Exercícios - Propriedades Adicionais do Limite Aula 10
|
|
|
- Rui Garrau Braga
- 9 Há anos
- Visualizações:
Transcrição
1 Exercícios - Propriedades Adicionais do Limite Aula 10 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 05 de Abril de 2014 Primeiro Semestre de 2014 Turma Engenharia Mecânica
2 Propriedades Adicionais do Limite Os próximos três teoremas são propriedades adicionais de limites. Teorema (Teste da Comparação) Se f(x) g(x) sempre que x D f \{p} e x está próximo de p e os limites de f e g quando x tende a p existem, então lim f(x) lim g(x). x p x p
3 Teorema (do Confronto) Sejam f,g,h funções, p um ponto de acumulação de D = D f D g D h e suponha que existe r > 0 tal que f(x) g(x) h(x), para x D 0 < x p < r. Se então lim f(x) = L = lim h(x), x p x p lim g(x) = L. x p
4 As funções trigonométricas são contínuas. Prova: Para qualquer p, temos que ( x p ) ( x +p ) senx senp = 2sen cos 2 2 ( x p ) x p 2 sen 2 = x p. 2 2 Como lim(x p) = 0, pelo Teorema do Confronto temos que x p lim senx senp = 0, ou seja, lim senx = senp. Logo a função x p x p seno é contínua para todo p.
5 A prova da continuidade do cosseno é feita de ( maneira similar x +p ) ( x p ) utilizando a igualdade cosx cosp = 2sen sen. 2 2 A continuidade das outras funções trigonométricas seguem das propriedades das funções contínuas.
6 Mostre que lim x 2 sen 1 x = 0. Como 1 sen 1 x 1, multiplicando por x2 temos x 2 x 2 sen 1 x x2. Sabemos que lim x 2 = 0 = lim x 2. Então, pelo Teorema do Confronto, lim x 2 sen 1 x = 0.
7 Seja f : R R tal que f(x) x 2, x R. (a) Calcule, caso exista, lim f(x). (b) Verifique se f é contínua em 0.
8 Segue do Teorema do Confronto a seguinte propriedade: Corolário Suponha que lim x p f(x) = 0 e existe M R tal que g(x) M para x próximo de p. Então lim f(x)g(x) = 0. x p Exercício: Prove que lim x p f(x) = 0 lim x p f(x) = 0.
9 Calcule lim x 2 g(x), onde g : R R é dada por { 1, x Q g(x) = 0, x Q. Exercício: Calcule (a) lim x sen 1 x ; (b) lim x2 cos 1 x 2.
10 (O Primeiro Limite Fundamental) sen x lim x = 1. Prova: Note que que para 0 < x < π 2 0 < sen x < x < tg x. vale a desigualdade 1 P T x A( OPA) < A(setorOPA) < A( OTA) -1 O A
11 Dividindo por sen x obtemos 1 < x sen x < 1 cosx e conseqentemente cosx < sen x < 1, pois cosx > 0 para x 0 < x < π 2.
12 Por outro lado, se π < x < 0, aplicando a desigualdade a x, 2 sen ( x) obtemos cos( x) < < 1. Daí x cosx < sen x x < 1, 0 < x < π 2. sen x Como lim cosx = 1, pelo Teorema do Confronto, lim x sen 2 x Calcule lim x 2. sen 2 x lim x 2 sen x senx = lim x x = 1. = 1.
13 Teorema Sejam f e g duas funções tais que Im(g) D f e L D f. Se f for contínua em L onde lim x p g(x) = L, então lim f(g(x)) = f( lim g(x) ) = f(l). x p x p sen5x Calcule lim. x sen5x sen 5x lim = 5 lim x 5x u=5x = 5 lim u 0 sen u u = 5.
14 tg(2x) Calcule lim. x lim tg(2x) x 1 cosx Calcule lim x 2. 1 cosx lim x 2 sen(2x) 2 = lim 2x cos(2x) = 2. (1 cosx) = lim x 2 (1+cosx) 1+cosx 1 cos 2 x 1 = lim x 2 1+cosx sen 2 x 1 = lim x 2 1+cosx = 1 2.
