Redução ao Primeiro Quadrante
|
|
|
- Joaquim Lemos Álvares
- 9 Há anos
- Visualizações:
Transcrição
1 Redução ao Primeiro Quadrante Prof. Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Matemática Básica II de maio de / 18
2 Sumário 1 Redução do Segundo ao Primeiro Quadrante / 18
3 Sumário 1 Redução do Segundo ao Primeiro Quadrante / 18
4 Seno 4 / 18
5 Seno π = β + x 4 / 18
6 Seno π = β + x β = π x 4 / 18
7 Seno π = β + x β = π x senβ = sen(π x) 4 / 18
8 Seno π = β + x β = π x senβ = sen(π x) senβ = senπ. cos x senx cos π 4 / 18
9 Seno π = β + x β = π x senβ = sen(π x) senβ = senπ. cos x senx cos π senβ = senx, onde x = π β. 4 / 18
10 Seno EXEMPLO 5 / 18
11 Seno EXEMPLO Calcular sen / 18
12 Seno EXEMPLO Calcular sen135 0 β = 135 0, x = = / 18
13 Seno EXEMPLO Calcular sen135 0 β = 135 0, x = = 45 0 senβ = senx 5 / 18
14 Seno EXEMPLO Calcular sen135 0 β = 135 0, x = = 45 0 senβ = senx sen135 0 = sen45 0 = / 18
15 6 / 18
16 π = β + x 6 / 18
17 π = β + x β = π x 6 / 18
18 π = β + x β = π x cos β = cos(π x) 6 / 18
19 π = β + x β = π x cos β = cos(π x) cos β = cos π. cos x + senπsenx 6 / 18
20 π = β + x β = π x cos β = cos(π x) cos β = cos π. cos x + senπsenx cos β = cos x, onde x = π β. 6 / 18
21 EXEMPLO 7 / 18
22 EXEMPLO Calcular cos / 18
23 EXEMPLO Calcular cos β = 120 0, x = = / 18
24 EXEMPLO Calcular cos β = 120 0, x = = 60 0 cos β = cos x 7 / 18
25 EXEMPLO Calcular cos β = 120 0, x = = 60 0 cos β = cos x cos = cos 60 0 = / 18
26 Sumário 1 Redução do Segundo ao Primeiro Quadrante / 18
27 Seno 9 / 18
28 Seno β = π + x 9 / 18
29 Seno β = π + x senβ = sen(π + x) 9 / 18
30 Seno β = π + x senβ = sen(π + x) senβ = senπ. cos x + senx cos π 9 / 18
31 Seno β = π + x senβ = sen(π + x) senβ = senπ. cos x + senx cos π senβ = senx, onde x = β π. 9 / 18
32 Seno EXEMPLO 10 / 18
33 Seno EXEMPLO Calcular sen / 18
34 Seno EXEMPLO Calcular sen210 0 β = 210 0, x = = / 18
35 Seno EXEMPLO Calcular sen210 0 β = 210 0, x = = 30 0 sen210 0 = sen30 0 = / 18
36 11 / 18
37 β = π + x 11 / 18
38 β = π + x cos β = cos(π + x) 11 / 18
39 β = π + x cos β = cos(π + x) cos β = cos π. cos x senπsenx 11 / 18
40 β = π + x cos β = cos(π + x) cos β = cos π. cos x senπsenx cos β = cos x, onde x = β π. 11 / 18
41 EXEMPLO 12 / 18
42 EXEMPLO Calcular cos / 18
43 EXEMPLO Calcular cos β = 225 0, x = = / 18
44 EXEMPLO Calcular cos β = 225 0, x = = cos = cos 45 0 = 2 12 / 18
45 Sumário 1 Redução do Segundo ao Primeiro Quadrante / 18
46 Seno 14 / 18
47 Seno β = 2π x 14 / 18
48 Seno β = 2π x senβ = sen(2π x) 14 / 18
49 Seno β = 2π x senβ = sen(2π x) senβ = sen2π. cos x senx cos 2π 14 / 18
50 Seno β = 2π x senβ = sen(2π x) senβ = sen2π. cos x senx cos 2π senβ = senx, onde x = 2π β. 14 / 18
51 Seno EXEMPLO 15 / 18
52 Seno EXEMPLO Calcular sen / 18
53 Seno EXEMPLO Calcular sen300 0 β = 300 0, x = = / 18
54 Seno EXEMPLO Calcular sen300 0 β = 300 0, x = = sen300 0 = sen60 0 = 2 15 / 18
55 16 / 18
56 β = 2π x 16 / 18
57 β = 2π x cos β = cos(2π x) 16 / 18
58 β = 2π x cos β = cos(2π x) cos β = cos 2π. cos x sen2πsenx 16 / 18
59 β = 2π x cos β = cos(2π x) cos β = cos 2π. cos x sen2πsenx cos β = cos x, onde x = 2π β. 16 / 18
60 EXEMPLO 17 / 18
61 EXEMPLO Calcular cos / 18
62 EXEMPLO Calcular cos β = 345 0, x = = / 18
