculo tem como base a idéia de aproximação
Derivadas. Slides de apoio sobre Derivadas. Prof. Ronaldo Carlotto Batista. 21 de outubro de 2013
Cálculo 1 ECT1113 Slides de apoio sobre Derivadas Prof. Ronaldo Carlotto Batista 21 de outubro de 2013 AVISO IMPORTANTE Estes slides foram criados como material de apoio às aulas e não devem ser utilizados
EXERCICIOS RESOLVIDOS - INT-POLIN - MMQ - INT-NUMERICA - EDO
Cálculo Numérico EXERCICIOS EXTRAIDOS DE PROVAS ANTERIORES o sem/08 EXERCICIOS RESOLVIDOS - INT-POLIN - MMQ - INT-NUMERICA - EDO x. Considere a seguinte tabela de valores de uma função f: i 0 f(x i ).50
Derivada - Parte 2 - Regras de derivação
Derivada - Parte 2 - Wellington D. Previero [email protected] http://paginapessoal.utfpr.edu.br/previero Universidade Tecnológica Federal do Paraná - UTFPR Câmpus Londrina Wellington D. Previero Derivada
14 AULA. Vetor Gradiente e as Derivadas Direcionais LIVRO
1 LIVRO Vetor Gradiente e as Derivadas Direcionais 14 AULA META Definir o vetor gradiente de uma função de duas variáveis reais e interpretá-lo geometricamente. Além disso, estudaremos a derivada direcional
CÁLCULO I. Reconhecer, através do gráco, a função que ele representa; (f + g)(x) = f(x) + g(x). (fg)(x) = f(x) g(x). f g
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 03: Operações com funções. Funções Polinominais, Racionais e Trigonométricas Objetivos da Aula Denir operações com funções; Apresentar algumas
Unidade 5 Diferenciação Incremento e taxa média de variação
Unidade 5 Diferenciação Incremento e taa média de variação Consideremos uma função f dada por y f ( ) Quando varia de um valor inicial de para um valor final de, temos o incremento em O símbolo matemático
MAT146 - Cálculo I - Derivada de funções polinomiais, regras de derivação e derivada de funções trigonométricas
MAT146 - Cálculo I - Derivada de funções polinomiais, regras de derivação e derivada de funções trigonométricas Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira Vimos que uma função
CÁLCULO I. 1 Funções. Objetivos da Aula. Aula n o 01: Funções. Denir função e conhecer os seus elementos; Reconhecer o gráco de uma função;
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 01: Funções. Objetivos da Aula Denir função e conhecer os seus elementos; Reconhecer o gráco de uma função; Denir funções compostas e inversas.
A Derivada e a Inclinação de um Gráfico
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I A Derivada e a Inclinação
Aula 13. Plano Tangente e Aproximação Linear
Aula 13 Plano Tangente e Aproximação Linear Se fx) é uma função de uma variável, diferenciável no ponto x 0, então a equação da reta tangente à curva y = fx) no ponto x 0, fx 0 )) é dada por: y fx 0 )
CÁLCULO I. Aula n o 02: Funções. Denir função e conhecer os seus elementos; Listar as principais funções e seus grácos.
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 02: Funções. Objetivos da Aula Denir função e conhecer os seus elementos; Reconhecer o gráco de uma função; Listar as
x 2 + (x 2 5) 2, x 0, (1) 5 + y + y 2, y 5. (2) e é positiva em ( 2 3 , + ), logo x = 3
Página 1 de 4 Instituto de Matemática - IM/UFRJ Cálculo Diferencial e Integral I - MAC 118 Gabarito segunda prova - Escola Politécnica / Escola de Química - 13/06/2017 Questão 1: (2 pontos) Determinar
CÁLCULO I. 1 Regra de l'hôspital. Objetivos da Aula. Aula n o 14: Regra de L'Hospital. Apresentar e aplicar a Regra de L'Hospital.
CÁLCULO I Prof Marcos Diniz Prof Edilson Neri Júnior Prof André Almeida Aula n o 4: Regra de L'Hospital Objetivos da Aula Apresentar e aplicar a Regra de L'Hospital Regra de l'hôspital A regra de l'hôspital,
A derivada (continuação) Aula 17
A derivada (continuação) Aula 17 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 08 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica Teorema
A Derivada e a Inclinação de um Gráfico. A Derivada e a Inclinação de um Gráfico
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I A Derivada e a Inclinação
Derivadas Parciais - parte 1. 1) Determine as derivadas parciais de primeira ordem da função.
