Aula 13 mtm B TRIGONOMETRIA

Tamanho: px
Começar a partir da página:

Download "Aula 13 mtm B TRIGONOMETRIA"

Transcrição

1 Aula 13 mtm B TRIGONOMETRIA

2 Definição Função Seno: f(x) = a ± b.sen(mx + n) Função Cosseno: f(x) = a ± b.cos(mx + n) a - Parâmetro aditivo da função. b - Parâmetro multiplicativo da função. m Parâmetro multiplicativo do ângulo. n Parâmetro aditivo do ângulo.

3 Domínio Restrições a y = sen b, b 0. par a y = cos a, a 0. y = sen par b, b > 0. Exemplos 1. f(x) = sen(5x + π) 3. h(x) = 1-3.sen( - π) 4 x D f : R D h : R + 2. g(x) = 2.cos(2/x + 2π) D g : R* 4. j(x) = 2-5.cos D j : R* + 3 x

4 Imagem Im = [a b, a + b] Exemplo 1: Encontre o intervalo que representa a imagem da 2x - 2 função f(x) = sen. 7 Resolução: seno f(x) = (1) sen f(x) = 5 2x Im f = [- 1, 5] - 1 f(x) = (- sen 1) f(x) = - 1 2x - 2 7

5 Imagem Im = [a b, a + b] Exemplo 2: Encontre o intervalo que representa a função g(x) = 1-2.cos x + 1. Resolução: ( ) g(x) = 1-2. (1) cos ( x + 1) cosseno g(x) = - 1 Im g = [- 1, 3] g(x) = 1-2. (- cos 1) ( x + 1) g(x) = 3

6 Período P = 2π m Repete a cada 2πrad. Exemplo 1: Determine o período de cada uma das funções a) f(x) = 4-5.sen(8x - 3π). Resolução: b) g(x) = 2.cos(x/4 + π). Resolução: P f = 2π 8 π = 4 P g = 2π 1 4 =8π

7 Paridade f(- x) = f(x), x R > par (simétrica em relação ao eixo y). f(- x) = - f(x), x R > ímpar (simétrica em relação a origem). f(- x) f(x), x R > sem paridade. Exemplo 1: Classifique as funções abaixo como: par, ímpar ou sem paridade. par ímpar sem paridade ímpar sem paridade par

8 Paridade Dobradinha! y = cos x y = sen x par ím par

9 Paridade Exemplo 2: 1. f(x) = sen(x - 2π) 2. f(x) = 2.sen(x - 2π) ímpar ímpar -2π π Obs.: Parâmetro multiplicativo da função, não alteram a paridade. - 2

10 Paridade Exemplo 3: 1. f(x) = cos(x) 2. f(x) = cos(x/2) par par Obs.: Parâmetro multiplicativo do ângulo, não alteram a paridade. 1-4π -2π 2π 4π - 1

11 Paridade Exemplo 4: 1. f(x) = sen(x) 2. f(x) = sen(x - π) 3. f(x) = sen(x + π/2) ímpar ímpar par Obs.: Parâmetro aditivo do ângulo do tipo kπmantém a paridade. -2π -π π 1-1 2π Parâmetro aditivo do ângulo do tipo kπ/2 trocam a paridade (funções pares tornam-se ímpares e vise-versa).

12 Paridade Exemplo 5: 1. f(x) = sen(x) ímpar 2. f(x) = 2 + sen(x) sem paridade -2π π Obs.: Se a função é senóide, o parâmetro aditivo da função tira a paridade da mesma, ficando esta sem paridade.

13 Paridade Exemplo 6: 1. f(x) = cos(x) par 2. f(x) = -1 + cos(x) par -2π π Obs.: Se a função é cossenóide, o parâmetro aditivo da função não altera a paridade, ou seja, a função continua sendo par.

14 Paridade Exemplo 7: Classifique a função y = sen(x + k) como par, ímpar ou sem paridade. a) k = 3π ímpar b) k = 11π/2 c) k = - 200π d) k = -13π/2 e) k = π/11 f) k = π/4 par ímpar par sem paridade sem paridade

15 Paridade Exemplo 7: (FUVEST) Identifique a função abaixo que é ímpar: π a) f(x)= sen x - 2 b) f(x)=1+ sen x π c)f(x)= sen 2x - 4 d) f(x)= 4 - senx e) f(x)= 3sen( x + π2 ) Gabarito: e

16 Começo e Final da Senóide e da Cossenóide Começo: (mx + n) = 0 ângulo da função Final: (mx + n) = 2π ângulo da função Exemplo 1: Encontre o valor que corresponde ao começo e ao final de cada uma das seguintes funções. a) f(x) = 3-2.sen(2x - 4π) Resolução: Começo: 2x - 4π = 0 2x = 4π x = 2π Final: 2x - 4π = 2π 2x = 6π x = 3π

17 Começo e Final da Senóide e da Cossenóide Começo: (mx + n) = 0 ângulo da função Final: (mx + n) = 2π ângulo da função Exemplo 1: Encontre o valor que corresponde ao começo e ao final de cada uma das seguintes funções. b) g(x) = 3.cos(4x +π) Resolução: Começo: 4x +π = 0 4x = -π x = -π/4 Final: 4x +π = 2π 4x = π x = π/4

18 Problemas 1) Analisar a função f(x) = sen(2x), quanto ao domínio, imagem, período, paridade e gráfico. Resolução: D f = R Im f = [- 1, 3] f(x) = (1) sen(2x) = 3 f(x) = (- sen(2x) 1) = - 1 Gráfico P = 2π 2 = π -π -π/2 0 π/2 π Paridade = Sem paridade - 1