63 EXEMPLO Calcular cos β = 345 0, x = = 15 0 sen15 0 = sen = 1 cos / 18
64 EXEMPLO Calcular cos β = 345 0, x = = 15 0 sen15 0 = sen = 1 cos sen15 0 = / 18
65 EXEMPLO Calcular cos β = 345 0, x = = 15 0 sen15 0 = sen = 1 cos sen15 0 = sen15 0 = 4 17 / 18
66 EXEMPLO 18 / 18
67 EXEMPLO cos 15 0 = 1 sen 2 (15 0 ) = / 18
68 EXEMPLO cos 15 0 = 1 sen 2 (15 0 ) = cos 15 0 = 4 18 / 18
69 EXEMPLO cos 15 0 = 1 sen 2 (15 0 ) = cos 15 0 = cos = 4 18 / 18
Fórmulas da Soma e da Diferença
Fórmulas da Soma e da Diferença Prof. Márcio Nascimento [email protected] Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina:
Seno e cosseno de arcos em todos os. quadrantes
Trigonometria Seno e cosseno de arcos em todos os quadrantes Seno e cosseno de arcos em todos os quadrantes Exemplo: Vamos determinar X, com 0 x < 2π tal que sen x = - 1 2. Seno e cosseno de arcos em todos
Trigonometria no Círculo - Funções Trigonométricas
Trigonometria no Círculo - Funções Trigonométricas Prof. Márcio Nascimento [email protected] Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em
Aula 5 - Soluções dos Exercícios Propostos
Aula 5 - Soluções dos Exercícios Propostos Trigonometria I Solução. : (a A cada um minuto completado, o ponteiro dos segundos percorre uma volta completa de π radianos. Isso se o ponteiro dos segundos
QUESTÕES-AULA 37. (a) O período da função F (x) é T = 3 0 = 3. Dividimos a reta em intervalos da forma:
QUESTÕES-AULA 37 1. Considere a função f(x) = 4 x, 0 x < 3. 3 (a) Construa uma função periódica F (x) definida em todo o R, tal que F (x) = f(x) para todo x [0, 3). (b) Determine o período, a frequência
Módulo de Trigonometria. Seno, Cosseno e Tangente. 1 a série E.M.
Módulo de Trigonometria Seno, Cosseno e Tangente 1 a série E.M. Trigonometria Seno, Cosseno e Tangente. 1 Exercícios Introdutórios Exercício 1. Determine a) sen 10 o. b) sen 180 o. c) sen 40 o. d) sen
Trigonometria no Círculo - Funções Trigonométricas
Trigonometria no Círculo - Funções Trigonométricas Prof. Márcio Nascimento [email protected] Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em
Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema I Geometria no Plano e no Espaço II. Ficha de trabalho n.º 5
Escola Secundária com º ciclo D. Dinis 11º Ano de Matemática A Tema I Geometria no Plano e no Espaço II Ficha de trabalho n.º 1. Resolva as seguintes equações, em [, ] e em IR. a. senx = sen b. senx =
Lei dos Cossenos / Lei dos Senos
Aplicação da Lei dos Cossenos / Prof. Márcio Nascimento [email protected] Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina:
Nome do aluno: N.º: Para responder aos itens de escolha múltipla, não apresente cálculos nem justificações e escreva, na folha de respostas:
Teste de Matemática A 018 / 019 Teste N.º 1 Matemática A Duração do Teste (Caderno 1+ Caderno ): 90 minutos 11.º Ano de Escolaridade Nome do aluno: N.º: Turma: Este teste é constituído por dois cadernos:
MATEMÁTICA BÁSICA II TRIGONOMETRIA Aula 05
UNIVERSIDADE ESTADUAL VALE DO ACARAÚ CENTRO DE CIÊNCIAS EXATAS E TECNOLOGIA CURSO DE LICENCIATURA EM MATEMÁTICA MATEMÁTICA BÁSICA II TRIGONOMETRIA Aula 05 Prof. Márcio Nascimento [email protected]
UNIVERSIDADE FEDERAL DO PARÁ CURSO DE LICENCIATURA EM MATEMÁTICA DO PARFOR LISTA DE EXERCÍCIOS DE TRIGONOMETRIA E NÚMEROS COMPLEXOS