15 Exercício: Calcule 2x (a) lim sen(3x) ; tg(2x) (b) lim sen(3x).
Limite - Propriedades Adicionais
Limite - Propriedades Adicionais Juliana Pimentel [email protected] Propriedades Adicionais do Limite Os próximos três teoremas são propriedades adicionais de limites. Teorema (Teste da Comparação)
Limites - Aula 08. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil. 14 de Março de 2014
Limites - Aula 08 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 14 de Março de 2014 Primeiro Semestre de 2014 Turma 2014104 - Engenharia Mecânica Limite - Noção Intuitiva
ATIVIDADES EM SALA DE AULA Cálculo I -A- Humberto José Bortolossi
ATIVIDADES EM SALA DE AULA Cálculo I -A- Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ 08 Continuidade e O Teorema do Valor Intermediário [0] (2008.) (a) Dê um exemplo de uma função
A derivada da função inversa, o Teorema do Valor Médio e Máximos e Mínimos - Aula 18
A derivada da função inversa, o Teorema do Valor Médio e - Aula 18 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 10 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014106
Bases Matemáticas Continuidade. Propriedades do Limite de Funções. Daniel Miranda
Daniel De modo intuitivo, uma função f : A B, com A,B R é dita contínua se variações suficientemente pequenas em x resultam em variações pequenas de f(x), ou equivalentemente, se para x suficientemente
Primitivas e a integral de Riemann Aula 26
Primitivas e a integral de Riemann Aula 26 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 13 de Maio de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica
Esboço de Gráfico - Exemplos e Regras de L Hospital Aula 23
Esboço de Gráfico - s e Regras de L Hospital Aula 23 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 06 de Maio de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia
Aula 34. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil
Técnicas de Integração - Continuação Aula 34 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 03 de Junho de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica
Aula 33. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil
Aplicações da Integral - Continuação e Técnicas de Integração Aula 33 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 30 de Maio de 2014 Primeiro Semestre de 2014 Turma 2014106
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 06: Continuidade de Funções Objetivos da Aula Definir função contínua; Reconhecer uma função contínua através do seu gráfico; Utilizar as
MAT146 - Cálculo I - Derivada de funções polinomiais, regras de derivação e derivada de funções trigonométricas
MAT146 - Cálculo I - Derivada de funções polinomiais, regras de derivação e derivada de funções trigonométricas Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira Vimos que uma função
Seno e cosseno de arcos em todos os. quadrantes
Trigonometria Seno e cosseno de arcos em todos os quadrantes Seno e cosseno de arcos em todos os quadrantes Exemplo: Vamos determinar X, com 0 x < 2π tal que sen x = - 1 2. Seno e cosseno de arcos em todos
Exercícios de Coordenadas Polares Aula 41
Revisão - Métodos de Integração e Exercícios de Coordenadas Polares Aula 41 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 24 de Junho de 2014 Primeiro Semestre de 2014 Turma
UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1
UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1 PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR - 16/10/2016 CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES: 1.
Limites infinitos e limites no infinito Aula 15
Propriedades dos ites infinitos Limites infinitos e ites no infinito Aula 15 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 03 de Abril de 2014 Primeiro Semestre de 2014
Propriedades das Funções Contínuas e Limites Laterais Aula 12
Propriedades das Funções Contínuas e Limites Laterais Aula 12 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 27 de Março de 2014 Primeiro Semestre de 2014 Turma 2014106 -
Cálculo Diferencial e Integral I 1 o Sem. 2016/17 - LEAN, MEMat, MEQ FICHA 11 - SOLUÇÕES
Instituto Superior Técnico Departamento de Matemática Cálculo Diferencial e Integral I o Sem 06/7 - LEAN, MEMat, MEQ FICHA - SOLUÇÕES Teorema Fundamental do Cálculo Regra de Barrow Integração por partes
- Cálculo 1: Lista de exercícios 1 -
- Cálculo : Lista de exercícios - UFOP - Professora Jussara Moreira. Resolver as inequações: (a) x(x ) > 0 {x R/x < 0 ou x > }; (b) (x )(x + ) < 0 {x R/ < x < }; (c) x x {x R/x ou x }; x (x ) 0 {x R/x
Continuidade de uma função
Continuidade de uma função Consideremos f : D f uma função real de variável real (f.r.v.r.) e a um ponto de acumulação de D f que pertence a D f. Diz-se que a função f é contínua em a se lim f x f a. x
Propriedades das Funções Contínuas
Propriedades das Funções Contínuas Juliana Pimentel [email protected] Propriedades das Funções Contínuas Seguem das propriedades do limite, as seguintes propriedades das funções contínuas.