19 Problemas 2) Dado o gráfico abaixo, encontre a lei de formação da função. Resolução: 3 Começa do meio, então é uma senóide. 2 f(x) = a ± b.sen(mx + n) 1 O início está sobre o eixo y, então n = 0. O eixo de simetria está em y = 1, então a = 1. -π -π/2 0-1 π/2 π A amplitude em relação ao eixo de simetria são 2 unidades, assim b = 2. Positivo, pois, começa crescendo. O período é π, logo m=2. f(x) = sen(2x)

20 Problemas π 3) Analisar a função f(x) = 3.sen x+, quanto ao domínio, 6 imagem, período, paridade e gráfico. Resolução: D f = R Im f = [- 3, 3] π f(x) = 3.(1) sen= x 3 + f(x) = 3. π (- 1) = - 3 sen 6 x + 6 P = 2π 1 =2π

21 Problemas π 3) Analisar a função f(x) = 3.sen x+, quanto ao domínio, 6 imagem, período, paridade e gráfico. Resolução: D f = R Im f = [- 3, 3] P = 2π Gráfico Começo: x + π/6 = 0 x = -π/6 Paridade = Sem paridade 3 Final: x + π/6 = 2π x = 11π/6-13π/6 -π/6 11π/6-3

22 Problemas 4) Analisar a função f(x) = cos(3x), quanto ao domínio, imagem, período, paridade e gráfico. Resolução: D f = R Gráfico Im f = [- 3, -1] -2π/3-2π/6 2π/6 2π/3 f(x) = - 2 -(1) cos(3x) = f(x) = - 2 -(- cos(3x) 1) = P = 2π 3 2π = 3-2 Paridade = par - 3

23 Aula 13 mtm B FIM

Matemática Trigonometria TRIGONOMETRIA

Matemática Trigonometria TRIGONOMETRIA TRIGONOMETRIA Aula 43 Página 83 1. Calcule o seno, o cosseno e a tangente de 750. Aula 43 Página 83 2. Calcule o seno, o cosseno e a tangente de π/4. Aula 43 Caderno de Exercícios Pág. 47 1. Obtenha a

Leia mais

Circunferência. É o conjunto de pontos de um plano eqüidistantes de um ponto do plano chamado centro, e essa distância chama-se raio.

Circunferência. É o conjunto de pontos de um plano eqüidistantes de um ponto do plano chamado centro, e essa distância chama-se raio. Trigonometria Matemática, 1º Ano, Função: conceito Circunferência É o conjunto de pontos de um plano eqüidistantes de um ponto do plano chamado centro, e essa distância chama-se raio. Matemática, 1º Ano,

Leia mais

Trigonometria no Círculo - Funções Trigonométricas

Trigonometria no Círculo - Funções Trigonométricas Trigonometria no Círculo - Funções Trigonométricas Prof. Márcio Nascimento [email protected] Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em

Leia mais

a) 7. b) 6. c) 5. d) 1. e) -1. a) 1 b) 1. c) 1. d) 1. e) 3.

a) 7. b) 6. c) 5. d) 1. e) -1. a) 1 b) 1. c) 1. d) 1. e) 3. TRIGONOMETRIA CIRCULAR ) (UFRGS) Se θ = 8 o, então a) tg θ < cos θ < sen θ. b) sen θ < cos θ < tg θ. c) cos θ < sen θ < tg θ. d) sen θ < tg θ < cos θ. e) cos θ < tg θ < sen θ. ) (UFRGS) O menor valor que

Leia mais

Formação Continuada em MATEMÁTICA Fundação CECIERJ/Consórcio CEDERJ

Formação Continuada em MATEMÁTICA Fundação CECIERJ/Consórcio CEDERJ Formação Continuada em MATEMÁTICA Fundação CECIERJ/Consórcio CEDERJ Matemática 1º Ano 4º Bimestre/2014 Plano de Trabalho Trigonometria na circunferência Tarefa 1 Cursista: Wendel do Nascimento Pinheiro

Leia mais

Exercícios - Propriedades Adicionais do Limite Aula 10

Exercícios - Propriedades Adicionais do Limite Aula 10 Exercícios - Propriedades Adicionais do Limite Aula 10 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 05 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia

Leia mais

QUESTÕES-AULA 37. (a) O período da função F (x) é T = 3 0 = 3. Dividimos a reta em intervalos da forma:

QUESTÕES-AULA 37. (a) O período da função F (x) é T = 3 0 = 3. Dividimos a reta em intervalos da forma: QUESTÕES-AULA 37 1. Considere a função f(x) = 4 x, 0 x < 3. 3 (a) Construa uma função periódica F (x) definida em todo o R, tal que F (x) = f(x) para todo x [0, 3). (b) Determine o período, a frequência

Leia mais

Seno e cosseno de arcos em todos os. quadrantes

Seno e cosseno de arcos em todos os. quadrantes Trigonometria Seno e cosseno de arcos em todos os quadrantes Seno e cosseno de arcos em todos os quadrantes Exemplo: Vamos determinar X, com 0 x < 2π tal que sen x = - 1 2. Seno e cosseno de arcos em todos

Leia mais

Trigonometria e funções trigonométricas. Funções trigonométricas O essencial

Trigonometria e funções trigonométricas. Funções trigonométricas O essencial Trigonometria e funções trigonométricas Funções trigonométricas O essencial Funções seno e cosseno Designa-se por função seno (respetivamente, função cosseno) e representa-se por sin ou sen (respetivamente,

Leia mais

Mat. Professor: Gabriel Ritter. Monitor: Rodrigo Molinari

Mat. Professor: Gabriel Ritter. Monitor: Rodrigo Molinari Mat. Professor: PC Gabriel Ritter Monitor: Rodrigo Molinari Funções Trigonométricas: Seno, Cosseno e Tangente 05 out RESUMO Seno A função seno é f: e associa cada número real ao seu seno, ou seja, f(x)=senx.