Terceira Lista de Exercícios Cálculo II - Engenharia de Produção ( extraída do livro C ÁLCULO - vol 2 James Stewart ) Derivadas Parciais - parte 1 1) Determine as derivadas parciais de primeira ordem da
DCC008 - Cálculo Numérico
DCC008 - Cálculo Numérico Polinômios de Taylor Bernardo Martins Rocha Departamento de Ciência da Computação Universidade Federal de Juiz de Fora [email protected] Conteúdo Introdução Definição
CÁLCULO I. 1 Crescimento e Decaimento Exponencial
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 27: Aplicações da Derivada: Decaimento Radioativo, Crescimento Populacional e Lei de Resfriamento de Newton Objetivos da Aula Aplicar derivada
UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1
UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1 PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR - 16/10/2016 CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES: 1.
Derivadas e Taxas de Variação. Copyright Cengage Learning. Todos os direitos reservados.
Derivadas e Taxas de Variação Copyright Cengage Learning. Todos os direitos reservados. 1 Derivadas e Taxas de Variação O problema de encontrar a reta tangente a uma curva e o problema para encontrar a
MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari
MATEMÁTICA II Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari [email protected] CONSIDERAÇÕES INICIAIS Considere a função f x : R R tal que y = f(x). Então: Derivada: Mede a taxa de variação de
Diferenciabilidade de função de uma variável
Capítulo 6 Diferenciabilidade de função de uma variável Um conceito importante do Cálculo é o de derivada, que é um ite, como veremos na definição. Fisicamente o conceito de derivada está relacionado ao
CÁLCULO I Aula 11: Limites Innitos e no Innito. Assíntotas. Regra de l'hôspital.
Limites s CÁLCULO I Aula 11: Limites s e no... Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará Limites s 1 Limites no 2 Limites s 3 4 5 Limites s Denição Seja f uma função denida
Comprimento de Arco. 1.Introdução 2.Resolução de Exemplos 3.Função Comprimento de Arco 4.Resolução de Exemplo
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Comprimento de Arco
CÁLCULO I. 1 Velocidade Instantânea. Objetivos da Aula. Aula n o 04: Limites e Continuidade. Denir limite de funções; Calcular o limite de uma função;
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 04: Limites e Continuidade Objetivos da Aula Denir ite de funções; Calcular o ite de uma função; Utilizar as propriedades operatórias do
Plano tangente e reta normal
UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 15 Assunto: Plano tangente, reta normal, vetor gradiente e regra da cadeia Palavras-chaves: plano tangente, reta normal, gradiente, função
Nome: Gabarito Data: 28/10/2015. Questão 01. Calcule a derivada da função f(x) = sen x pela definição e confirme o resultado
Fundação Universidade Federal de Pelotas Departamento de Matemática e Estatística Curso de Licenciatura em Matemática - Diurno Segunda Prova de Cálculo I Prof. Dr. Maurício Zan Nome: Gabarito Data: 8/0/05.
MAP CÁLCULO NUMÉRICO (POLI) Lista de Exercícios sobre o Método dos Mínimos Quadrados
MAP 2121 - CÁLCULO NUMÉRICO (POLI) Lista de Exercícios sobre o Método dos Mínimos Quadrados 1: Usando o método dos mínimos quadrados de maneira conveniente, aproxime os pontos da tabela abaixo por uma
Regras de Produto e Quociente
Regras de Produto e Quociente Aula 13 5950253 Plano da Aula Derivadas de Ordem Superior Regra de Produto Regra de Quociente Exercícios Referências James Stewart Cálculo Volume I (Cengage Learning) Derivadas
UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ. 1. Use o gráfico de y = f(x) na figura em anexo para estimar o valor de f ( 2), f (1) e f (2).
UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ 3 a Lista de Exercícios de Cálculo Diferencial e Integral I: Derivada Prof. Wellington D. Previero 1. Use o gráfico de y = f(x) na figura em anexo para estimar
Diferenciabilidade de funções reais de várias variáveis reais
Diferenciabilidade de funções reais de várias variáveis reais Cálculo II Departamento de Matemática Universidade de Aveiro 2018-2019 Cálculo II 2018-2019 Diferenciabilidade de f.r.v.v.r. 1 / 1 Derivadas
11.5 Derivada Direcional, Vetor Gradiente e Planos Tangentes
11.5 Derivada Direcional, Vetor Gradiente e Planos Tangentes Luiza Amalia Pinto Cantão Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP [email protected] Estudos Anteriores Derivadas
UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, apresentaremos a noção de integral indefinidada. Também discutiremos
CÁLCULO L NOTAS DA DÉCIMA OITAVA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, apresentaremos a noção de integral indefinidada. Também discutiremos a primeira técnica de integração: mudança