Fórmulas da Soma e da Diferença
Fórmulas da Soma e da Diferença Prof. Márcio Nascimento [email protected] Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina:
da dx = 2 x cm2 /cm A = (5 t + 2) 2 = 25 t t + 4
Capítulo 13 Regra da Cadeia 13.1 Motivação A área A de um quadrado cujo lado mede x cm de comprimento é dada por A = x 2. Podemos encontrar a taxa de variação da área em relação à variação do lado: = 2
Aula 13 mtm B TRIGONOMETRIA
Aula 13 mtm B TRIGONOMETRIA Definição Função Seno: f(x) = a ± b.sen(mx + n) Função Cosseno: f(x) = a ± b.cos(mx + n) a - Parâmetro aditivo da função. b - Parâmetro multiplicativo da função. m Parâmetro
QUESTÕES-AULA 37. (a) O período da função F (x) é T = 3 0 = 3. Dividimos a reta em intervalos da forma:
QUESTÕES-AULA 37 1. Considere a função f(x) = 4 x, 0 x < 3. 3 (a) Construa uma função periódica F (x) definida em todo o R, tal que F (x) = f(x) para todo x [0, 3). (b) Determine o período, a frequência
UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, apresentaremos a noção de integral indefinidada. Também discutiremos
CÁLCULO L NOTAS DA DÉCIMA OITAVA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, apresentaremos a noção de integral indefinidada. Também discutiremos a primeira técnica de integração: mudança
0.1 Função Inversa. Notas de Aula de Cálculo I do dia 07/06/ Matemática Profa. Dra. Thaís Fernanda Mendes Monis.
Notas de Aula de Cálculo I do dia 07/06/03 - Matemática Profa. Dra. Thaís Fernanda Mendes Monis. 0. Função Inversa Definição. Uma função f : A C é injetiva se f(x) f(y) para todo x y, x, y A. Seja f :
Derivada - Parte 2 - Regras de derivação
Derivada - Parte 2 - Wellington D. Previero [email protected] http://paginapessoal.utfpr.edu.br/previero Universidade Tecnológica Federal do Paraná - UTFPR Câmpus Londrina Wellington D. Previero Derivada
a) 7. b) 6. c) 5. d) 1. e) -1. a) 1 b) 1. c) 1. d) 1. e) 3.
TRIGONOMETRIA CIRCULAR ) (UFRGS) Se θ = 8 o, então a) tg θ < cos θ < sen θ. b) sen θ < cos θ < tg θ. c) cos θ < sen θ < tg θ. d) sen θ < tg θ < cos θ. e) cos θ < tg θ < sen θ. ) (UFRGS) O menor valor que
Derivadas 1
www.matematicaemexercicios.com Derivadas 1 Índice AULA 1 Introdução 3 AULA 2 Derivadas fundamentais 5 AULA 3 Derivada do produto e do quociente de funções 7 AULA 4 Regra da cadeia 9 www.matematicaemexercicios.com
MAT146 - Cálculo I - Integração de Funções Trigonométricas
MAT146 - Cálculo I - Integração de Funções Trigonométricas Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira Até o momento, somos capazes de resolver algumas integrais trigonométricas
LISTA DE EXERCÍCIOS. Trigonometria no Triângulo Retângulo e Funções Trigonométricas
LISTA DE EXERCÍCIOS Pré-Cálculo UFF GMA 09 Trigonometria no Triângulo Retângulo e Funções Trigonométricas [0] (* Em sala de aula vimos como usar um quadrado e um triângulo equilátero para obter os valores
1. Arcos de mais de uma volta. Vamos generalizar o conceito de arco, admitindo que este possa dar mais de uma volta completa na circunferência.