Leia mais

Limite - Propriedades Adicionais

Limite - Propriedades Adicionais Limite - Propriedades Adicionais Juliana Pimentel [email protected] Propriedades Adicionais do Limite Os próximos três teoremas são propriedades adicionais de limites. Teorema (Teste da Comparação)

Leia mais

Matemática Complementos de Funções. Professor Marcelo Gonsalez Badin

Matemática Complementos de Funções. Professor Marcelo Gonsalez Badin Matemática Complementos de Funções Professor Marcelo Gonsalez Badin Paridade Função PAR f (x) é chamada FUNÇÃO PAR se f ( x) = f (x) Exemplo: f (x) = x 4 f ( x) = ( x) 4 = x 4 = f (x) O gráfico de uma

Leia mais

Trigonometria no Círculo - Funções Trigonométricas

Trigonometria no Círculo - Funções Trigonométricas Trigonometria no Círculo - Funções Trigonométricas Prof. Márcio Nascimento [email protected] Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em

Leia mais

Função Seno. Utilizando o aplicativo Geogebra para conhecer as funções Seno e Cosseno. Atividade 1: A projeção da função seno será sempre no eixo das.

Função Seno. Utilizando o aplicativo Geogebra para conhecer as funções Seno e Cosseno. Atividade 1: A projeção da função seno será sempre no eixo das. O uso de smartphones no ensino de funções Ursula Tatiana Timm e-mail: [email protected] Jonathas Ieggli da Silva e-mail: [email protected] Utilizando o aplicativo Geogebra para conhecer as

Leia mais

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Módulo I: Cálculo Diferencial e Integral Fundamentos e tópicos de revisão

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Módulo I: Cálculo Diferencial e Integral Fundamentos e tópicos de revisão Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo Módulo I: Cálculo Diferencial e Integral Fundamentos e tópicos de revisão Professora Renata Alcarde Sermarini Notas de aula do professor

Leia mais

Elementos de trigonometria

Elementos de trigonometria Escola de Ciências e Tecnologia Departamento de Matemática Curso de preparação para a Prova Específica de Matemática ******* Elementos de trigonometria 1. O triângulo [BC] é rectângulo no ponto B e os

Leia mais

Escola Básica e Secundária da Graciosa. Matemática A 11.º Ano Funções Trigonométricas

Escola Básica e Secundária da Graciosa. Matemática A 11.º Ano Funções Trigonométricas Escola Básica e Secundária da Graciosa Matemática A 11.º Ano Funções Trigonométricas Função Seno Função Seno Correspondência unívoca que associa a cada número real, o valor do seno de, tal como definido

Leia mais

Trigonometria I. Círculo Trigonométrico. 2 ano E.M. Professores Cleber Assis e Tiago Miranda

Trigonometria I. Círculo Trigonométrico. 2 ano E.M. Professores Cleber Assis e Tiago Miranda Trigonometria I Círculo Trigonométrico ano E.M. Professores Cleber Assis e Tiago Miranda Trigonometria I Círculo Trigonométrico b) 6 1 Exercícios Introdutórios Exercício 1. Qual dos arcos abaixo é côngruo

Leia mais

Aula 11 mtm B TRIGONOMETRIA

Aula 11 mtm B TRIGONOMETRIA Aula 11 mtm B TRIGONOMETRIA Definição Circunferência de raio unitário, sobre a qual marcamos um ponto de origem e adotamos um sentido positivo de percurso (antihorário). Os eixos x e y dividem o círculo

Leia mais

Equações e Funções Trigonométricas

Equações e Funções Trigonométricas CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2013.2 Equações e Funções Trigonométricas Isabelle da Silva Araujo - Engenharia de Produção Equações Trigonométricas Equações trigonométricas são aquelas

Leia mais

Formação continuada em MATEMÁTICA Fundação CECIERJ/ Consórcio CEDERJ

Formação continuada em MATEMÁTICA Fundação CECIERJ/ Consórcio CEDERJ Formação continuada em MATEMÁTICA Fundação CECIERJ/ Consórcio CEDERJ MATEMÁTICA 1º ANO 4º BIMESTRE/ 2013 Sandra Maria Vogas Vieira [email protected] TRIGONOMETRIA NA CIRCUNFERÊNCIA TAREFA 2 CURSISTA:

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 2. MATEMÁTICA I 1 FUNÇÕES TRIGONOMÉTRICAS

Todos os exercícios sugeridos nesta apostila se referem ao volume 2. MATEMÁTICA I 1 FUNÇÕES TRIGONOMÉTRICAS INTRODUÇÃO... FUNÇÃO SENO... FUNÇÃO COSSENO... 8 FUNÇÃO TANGENTE... EQUAÇÕES TRIGONOMÉTRICAS... 5 RESPOSTAS... 5 REFERÊNCIA BIBLIOGRÁFICA... 5 No final das séries de exercícios podem aparecer sugestões

Leia mais

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 06: Continuidade de Funções Objetivos da Aula Definir função contínua; Reconhecer uma função contínua através do seu gráfico; Utilizar as

Leia mais

ATIVIDADES EM SALA DE AULA Cálculo I -A- Humberto José Bortolossi

ATIVIDADES EM SALA DE AULA Cálculo I -A- Humberto José Bortolossi ATIVIDADES EM SALA DE AULA Cálculo I -A- Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ 08 Continuidade e O Teorema do Valor Intermediário [0] (2008.) (a) Dê um exemplo de uma função