UNIVERSIDADE FEDERAL DO PARÁ CURSO DE LICENCIATURA EM MATEMÁTICA DO PARFOR LISTA DE EXERCÍCIOS DE TRIGONOMETRIA E NÚMEROS COMPLEXOS 1. Do alto de uma torre de 50 m de altura,localizada numa ilha, avista-se
Aula Trigonometria
Aula 4 4. Trigonometria A trigonometria estabelece relações precisas entre os ângulos e os lados de um triângulo. Definiremos as três funções (mesmo se a própria noção de função será estudada no próximo
FUNÇÕES TRIGONOMÉTRICAS. Teorema de Pitágoras Razões trigonométricas Circunferência trigonométrica
FUNÇÕES TRIGONOMÉTRICAS Teorema de Pitágoras Razões trigonométricas Circunferência trigonométrica Teorema de Pitágoras Em qualquer triângulo retângulo, o quadrado da medida da hipotenusa é igual à soma
11.º Ano Matemática A Geometria no Plano e no Espaço II
Escola Secundária de Alcochete 11.º Ano Matemática A Geometria no Plano e no Espaço II REDUÇÃO AO 1.º QUADRANTE O que é? Reduzir um ângulo ao 1.º quadrante consiste em determinar um ângulo positivo do
0.1 Função Inversa. Notas de Aula de Cálculo I do dia 07/06/ Matemática Profa. Dra. Thaís Fernanda Mendes Monis.
Notas de Aula de Cálculo I do dia 07/06/03 - Matemática Profa. Dra. Thaís Fernanda Mendes Monis. 0. Função Inversa Definição. Uma função f : A C é injetiva se f(x) f(y) para todo x y, x, y A. Seja f :
Nome do aluno: N.º: Para responder aos itens de escolha múltipla, não apresente cálculos nem justificações e escreva, na folha de respostas:
Teste de Matemática A 017 / 018 Teste N.º 1 Matemática A Duração do Teste (Caderno 1+ Caderno ): 90 minutos 11.º Ano de Escolaridade Nome do aluno: N.º: Turma: Este teste é constituído por dois cadernos:
6. EXTENSÕES DAS FUNÇÕES TRIGONOMÉTRICAS
6. EXTENSÕES DAS FUNÇÕES TRIGONOMÉTRICAS Vamos agora estender a noção de seno, cosseno e tangente, já conhecidas no triângulo retângulo, e portanto, para ângulos agudos, para ângulos e arcos quaisquer.
Aplicações de Álgebra Linear - Fractais
Aplicações de Álgebra Linear - Fractais Departamento de Matemática - UFPR Ademir Alves Ribeiro Elizabeth Wegner Karas Lucas Pedroso Outubro de 2010 Características Características Características Características
Números e Funções Reais, E. L. Lima, Coleção PROFMAT.
Aviso Este material é apenas um resumo de parte do conteúdo da disciplina. O material completo a ser estudado encontra-se no Capítulo 9 - Seção 9,5 do livro texto da disciplina: Números e Funções Reais,
Solução Comentada Prova de Matemática
18. Um reservatório, com capacidade para 680 litros, tem a forma de um cilindro circular reto. Se o raio da base deste reservatório mede 1 metro, sua altura mede: A) 1 m (Considere π =,14) B) 1,4 m C)
Módulo de Redução ao Primeiro Quadrante e Funções Trigonométricas. Redução ao Primeiro Quadrante. 7 ano E.F. Professores Tiago Miranda e Cleber Assis
Módulo de Redução ao Primeiro Quadrante e Funções Trigonométricas Redução ao Primeiro Quadrante 7 ano E.F. Professores Tiago Miranda e Cleber Assis Redução ao Primeiro Quadrante e Funções Trigonométricas
Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática. MTM Pré-cálculo
Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática MTM3100 - Pré-cálculo 14 a lista de exercícios (0/11/017 a 01/1/017) 1 Resolva as equações abaixo
Radianos. Prof. Márcio Nascimento.