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Trigonometria II Prof.: Rogério
Matemática Trigonometria TRIGONOMETRIA
TRIGONOMETRIA Aula 43 Página 83 1. Calcule o seno, o cosseno e a tangente de 750. Aula 43 Página 83 2. Calcule o seno, o cosseno e a tangente de π/4. Aula 43 Caderno de Exercícios Pág. 47 1. Obtenha a
1.1. Expressão geral de arcos com uma mesma extremidade Expressão geral de arcos com uma mesma extremidade
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA 1.1. Expressão geral de arcos
Gráficos de Funções Trigonométricas
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Gráficos de Funções
A derivada (continuação) Aula 17
A derivada (continuação) Aula 17 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 08 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica Teorema
Suponhamos que f é uma função que pode ser representada por uma série trigonométrica da forma. ) + B nsen( 2nπx )]. (2)
Séries de Fourier Os fenómenos periódicos aparecem nas mais variadas situações: ondas de som, movimento da erra, batimento cardíaco,... Frequentemente uma função periódica pode ser representada por meio
Limites e continuidade
Limites e continuidade Limite (finito) de uma função em a Salvo indicação em contrário, quando nos referimos a uma função estamos sempre a considerar funções reais de variável real (f.r.v.r.), ou seja,
CÁLCULO I. 1 Derivada de Funções Elementares
CÁLCULO I Prof. Marcos Diniz Prof. Edilson Neri Prof. André Almeida Aula n o : Derivada das Funções Elementares. Regras de Derivação. Objetivos da Aula Apresentar a derivada das funções elementares; Apresentar
Unidade 2 Funções Trigonométricas Inversas. Introdução Função Arco Seno Função Arco Cosseno Função Arco Tangente
Unidade 2 Funções Trigonométricas Inversas Introdução Função Arco Seno Função Arco Cosseno Função Arco Tangente Introdução Imagine que dois barcos saiam de um mesmo porto, simultaneamente e em linha reta,
A Regra da Cadeia. V(h) = 3h 9 h 2, h (0,3).
Universidade de Brasília Departamento de Matemática Cálculo 1 A Regra da Cadeia Suponha que, a partir de uma lona de plástico com 6 metros de comprimento e 3 de largura, desejamos construir uma barraca
1. As funções tangente e secante As expressões para as funções tangente e secante são
CÁLCULO L1 NOTAS DA SETA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula definiremos as demais funções trigonométricas, que são obtidas a partir das funções seno e cosseno, e determinaremos
CÁLCULO I. 1 Funções Crescentes e Decrescentes
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 17: Crescimento e Decrescimento de funções. Teste da Primeira Derivada. Objetivos da Aula Denir funções crescentes e
Formação Continuada em MATEMÁTICA Fundação CECIERJ/Consórcio CEDERJ
Formação Continuada em MATEMÁTICA Fundação CECIERJ/Consórcio CEDERJ Matemática 1º Ano 4º Bimestre/2014 Plano de Trabalho Trigonometria na circunferência Tarefa 1 Cursista: Wendel do Nascimento Pinheiro
Aula 24. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil
Polinômios de Taylor Aula 24 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 08 de Maio de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica Os polinômios
= 2 sen(x) (cos(x) (b) (7 pontos) Pelo item anterior, temos as k desigualdades. sen 2 (2x) sen(4x) ( 3/2) 3
Problema (a) (3 pontos) Sendo f(x) = sen 2 (x) sen(2x), uma função π-periódica, temos que f (x) = 2 sen(x) cos(x) sen(2x) + sen 2 (x) 2 cos(2x) = 2 sen(x) (cos(x) sen(2x) + sen(x) cos(2x) ) = 2 sen(x)
Função Seno. Utilizando o aplicativo Geogebra para conhecer as funções Seno e Cosseno. Atividade 1: A projeção da função seno será sempre no eixo das.