Leia mais

TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS

TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS 1 TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS Aula 8 Funções Trigonométricas Professor Luciano Nóbrega 2º Bimestre GABARITO: 1) 20 m TESTANDO OS CONHECIMENTOS 1 (UFRN) Observe a figura a seguir e determine a

Leia mais

Trigonometria Funções Trigonométricas

Trigonometria Funções Trigonométricas Trigonometria Funções Trigonométricas imagem: [ -, ] Prof. FUNÇÕES TRIGONOMÉTRICAS f(x) = sen x y f(x) = R R Imagem: [-,] Período: 3 0 0 0 x - 3 - período imagem: [ -, ] Prof. FUNÇÕES TRIGONOMÉTRICAS f(x)

Leia mais

FUNÇÕES TRIGONOMÉTRICAS E FUNÇÕES TRIGONOMÉTRICAS INVERSAS

FUNÇÕES TRIGONOMÉTRICAS E FUNÇÕES TRIGONOMÉTRICAS INVERSAS FUNÇÕES TRIGONOMÉTRICAS E FUNÇÕES TRIGONOMÉTRICAS INVERSAS 1. FUNÇÕES TRIGONOMÉTRICAS 1.1. FUNÇÃO SENO Seja P a imagem de um ângulo no ciclo trigonométrico. Já vimos que o seno do ângulo é definido como

Leia mais

Portanto, = 4 1= 2. LETRA D

Portanto, = 4 1= 2. LETRA D TRIGONOMETRIA PARTE QUESTÃO 0 Maior valor (cos (0,0t) -) 585 r(t) 900 + 0,5.( ) Menor valor (cos(0,0t) ) 585 r(t) 500 + 0,5.() Somando, temos: 900 + 500 000 QUESTÃO 0 P QUESTÃO 0 Queremos calcular f()

Leia mais

Funções. Para começarmos, precisamos de algumas definições: Dessa forma, já temos conteúdo suficiente para definirmos o assunto principal:

Funções. Para começarmos, precisamos de algumas definições: Dessa forma, já temos conteúdo suficiente para definirmos o assunto principal: Funções 1 Introdução Para começarmos, precisamos de algumas definições: Par ordenado: conjunto de dois números reais em que a ordem dos elementos importa, ou seja, (1, 2) (2, 1). Utilizaremos essa definição

Leia mais

Matematica Essencial: Trigonometria. Matemática Essencial: Alegria Financeira Fundamental Médio Geometria Trigonometria Superior Cálculos

Matematica Essencial: Trigonometria. Matemática Essencial: Alegria Financeira Fundamental Médio Geometria Trigonometria Superior Cálculos Página 1 de 15 Matemática Essencial: Alegria Financeira Fundamental Médio Geometria Trigonometria Superior Cálculos Trigonometria: Funções trigonométricas circulares Funções circulares Funções reais Funções

Leia mais

1. Arcos de mais de uma volta. Vamos generalizar o conceito de arco, admitindo que este possa dar mais de uma volta completa na circunferência.

1. Arcos de mais de uma volta. Vamos generalizar o conceito de arco, admitindo que este possa dar mais de uma volta completa na circunferência. UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Trigonometria II Prof.: Rogério

Leia mais

2ª série do Ensino Médio Turma 1º Bimestre de 2017 Data / / Escola Aluno

2ª série do Ensino Médio Turma 1º Bimestre de 2017 Data / / Escola Aluno AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 2ª série do Ensino Médio Turma 1º Bimestre de 2017 Data / / Escola Aluno EM 1 2 4 5 6 7 8 9 10 11 12 1 14 15 16 17 18 Avaliação da Aprendizagem em Processo

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL I (CDI-I) PROVA I 20/03/2013. O desenvolvimento de todos os cálculos deve estar presente na prova.

CÁLCULO DIFERENCIAL E INTEGRAL I (CDI-I) PROVA I 20/03/2013. O desenvolvimento de todos os cálculos deve estar presente na prova. Universidade do Estado de Santa Catarina Centro de Ciências Tecnológicas - CCT Departamento de Matemática Antônio João Fidélis CÁLCULO DIFERENCIAL E INTEGRAL I (CDI-I) PROVA I 0/03/013 É proibido o uso

Leia mais

1.1. Expressão geral de arcos com uma mesma extremidade Expressão geral de arcos com uma mesma extremidade

1.1. Expressão geral de arcos com uma mesma extremidade Expressão geral de arcos com uma mesma extremidade UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA 1.1. Expressão geral de arcos

Leia mais

Aula 5 - Soluções dos Exercícios Propostos

Aula 5 - Soluções dos Exercícios Propostos Aula 5 - Soluções dos Exercícios Propostos Trigonometria I Solução. : (a A cada um minuto completado, o ponteiro dos segundos percorre uma volta completa de π radianos. Isso se o ponteiro dos segundos

Leia mais

- Cálculo 1: Lista de exercícios 1 -

- Cálculo 1: Lista de exercícios 1 - - Cálculo : Lista de exercícios - UFOP - Professora Jussara Moreira. Resolver as inequações: (a) x(x ) > 0 {x R/x < 0 ou x > }; (b) (x )(x + ) < 0 {x R/ < x < }; (c) x x {x R/x ou x }; x (x ) 0 {x R/x

Leia mais

EBS DA GRACIOSA - ENSINO SECUNDÁRIO 11.º ANO

EBS DA GRACIOSA - ENSINO SECUNDÁRIO 11.º ANO EBS DA GRACIOSA - ENSINO SECUNDÁRIO.º ANO M A T E M Á T I C A : RES O L U Ç Ã O D A F I C H A D E AV A L I A Ç Ã O P R O F E S S O R C A R L O S MI G U E L SA N T O S GRUPO I. Pelo facto de o triângulo

Leia mais

Medir um arco ou ângulo é compará-lo com outro, unitário.