Radianos Prof. Márcio Nascimento [email protected] Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Matemática Básica II
Seno e Cosseno de arco trigonométrico
Caderno Unidade II Série Segmento: Pré-vestibular Resoluções Coleção: Alfa, Beta e Gama Disciplina: Matemática Volume: Unidade II: Série Seno e Cosseno de arco trigonométrico. sen90 cos80 sen70 ( ) ( )
UNIVERSIDADE ESTADUAL VALE DO ACARAÚ. 2 a Lista de Exercícios - Matemática Básica II Professor Márcio Nascimento
UNIVERSIDADE ESTADUAL VALE DO ACARAÚ Coordenação de Matemática a Lista de Exercícios - Matemática Básica II - 015.1 Professor Márcio Nascimento 1. Encontre a medida em radianos do ângulo θ, sendo θ o ângulo
Radianos e Graus. Prof. Márcio Nascimento.
Prof. Márcio Nascimento [email protected] Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Matemática Básica II - 2015.1
MAT111 - Cálculo I - IF TRIGONOMETRIA. As Funçoes trigonométricas no triângulo retângulo
MAT111 - Cálculo I - IF - 010 TRIGONOMETRIA As Funçoes trigonométricas no triângulo retângulo Analisando a figura a seguir, temos que os triângulos retângulos OA 1 B 1 e OA B, são semelhantes, pois possuem
Professor Dacar Lista de Exercícios - Revisão Trigonometria
1. Obtenha a medida, em graus, de um arco AB de comprimento π metros, sabendo que ele está contido em uma circunferência de diâmetro igual a metros. Resposta:. (UFPR) Em uma circunferência de 1 dm de comprimento,
- Cálculo 1: Lista de exercícios 1 -
- Cálculo : Lista de exercícios - UFOP - Professora Jussara Moreira. Resolver as inequações: (a) x(x ) > 0 {x R/x < 0 ou x > }; (b) (x )(x + ) < 0 {x R/ < x < }; (c) x x {x R/x ou x }; x (x ) 0 {x R/x
Atividades Trigonometria. I. Utilizado na Engenharia para a construção de rodas gigantes
Atividades Trigonometria A trigonometria é um ramo da matemática que exerce um papel importantíssimo em vários contextos do nosso dia-a-dia. Graças a ela foi possível o homem criar desde pequenas obras
Módulo de Círculo Trigonométrico. Relação Fundamental da Trigonometria. 1 a série E.M.
Módulo de Círculo Trigonométrico Relação Fundamental da Trigonometria a série EM Círculo Trigonométrico Relação Fundamental da Trigonometria Exercícios Introdutórios Exercício Se sen x /, determine Exercício
Exercícios de revisão de Trigonometria 2º EM Matemática 01 Prof.ª Adriana Massucci
Exercícios de revisão de Trigonometria º EM Matemática 01 Prof.ª Adriana Massucci Considerações: Este conteúdo é referente ao módulo 07 do 1º ano. Esta revisão serve de apoio ao conteúdo que será desenvolvido
Composição e Inversa de Transformações Lineares e Matrizes
Composição e Inversa de Transformações Lineares e Matrizes Prof. Márcio Nascimento [email protected] Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura
FNT AULA 6 FUNÇÃO SENO E COSSENO
FNT AULA 6 FUNÇÃO SENO E COSSENO CIRCUNFERÊNCIA TRIGONOMÉTRICA Chama-se circunferência trigonométrica a circunferência de raio unitário (R=1), com centro na origem de um sistema cartesiano. +1 R = 1 360º
Matemática Ensino Médio Anotações de aula Trigonometira
Matemática Ensino Médio Anotações de aula Trigonometira Prof. José Carlos Ferreira da Silva 2016 1 ÍNDICE Trigonometria Introdução... 04 Ângulos na circunferência...04 Relações trigonométricas no triângulo
LISTA DE EXERCÍCIOS. Trigonometria no Triângulo Retângulo e Funções Trigonométricas
LISTA DE EXERCÍCIOS Pré-Cálculo UFF GMA 09 Trigonometria no Triângulo Retângulo e Funções Trigonométricas [0] (* Em sala de aula vimos como usar um quadrado e um triângulo equilátero para obter os valores
Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática. MTM Pré-cálculo
Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática MTM3100 - Pré-cálculo 14 a lista complementar de exercícios (0/11/017 a 01/1/017 1 Seja x [ 1,
Equações e Funções Trigonométricas
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2013.2 Equações e Funções Trigonométricas Isabelle da Silva Araujo - Engenharia de Produção Equações Trigonométricas Equações trigonométricas são aquelas
PROFORM Programa de Formação Diferenciada Curso Introdutório de Matemática para Engenharia CIME
PROFORM Programa de Formação Diferenciada Curso Introdutório de Matemática para Engenharia CIME 2012.2 Parte II Kerolaynh Santos e Tássio Magassy Engenharia Civil Identidades Trigonométricas Definição:
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 20 DE JULHO 2018 CADERNO 1
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) ª FASE 0 DE JULHO 08 CADERNO... P00/00 Como se trata de uma distribuição normal temos que: ( ) 0,9545. P µ σ
Cálculo Diferencial e Integral I
2 o Ficha B1 x 2 x se x > 0 x + 1 x arctg(x 2 ) x se x 0 i) Estude a função f do ponto de vista da continuidade. iii) O conjunto f([1, 2]) é limitado? Resolução. 1. i) Para x > 0 a função f é contínua
Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema I Geometria no Plano e no Espaço II. 1º Teste de avaliação.
Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema I Geometria no Plano e no Espaço II 1º Teste de avaliação Grupo I As cinco questões deste grupo são de escolha múltipla. Para cada uma
Trigonometria no Triângulo Retângulo
Trigonometria no Triângulo Retângulo Prof. Márcio Nascimento [email protected] Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina:
Portanto, = 4 1= 2. LETRA D
TRIGONOMETRIA PARTE QUESTÃO 0 Maior valor (cos (0,0t) -) 585 r(t) 900 + 0,5.( ) Menor valor (cos(0,0t) ) 585 r(t) 500 + 0,5.() Somando, temos: 900 + 500 000 QUESTÃO 0 P QUESTÃO 0 Queremos calcular f()
TESTES. 5. (UFRGS) Os ponteiros de um relógio marcam duas. horas e vinte minutos. O menor ângulo entre os ponteiros é
TESTES (UFRGS) O valor de sen 0 o cos 60 o é 0 (Ufal) Se a medida de um arco, em graus, é igual a 8, sua medida em radianos é igual a ( /) 7 (6/) (6/) (UFRGS) Os ponteiros de um relógio marcam duas horas
AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática. 3ª série do Ensino Médio Turma 1º semestre de 2015 Data / / Escola Aluno
AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 11 3ª série do Ensino Médio Turma 1º semestre de 2015 Data / / Escola Aluno Questão 1 Considere uma matriz formada por elementos que são, ao mesmo tempo,
ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 11º ANO DE ESCOLARIDADE MATEMÁTICA A FICHA DE AVALIAÇÃO Nº 2
ESL SEUNÁRI M º IL. INIS IMR º N E ESLRIE MTEMÁTI FIH E VLIÇÃ Nº Grupo I s cinco questões deste grupo são de escolha múltipla. Para cada uma delas são indicadas quatro alternativas, das quais só uma está
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 20 DE JULHO 2018 CADERNO 1
Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 7-A 500-36 Lisboa Tel.: +35 76 36 90 / 7 03 77 Fax: +35 76 64 4 http://www.apm.pt email: [email protected] PROPOSTA DE RESOLUÇÃO DA
Limite - Propriedades Adicionais
Limite - Propriedades Adicionais Juliana Pimentel [email protected] Propriedades Adicionais do Limite Os próximos três teoremas são propriedades adicionais de limites. Teorema (Teste da Comparação)
Funções Trigonométricas. A função Seno. Função Seno. Função Seno: Propriedades. f : R R. = medida algébrica do. CD(f ) = R, Im(f ) = [ 1, 1].