O uso de smartphones no ensino de funções Ursula Tatiana Timm e-mail: [email protected] Jonathas Ieggli da Silva e-mail: [email protected] Utilizando o aplicativo Geogebra para conhecer as
MAT CÁLCULO 2 PARA ECONOMIA. Geometria Analítica
MT0146 - CÁLCULO PR ECONOMI SEMESTRE DE 016 LIST DE PROBLEMS Geometria nalítica 1) Sejam π 1 e π os planos de equações, respectivamente, x + y + z = e x y + z = 1. Seja r a reta formada pela interseção
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 09: Regras de Derivação Objetivos da Aula Apresentar e aplicar as regras operacionais de derivação; Derivar funções utilizando diferentes
Trigonometria no Círculo - Funções Trigonométricas
Trigonometria no Círculo - Funções Trigonométricas Prof. Márcio Nascimento [email protected] Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida
CÁLCULO I Prof. Eilson Neri Júnior Prof. Anré Almeia Aula n o 0: Derivaas e Orem Superior e Regra a Caeia Objetivos a Aula Definir e eterminar as erivaas e orem superior; Conhecer e aplicar a regra a caeia;
Regras de Produto e Quociente
Regras de Produto e Quociente Aula 13 5950253 Plano da Aula Derivadas de Ordem Superior Regra de Produto Regra de Quociente Exercícios Referências James Stewart Cálculo Volume I (Cengage Learning) Derivadas
A Derivada. Derivadas Aula 16. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil
Derivadas Aula 16 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 04 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014104 - Engenharia Mecânica A Derivada Seja x = f(t)
MAT146 - Cálculo I - FEA, Economia
MAT46 - Cálculo I - FEA, Economia - 202 a Lista de Exercícios Limites de Funções. Calcule os seguintes limites, caso existam: 5 3x + 9 ) lim 2) lim x 3 x x 3 x + 3 x 2 + 0x 6 4) lim x 8 2x 2 4x 6 x 7)
Derivada de algumas funções elementares
Universidade de Brasília Departamento de Matemática Cálculo 1 Derivada de algumas funções elementares Vamos lembrar que a função f é derivável no ponto x = a se existe o limite f f(x) f(a) f(a+) f(a) (a).
MATEMÁTICA MÓDULO 10 EQUAÇÕES E INEQUAÇÕES TRIGONOMÉTRICAS 1. EQUAÇÕES TRIGONOMÉTRICAS BÁSICAS 1.1. EQUAÇÃO EM SENO. sen a arcsena 2k, k arcsena 2k, k
EQUAÇÕES E INEQUAÇÕES TRIGONOMÉTRICAS. EQUAÇÕES TRIGONOMÉTRICAS BÁSICAS Vamos mostrar como resolver equações trigonométricas básicas, onde temos uma linha trigonométrica aplicada sobre uma função e igual
Resolução de sistemas de equações não-lineares: Método Iterativo Linear
Resolução de sistemas de equações não-lineares: Método Iterativo Linear Marina Andretta/Franklina Toledo ICMC-USP 27 de março de 2015 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires.
Cálculo Diferencial e Integral I
Provas e listas: Cálculo Diferencial e Integral I Período 204.2 Sérgio de Albuquerque Souza 4 de maio de 205 UNIVERSIDADE FEDERAL DA PARAÍBA CCEN - Departamento de Matemática http://www.mat.ufpb.br/sergio
Cálculo I. Lista de Exercícios Aulão P1
Cálculo I Lista de Exercícios Aulão P1 Lista Resolvida no Aulão Parte I: Revisão de Matemática 1. P1 2018.1 Exercício 1 Diurno (2,0) Resolva, dê o intervalo solução e ilustre a solução sobre a reta real
Seno e Cosseno de arco trigonométrico
Caderno Unidade II Série Segmento: Pré-vestibular Resoluções Coleção: Alfa, Beta e Gama Disciplina: Matemática Volume: Unidade II: Série Seno e Cosseno de arco trigonométrico. sen90 cos80 sen70 ( ) ( )
4 o Roteiro de Atividades: reforço da segunda parte do curso de Cálculo II Instituto de Astronomia e Geofísica
4 o Roteiro de Atividades: reforço da segunda parte do curso de Cálculo II Instituto de Astronomia e Geofísica Objetivo do Roteiro Pesquisa e Atividades: Teoremas de diferenciabilidade de funções, Vetor