Medir um arco ou ângulo é compará-lo com outro, unitário. Trigonometria A palavra trigonometria vem do grego (tri+gonos+metron, que significa três+ângulos+medida) e nos remete ao estudo das medidas dos lados, ângulos e outros elementos dos triângulos. Historicamente,

Leia mais

Derivadas das Funções Trigonométricas Inversas

Derivadas das Funções Trigonométricas Inversas UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Derivadas das Funções

Leia mais

Para mais exemplos veja o vídeo:

Para mais exemplos veja o vídeo: Resumo de matemática: Frente 1: Critério 01: Função: Função é uma relação do conjunto A para o conjunto B, em que os elementos do conjunto A sempre serão x e os elementos do conjunto B sempre serão y (ou

Leia mais

LISTA DE EXERCÍCIOS. Trigonometria no Triângulo Retângulo e Funções Trigonométricas

LISTA DE EXERCÍCIOS. Trigonometria no Triângulo Retângulo e Funções Trigonométricas LISTA DE EXERCÍCIOS Pré-Cálculo UFF GMA 09 Trigonometria no Triângulo Retângulo e Funções Trigonométricas [0] (* Em sala de aula vimos como usar um quadrado e um triângulo equilátero para obter os valores

Leia mais

Propriedades das Funções Contínuas

Propriedades das Funções Contínuas Propriedades das Funções Contínuas Juliana Pimentel [email protected] Propriedades das Funções Contínuas Seguem das propriedades do limite, as seguintes propriedades das funções contínuas.

Leia mais

TESTES. 5. (UFRGS) Os ponteiros de um relógio marcam duas. horas e vinte minutos. O menor ângulo entre os ponteiros é

TESTES. 5. (UFRGS) Os ponteiros de um relógio marcam duas. horas e vinte minutos. O menor ângulo entre os ponteiros é TESTES (UFRGS) O valor de sen 0 o cos 60 o é 0 (Ufal) Se a medida de um arco, em graus, é igual a 8, sua medida em radianos é igual a ( /) 7 (6/) (6/) (UFRGS) Os ponteiros de um relógio marcam duas horas

Leia mais

Notas de aula: Cálculo e Matemática Aplicados à Notas de aula: Gestão Ambiental

Notas de aula: Cálculo e Matemática Aplicados à Notas de aula: Gestão Ambiental Notas de aula: Cálculo e Matemática Aplicados à Notas de aula: Gestão Ambiental 1 Funções Definição: Sejam A e B, dois conjuntos, A /0, B /0. Uma função definida em A com valores em B é uma lei que associa

Leia mais

Regras de Produto e Quociente

Regras de Produto e Quociente Regras de Produto e Quociente Aula 13 5950253 Plano da Aula Derivadas de Ordem Superior Regra de Produto Regra de Quociente Exercícios Referências James Stewart Cálculo Volume I (Cengage Learning) Derivadas

Leia mais

Exercício 1 Dê o valor, caso exista, que a função deveria assumir no ponto dado para. em p = 9

Exercício 1 Dê o valor, caso exista, que a função deveria assumir no ponto dado para. em p = 9 Exercícios - Limite e Continuidade-1 Exercício 1 Dê o valor, caso exista, que a função deveria assumir no ponto dado para ser contínua: (a) f(x) = x2 16 x 4 (b) f(x) = x3 x x em p = 4 em p = 0 (c) f(x)

Leia mais

EXTENSIVO APOSTILA 04 EXERCÍCIOS DE SALA MATEMÁTICA A

EXTENSIVO APOSTILA 04 EXERCÍCIOS DE SALA MATEMÁTICA A EXTENSIVO APOSTILA 04 EXERCÍCIOS DE SALA MATEMÁTICA A AULA 10 f(x) = x 4x f(x) > 0 x < 0 ou x > 4 f(x) < 0 0 < x < 4 0) x + 3x < 0 S: {x IR / x < 1 ou x > } 03) x 10x + 9 0 S: {x IR / x 1 ou x 9} 04) São

Leia mais

Extensão da tangente, secante, cotangente e cossecante, à reta.

Extensão da tangente, secante, cotangente e cossecante, à reta. UFF/GMA Notas de aula de MB-I Maria Lúcia/Marlene 05- Trigonometria - Parte - Tan-Cot_Sec-Csc PARTE II TANGENTE COTANGENTE SECANTE COSSECANTE Agora estudaremos as funções tangente, cotangente, secante

Leia mais

A inversa da função seno

A inversa da função seno UFF/GMA Notas de aula de MB-I Maria Lúcia/Marlene 015-1 PARTE III FUNÇÕES TRIGONOMÉTRICAS INVERSAS Funções inversas. O que isso significa? A cada valor da imagem corresponde um e só um valor do domínio

Leia mais

CÁLCULO I. 1 Construção de Grácos. Objetivo da Aula. Aula n o 20: Grácos. Utilizar o Cálculo Diferencial para esboçar o gráco de uma função.

CÁLCULO I. 1 Construção de Grácos. Objetivo da Aula. Aula n o 20: Grácos. Utilizar o Cálculo Diferencial para esboçar o gráco de uma função. CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Prof. Emerson Veiga Prof. Tiago Coelho Aula n o 0: Grácos. Objetivo da Aula Utilizar o Cálculo Diferencial para esboçar o gráco

Leia mais

FUNÇÕES TRIGONOMÉTRICAS NÉBIA MARA DE SOUZA

FUNÇÕES TRIGONOMÉTRICAS NÉBIA MARA DE SOUZA FUNÇÕES TRIGONOMÉTRICAS NÉBIA MARA DE SOUZA Vamos lembrar um pouco o ciclo trigonométrico? O eixo y é chamado de eixo das ordenadas e também conhecido como seno, a função seno é positiva no 1º e 2º quadrantes

Leia mais

CÁLCULO I. Reconhecer, através do gráco, a função que ele representa; (f + g)(x) = f(x) + g(x). (fg)(x) = f(x) g(x). f g

CÁLCULO I. Reconhecer, através do gráco, a função que ele representa; (f + g)(x) = f(x) + g(x). (fg)(x) = f(x) g(x). f g CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 03: Operações com funções. Funções Polinominais, Racionais e Trigonométricas Objetivos da Aula Denir operações com funções; Apresentar algumas

Leia mais

Unidade 2 Funções Trigonométricas Inversas. Introdução Função Arco Seno Função Arco Cosseno Função Arco Tangente

Unidade 2 Funções Trigonométricas Inversas. Introdução Função Arco Seno Função Arco Cosseno Função Arco Tangente Unidade 2 Funções Trigonométricas Inversas Introdução Função Arco Seno Função Arco Cosseno Função Arco Tangente Introdução Imagine que dois barcos saiam de um mesmo porto, simultaneamente e em linha reta,

Leia mais

FNT AULA 6 FUNÇÃO SENO E COSSENO

FNT AULA 6 FUNÇÃO SENO E COSSENO FNT AULA 6 FUNÇÃO SENO E COSSENO CIRCUNFERÊNCIA TRIGONOMÉTRICA Chama-se circunferência trigonométrica a circunferência de raio unitário (R=1), com centro na origem de um sistema cartesiano. +1 R = 1 360º

Leia mais

Nome do aluno: N.º: Para responder aos itens de escolha múltipla, não apresente cálculos nem justificações e escreva, na folha de respostas:

Nome do aluno: N.º: Para responder aos itens de escolha múltipla, não apresente cálculos nem justificações e escreva, na folha de respostas: Teste de Matemática A 017 / 018 Teste N.º 1 Matemática A Duração do Teste (Caderno 1+ Caderno ): 90 minutos 11.º Ano de Escolaridade Nome do aluno: N.º: Turma: Este teste é constituído por dois cadernos:

Leia mais

Bases Matemáticas Continuidade. Propriedades do Limite de Funções. Daniel Miranda

Bases Matemáticas Continuidade. Propriedades do Limite de Funções. Daniel Miranda Daniel De modo intuitivo, uma função f : A B, com A,B R é dita contínua se variações suficientemente pequenas em x resultam em variações pequenas de f(x), ou equivalentemente, se para x suficientemente

Leia mais

1. Polinómios e funções racionais

1. Polinómios e funções racionais Um catálogo de funções. Polinómios e funções racionais Polinómios e funções racionais são funções que se podem construir usando apenas as operações algébricas elementares. Recordemos a definição: Definição

Leia mais

Matemática Básica 1 = x = 64 agricultores. Gabarito: d

Matemática Básica 1 = x = 64 agricultores. Gabarito: d Baiano ACAFE Matemática Básica Infelizmente, durante a ocupação do Brasil, a maior parte de sua vegetação, principalmente na região sudeste, foi sendo derrubada para a extração da madeira e, depois, plantio

Leia mais

{ } { } { } { } { } Professor: Erivaldo. Função Composta SUPERSEMI. 01)(Aman 2013) Sejam as funções reais ( ) 2

{ } { } { } { } { } Professor: Erivaldo. Função Composta SUPERSEMI. 01)(Aman 2013) Sejam as funções reais ( ) 2 Centro de Estudos Matemáticos Florianópolis Professor: Erivaldo Santa Catarina Função Composta SUPERSEMI 01)(Aman 013) Sejam as funções reais ( ) f x = x + 4x e gx ( ) = x 1. O domínio da função f(g(x))

Leia mais

Revisão ACAFE - BAIANO

Revisão ACAFE - BAIANO Revisão ACAFE - BAIANO Matemática Básica 1) Infelizmente, durante a ocupação do Brasil, a maior parte de sua vegetação, principalmente na região sudeste, foi sendo derrubada para a extração da madeira

Leia mais

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional MA11 Números e Funções Reais Avaliação 2 GABARITO 22 de junho de 201 1. Em cada um dos itens abaixo, dê, se possível,

Leia mais

Determinante x x x. x x (Ime 2013) Seja o determinante da matriz. O número de possíveis valores

Determinante x x x. x x (Ime 2013) Seja o determinante da matriz. O número de possíveis valores Determinante. (Ime 0) Seja o determinante da matriz de x reais que anulam é a) 0 b) c) d) e) x x x. x x O número de possíveis valores. (Uepg 0) Sobre a matriz cos 0 sen 0 0) A sen 0 cos 0 0) det A. t cos

Leia mais

ln(x + y) (x + y 1) < 1 (x + y 1)2 3. Determine o polinômio de Taylor de ordem 2 da função dada, em volta do ponto dado:

ln(x + y) (x + y 1) < 1 (x + y 1)2 3. Determine o polinômio de Taylor de ordem 2 da função dada, em volta do ponto dado: ā Lista de MAT 454 - Cálculo II - a) POLINÔMIOS DE TAYLOR 1. Seja f(x, y) = ln (x + y). a) Determine o polinômio de Taylor de ordem um de f em torno de ( 1, 1 ). b) Mostre que para todo (x, y) IR com x

Leia mais

Funções Trigonométricas

Funções Trigonométricas Funções Trigonométricas 1) Na figura abaixo, a área do triângulo ABC é 5 A 120 3 C B (a) (15 3) / 4 (b) (15 3) / 2 (c) 15/2 (d) (15 2) / 4 (e) 15 / 4 2) Sabendo-se que tan(x) = - 4/3 e que x é um arco

Leia mais

Nome: Gabarito Data: 28/10/2015. Questão 01. Calcule a derivada da função f(x) = sen x pela definição e confirme o resultado

Nome: Gabarito Data: 28/10/2015. Questão 01. Calcule a derivada da função f(x) = sen x pela definição e confirme o resultado Fundação Universidade Federal de Pelotas Departamento de Matemática e Estatística Curso de Licenciatura em Matemática - Diurno Segunda Prova de Cálculo I Prof. Dr. Maurício Zan Nome: Gabarito Data: 8/0/05.