Ana Carolina Boero. Página: Sala Bloco A - Campus Santo André
Funções de uma variável real a valores reais E-mail: [email protected] Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Funções de uma variável real a valores
Aulas n o 22: A Função Logaritmo Natural
CÁLCULO I Aulas n o 22: A Função Logaritmo Natural Prof. Edilson Neri Júnior Prof. André Almeida 1 A Função Logaritmo Natural 2 Derivadas e Integral Propriedades dos Logaritmos 3 Gráfico Seja x > 0. Definimos
CÁLCULO I. 1 Velocidade Instantânea. Objetivos da Aula. Aula n o 04: Limites e Continuidade. Denir limite de funções; Calcular o limite de uma função;
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 04: Limites e Continuidade Objetivos da Aula Denir ite de funções; Calcular o ite de uma função; Utilizar as propriedades operatórias do
Respostas sem justificativas não serão aceitas. Além disso, não é permitido o uso de aparelhos eletrônicos. x 1 x 1. 1 sen x 1 (x 2 1) 2 (x 2 1) 2 sen
UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL - 07. A VERIFICAÇÃO DE APRENDIZAGEM - TURMA EL Nome Legível RG CPF Respostas sem justificativas
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior
Objetivos da Aula CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 4: Aproximações Lineares e Diferenciais. Regra de L Hôspital. Definir e calcular a aproximação linear
MAT111 - Cálculo Diferencial e Integral I - IO Prof. Gláucio Terra
MAT - Cálculo Diferencial e Integral I - IO - 205 Prof. Gláucio Terra a Lista de Exercícios Limites de Funções. Calcule os seguintes limites, caso existam: ) lim x 3 5 x 4) lim x 8 x 2 + 0x 6 2x 2 4x 6
Formação continuada em MATEMÁTICA Fundação CECIERJ/ Consórcio CEDERJ
Formação continuada em MATEMÁTICA Fundação CECIERJ/ Consórcio CEDERJ MATEMÁTICA 1º ANO 4º BIMESTRE/ 2013 Sandra Maria Vogas Vieira [email protected] TRIGONOMETRIA NA CIRCUNFERÊNCIA TAREFA 2 CURSISTA:
MAT146 - Cálculo I - Derivada das Inversas Trigonométricas
MAT46 - Cálculo I - Derivada das Inversas Trigonométricas Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira Vimos anteriormente que as funções trigonométricas não são inversíveis, mas
Portanto, = 4 1= 2. LETRA D
TRIGONOMETRIA PARTE QUESTÃO 0 Maior valor (cos (0,0t) -) 585 r(t) 900 + 0,5.( ) Menor valor (cos(0,0t) ) 585 r(t) 500 + 0,5.() Somando, temos: 900 + 500 000 QUESTÃO 0 P QUESTÃO 0 Queremos calcular f()
Módulo de Círculo Trigonométrico. Relação Fundamental da Trigonometria. 1 a série E.M.
Módulo de Círculo Trigonométrico Relação Fundamental da Trigonometria a série EM Círculo Trigonométrico Relação Fundamental da Trigonometria Exercícios Introdutórios Exercício Se sen x /, determine Exercício
Nome do aluno: N.º: Para responder aos itens de escolha múltipla, não apresente cálculos nem justificações e escreva, na folha de respostas:
Teste de Matemática A 017 / 018 Teste N.º 1 Matemática A Duração do Teste (Caderno 1+ Caderno ): 90 minutos 11.º Ano de Escolaridade Nome do aluno: N.º: Turma: Este teste é constituído por dois cadernos:
Projeto de Recuperação Final - 1ª Série (EM)
Projeto de Recuperação Final - 1ª Série (EM) MATEMÁTICA 1 MATÉRIA A SER ESTUDADA VOLUME CAPÍTULO ASSUNTO 4 1 4 14 5 15 5 1 5 17 5 18 5 19 0 1 Função modular I Atividades para sala: 1 Atividades para casa:
Resolução de sistemas de equações não-lineares: Método Iterativo Linear
Resolução de sistemas de equações não-lineares: Método Iterativo Linear Marina Andretta/Franklina Toledo ICMC-USP 18 de setembro de 2013 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires.