Leia mais

MATEMÁTICA I LIMITE. Profa. Dra. Amanda L. P. M. Perticarrari

MATEMÁTICA I LIMITE. Profa. Dra. Amanda L. P. M. Perticarrari MATEMÁTICA I LIMITE Profa. Dra. Amanda L. P. M. Perticarrari [email protected] Parte 1 Limites Definição de vizinhança e ite Limites laterais Limite de função real com uma variável real Teorema da existência

Leia mais

Resumo Matemática Ensino Médio - 1º ano/série -3º bimestre provão - frentes 1 e 2

Resumo Matemática Ensino Médio - 1º ano/série -3º bimestre provão - frentes 1 e 2 Frente 1 Algumas coisas retiradas de: http://www.brasilescola.com/matematica/funcao-segundo-grau.htm Critério 01: Função Quadrática: Introdução: Toda função estabelecida pela lei de formação f(x) = ax²

Leia mais

O domínio [ 1, 1] é simétrico em relação a origem.

O domínio [ 1, 1] é simétrico em relação a origem. QUESTÕES-AULA 33 1. Determine quais das funções abaixo são pares, quais são impares e quais não são pares nem impares. Justifique as suas respostas. (a) g : [ 3, 3] R, x x 3 (b) h : ( 3, 3) R, x x 3 x

Leia mais

6. EXTENSÕES DAS FUNÇÕES TRIGONOMÉTRICAS

6. EXTENSÕES DAS FUNÇÕES TRIGONOMÉTRICAS 6. EXTENSÕES DAS FUNÇÕES TRIGONOMÉTRICAS Vamos agora estender a noção de seno, cosseno e tangente, já conhecidas no triângulo retângulo, e portanto, para ângulos agudos, para ângulos e arcos quaisquer.

Leia mais

SÉRIES DE FOURIER. Fabio Cardoso D Araujo Martins, Fernando Sergio Cardoso Cunha, Paula Rodrigues. Ferreira Alves, Rafael Caveari Gomes

SÉRIES DE FOURIER. Fabio Cardoso D Araujo Martins, Fernando Sergio Cardoso Cunha, Paula Rodrigues. Ferreira Alves, Rafael Caveari Gomes SÉRIES DE FOURIER Fabio Cardoso D Araujo Martins, Fernando Sergio Cardoso Cunha, Paula Rodrigues Ferreira Alves, Rafael Caveari Gomes UFF - Universidade Federal Fluminense Neste artigo mostramos com diversos

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Funções e Modelos. Danielly Guabiraba- Engenharia Civil Vitor Bruno- Engenharia Civil

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Funções e Modelos. Danielly Guabiraba- Engenharia Civil Vitor Bruno- Engenharia Civil CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.2 Funções e Modelos Danielly Guabiraba- Engenharia Civil Vitor Bruno- Engenharia Civil Quatro maneiras de representar uma função Verbalmente (Descrevendo-a

Leia mais

Aula n o 29:Técnicas de Integração: Integrais Trigonométricas - Substituição Trigonométrica

Aula n o 29:Técnicas de Integração: Integrais Trigonométricas - Substituição Trigonométrica CÁLCULO I Aula n o 29:Técnicas de Integração: Integrais Trigonométricas - Substituição Trigonométrica Prof. Edilson Neri Júnior Prof. André Almeida 1 Integrais Trigonométricas Iniciaremos com o seguinte

Leia mais

Ana Carolina Boero. Página: Sala Bloco A - Campus Santo André

Ana Carolina Boero.   Página:  Sala Bloco A - Campus Santo André Funções de uma variável real a valores reais E-mail: [email protected] Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Funções de uma variável real a valores

Leia mais

2ª série do Ensino Médio Turma. 1º Bimestre de 2018 Data / / Escola Aluno

2ª série do Ensino Médio Turma. 1º Bimestre de 2018 Data / / Escola Aluno AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 2ª série do Ensino Médio Turma 1º Bimestre de 2018 Data / / Escola Aluno 2 1 2 4 5 6 7 8 10 11 12 1 14 15 16 Avaliação da Aprendizagem em Processo Prova

Leia mais

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática a série do Ensino Médio Turma GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DA EDUCAÇÃO o semestre de 4 Data / / Escola Aluno Questão O gráfico a seguir foi

Leia mais

Suponhamos que f é uma função que pode ser representada por uma série trigonométrica da forma. ) + B nsen( 2nπx )]. (2)

Suponhamos que f é uma função que pode ser representada por uma série trigonométrica da forma. ) + B nsen( 2nπx )]. (2) Séries de Fourier Os fenómenos periódicos aparecem nas mais variadas situações: ondas de som, movimento da erra, batimento cardíaco,... Frequentemente uma função periódica pode ser representada por meio

Leia mais

Professor Dacar Lista Desafio - Revisão Trigonometria

Professor Dacar Lista Desafio - Revisão Trigonometria . (Fuvest 0) Uma das primeiras estimativas do raio da Terra é atribuída a Eratóstenes, estudioso grego que viveu, aproximadamente, entre 7 a.c. e 9 a.c. Sabendo que em Assuã, cidade localizada no sul do