Olá! Brunna e Fernanda. Matemática. Somos do PET Engenharia Ambiental
Trigonometria Olá! Brunna e Fernanda Somos do PET Engenharia Ambiental Matemática Vamos pensar + Considere cinco circunferências concêntricas de raios diferentes e um mesmo ângulo central subtendendo arcos
Proposta de correcção
Ficha de Trabalho Matemática A - ºano Temas: Trigonometria (Triângulo rectângulo e círculo trigonométrico) Proposta de correcção. Relembrar que um radiano é, em qualquer circunferência, a amplitude do
Aula 5 - Soluções dos Exercícios Propostos
Aula 5 - Soluções dos Exercícios Propostos Trigonometria I Solução. : (a A cada um minuto completado, o ponteiro dos segundos percorre uma volta completa de π radianos. Isso se o ponteiro dos segundos
Equações e Funções Trigonométricas
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2013.2 Equações e Funções Trigonométricas Isabelle da Silva Araujo - Engenharia de Produção Equações Trigonométricas Equações trigonométricas são aquelas
Polinómio e série de Taylor
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE MATEMÁTICA II - o Semestre 05/06 Exercícios Suplementares (Eng a Física Tecnológica, Matemática Aplicada e Computação
Relembrando: Ângulos, Triângulos e Trigonometria...
Relembrando: Ângulos, Triângulos e Trigonometria... Este texto é apenas um resumo. Procure estudar esses assuntos em um livro apropriado. Ângulo é a região de um plano delimitada pelo encontro de duas
MÉTODOS MATEMÁTICOS. Claudia Mazza Dias Sandra Mara C. Malta
MÉTODOS MATEMÁTICOS Claudia Mazza Dias Sandra Mara C. Malta 1 Métodos Matemáticos Aulas: De 03/11 a 08/11-8:30 as 11:00h Ementa: 1. Funções 2. Eq. Diferenciais Ordinárias de 1 a ordem 3. Sistemas de Equações
COMPLEMENTOS DE MATEMÁTICA MÓDULO 1. Equações Diferenciais com Derivadas Parciais
Complementos de Matemática 1 COMPLEMENTOS DE MATEMÁTICA MÓDULO 1 Séries de Fourier Equações Diferenciais com Derivadas Parciais Complementos de Matemática 2 Jean Baptiste Joseph Fourier (1768-1830) viveu
1. Funções Reais de Variável Real Vamos agora estudar funções definidas em subconjuntos D R com valores em R, i.e. f : D R R
. Funções Reais de Variável Real Vamos agora estudar funções definidas em subconjuntos D R com valores em R, i.e. f : D R R D x f(x). Uma função é uma regra que associa a cada elemento x D um valor f(x)
Trigonometria no Círculo - Funções Trigonométricas
Trigonometria no Círculo - Funções Trigonométricas Prof. Márcio Nascimento [email protected] Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em
Matemática. Setor A. Índice-controle de Estudo. Prof.: Aula 19 (pág. 74) AD TM TC. Aula 20 (pág. 75) AD TM TC. Aula 21 (pág.
Matemática Setor A Prof.: Índice-controle de Estudo Aula 9 (pág. 7) AD TM TC Aula 0 (pág. 75) AD TM TC Aula (pág. 76) AD TM TC Aula (pág. 77) AD TM TC Aula (pág. 78) AD TM TC Aula (pág. 79) AD TM TC Aula
Cálculo Diferencial e Integral I
2 o Ficha B1 x 2 x se x > 0 x + 1 x arctg(x 2 ) x se x 0 i) Estude a função f do ponto de vista da continuidade. iii) O conjunto f([1, 2]) é limitado? Resolução. 1. i) Para x > 0 a função f é contínua
Aula 5 Limites infinitos. Assíntotas verticais.
MÓDULO - AULA 5 Aula 5 Limites infinitos. Assíntotas verticais. Objetivo lim Compreender o significado dos limites infinitos lim f(x) = ±, f(x) = ± e lim f(x) = ± + Referências: Aulas 34 e 40, de Pré-Cálculo,
Limites. 2.1 Limite de uma função
Limites 2 2. Limite de uma função Vamos investigar o comportamento da função f definida por f(x) = x 2 x + 2 para valores próximos de 2. A tabela a seguir fornece os valores de f(x) para valores de x próximos
Resolvendo Integrais pelo Método de
Capítulo Resolvendo Integrais pelo Método de Substituição. Métodos da substituição em integrais indefinidas O teorema fundamental do cálculo permite que se resolva rapidamente a integral b a f(x) dx, desde