Leia mais

1. Resolva a desigualdade e exprima a solução em termos de intervalos, quando possível. (f) x + 3 < 0, 01. (g) 3x 7 5.

1. Resolva a desigualdade e exprima a solução em termos de intervalos, quando possível. (f) x + 3 < 0, 01. (g) 3x 7 5. Lista de Exercícios de Cálculo I - Funções de uma variável Real 1. Resolva a desigualdade e exprima a solução em termos de intervalos, quando possível. (a) 2x + 5 < 3x 7 3 2x 3 5 7 (c) x 2 x 6 < 0 (d)

Leia mais

Redução ao Primeiro Quadrante

Redução ao Primeiro Quadrante Redução ao Primeiro Quadrante Prof. Márcio Nascimento [email protected] Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina:

Leia mais

LISTA DE EXERCÍCIOS PROF. ULISSES MOTTA

LISTA DE EXERCÍCIOS PROF. ULISSES MOTTA LISTA DE EXERCÍCIOS PROF. ULISSES MOTTA 1. (Unesp) Na figura adiante o triângulo ABD é reto em B, e AC é a bissetriz de BÂD. Se AB =. BC, fazendo BC = b e CD = d, então: a) d = b b) d = b c) d = b d) d

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial Prova Escrita de MATEMÁTICA A - o Ano 0 - Época especial Proposta de resolução GRUPO I. Temos que A e B são acontecimentos incompatíveis, logo P A B 0 Como P A B P B P A B, e P A B 0, vem que: P A B P

Leia mais

Trigonometria na Circunferência

Trigonometria na Circunferência FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ / SEEDUC-RJ COLÉGIO: C E BARÃO DE MACAÚBAS / C E HERBERT DE SOUZA PROFESSORA: MARISTELA ISOLANI TAVARES MATRÍCULA: 00/0912586-5 SÉRIE:

Leia mais

Funções - Terceira Lista de Exercícios

Funções - Terceira Lista de Exercícios Funções - Terceira Lista de Exercícios Módulo 1 - Trigonometria e Funções Trigonométricas 1. Converta de graus para radianos: (a) 0 (b) 10 (c) 45 (d) 15 (e) 170 (f) 70 (g) 15 (h) 700 (i) 1080 (j) 6. Converta

Leia mais

A Matemática no Vestibular do ITA. Material Complementar: Coletânea de Questões Isoladas ITA 1970

A Matemática no Vestibular do ITA. Material Complementar: Coletânea de Questões Isoladas ITA 1970 A Matemática no Vestibular do ITA Material Complementar: Coletânea de Questões Isoladas ITA 1970 Essas 24 questões foram coletadas isoladamente em diversas fontes bibliográficas. Seguindo sugestão de uma

Leia mais

LISTA TRIGONOMETRIA ENSINO MÉDIO

LISTA TRIGONOMETRIA ENSINO MÉDIO LISTA TRIGONOMETRIA ENSINO MÉDIO 1. Um papagaio ou pipa, é preso a um fio esticado que forma um ângulo de 45 com o solo. O comprimento do fio é de 100 m. Determine a altura do papagaio em relação ao solo.

Leia mais

Pre-calculo 2013/2014

Pre-calculo 2013/2014 . Números reais, regras básicas de cálculo com fracções, expoentes e radicais Sumário: Número reais, regras básicas de cálculo com fracções, expoentes e radicais. Ler secções. e. do livro adoptado.. Pre-calculo

Leia mais

MATEMÁTICA BÁSICA II TRIGONOMETRIA Aula 05

MATEMÁTICA BÁSICA II TRIGONOMETRIA Aula 05 UNIVERSIDADE ESTADUAL VALE DO ACARAÚ CENTRO DE CIÊNCIAS EXATAS E TECNOLOGIA CURSO DE LICENCIATURA EM MATEMÁTICA MATEMÁTICA BÁSICA II TRIGONOMETRIA Aula 05 Prof. Márcio Nascimento [email protected]

Leia mais

Gabarito da Prova Final Unificada de Cálculo I- 2015/2, 08/03/2016. ln(ax. cos (

Gabarito da Prova Final Unificada de Cálculo I- 2015/2, 08/03/2016. ln(ax. cos ( Gabarito da Prova Final Unificada de Cálculo I- 05/, 08/03/06. Considere a função f : (0, ) R definida por ln(ax ), se x, f(x) = 6 ln cos ( π, x 3 se 0 < x

Leia mais

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1 UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1 PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR - 16/10/2016 CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES: 1.

Leia mais

CÁLCULO I. Efetuar transformações no gráco de uma função. Aplicando esse teste às seguintes funções, notamos que

CÁLCULO I. Efetuar transformações no gráco de uma função. Aplicando esse teste às seguintes funções, notamos que CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 03: Funções Inversas e Compostas.Transformações no Gráco de uma Função. Objetivos da Aula Denir função bijetora e função

Leia mais

Fórmulas da Soma e da Diferença

Fórmulas da Soma e da Diferença Fórmulas da Soma e da Diferença Prof. Márcio Nascimento [email protected] Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina:

Leia mais

Matemática Régis Cortes TRIGONOMETRIA

Matemática Régis Cortes TRIGONOMETRIA TRIGONOMETRIA 1 TRIGONOMETRIA A palavra TRIGONOMETRIA é formada por 3 radicais gregos : TRI (três), GONO (ângulos) e METRIA (medida). Atualmente a trigonometria não se limita apenas a estudar triângulos

Leia mais