Funções Trigonométricas função Seno Função Seno Função Seno: ropriedades (a) sen( + π) = sen() R R f () = sen() segmento (b) sen() = sen( ) Se está no primeiro ou segundo quadrante então sen() é positivo.
Trigonometria. Trigonometria no Triângulo Retângulo. Pré-Cálculo. Trigonometria. Humberto José Bortolossi. Parte 7. trigonometria
Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Trigonometria Parte 7 Parte 7 Pré-Cálculo 1 Parte 7 Pré-Cálculo 2 Trigonometria trigonometria Trigonometria
Aula 13 mtm B TRIGONOMETRIA
Aula 13 mtm B TRIGONOMETRIA Definição Função Seno: f(x) = a ± b.sen(mx + n) Função Cosseno: f(x) = a ± b.cos(mx + n) a - Parâmetro aditivo da função. b - Parâmetro multiplicativo da função. m Parâmetro
ATIVIDADES EM SALA DE AULA Cálculo I -A- Humberto José Bortolossi
ATIVIDADES EM SALA DE AULA Cálculo I -A- Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ 08 Continuidade e O Teorema do Valor Intermediário [0] (2008.) (a) Dê um exemplo de uma função
MATEMÁTICA A - 12o Ano N o s Complexos - Operações e simplificação de expressões
MATEMÁTICA A - 1o Ano N o s Complexos - Operações e simplificação de expressões Exercícios de exames e testes intermédios 1. Na figura ao lado, estão representadas, no plano complexo, as imagens geométricas
Aula n o 29:Técnicas de Integração: Integrais Trigonométricas - Substituição Trigonométrica
CÁLCULO I Aula n o 29:Técnicas de Integração: Integrais Trigonométricas - Substituição Trigonométrica Prof. Edilson Neri Júnior Prof. André Almeida 1 Integrais Trigonométricas Iniciaremos com o seguinte
Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema I Geometria no Plano e no Espaço II. 1º Teste de avaliação.
Escola Secundária com 3º ciclo D. Dinis º Ano de Matemática A Tema I Geometria no Plano e no Espaço II º Teste de avaliação Grupo I As cinco questões deste grupo são de escolha múltipla. Para cada uma
Olá! Brunna e Fernanda. Matemática. Somos do PET Engenharia Ambiental
Trigonometria Olá! Brunna e Fernanda Somos do PET Engenharia Ambiental Matemática Vamos pensar + Considere cinco circunferências concêntricas de raios diferentes e um mesmo ângulo central subtendendo arcos
MATEMÁTICA A - 12o Ano N o s Complexos - Operações e simplificação de expressões
MATEMÁTICA A - 1o Ano N o s Complexos - Operações e simplificação de expressões Exercícios de exames e testes intermédios 1. Na figura ao lado, estão representados, no plano complexo, uma circunferência
Primeira Parte (escolha múltipla)
ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO FICHA DE TRABALHO Nº MATEMÁTICA º ANO Primeira Parte (escolha múltipla). De um ângulo α sabe-se que sen ( π α) é positivo e que cosα é negativo. Então α pertence a:
Módulo Números Complexos - Forma Algébrica. Introdução à forma polar de um número complexo. 3 ano E.M.
Módulo Números Complexos - Forma Algébrica Introdução à forma polar de um número complexo 3 ano E.M. Introdução à forma polar de um número complexo Exercícios Introdutórios Exercício. Encontre a representação
Exercícios - Propriedades Adicionais do Limite Aula 10
Exercícios - Propriedades Adicionais do Limite Aula 10 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 05 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia
Relações Métricas nos Triângulos. Joyce Danielle de Araújo
Relações Métricas nos Triângulos Joyce Danielle de Araújo Trigonometria A palavra trigonometria é de origem grega, onde: Trigonos = Triângulo Metrein = Mensuração - Relação entre ângulos e distâncias;
ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema I Geometria no Plano e no Espaço II
ESCOLA SECUNDÁRIA COM º CICLO D DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema I Geometria no Plano e no Espaço II Ficha de trabalho nº 4 1 Resolva o exercício 11 da página 80 do seu manual Considere
CÁLCULO I. Iniciaremos com o seguinte exemplo: u 2 du = cos x + u3 3 + C = cos3 x
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aulas n o 9: Técnicas de Integração II - Integrais Trigonométricas e Substituição Trigonométrica Objetivos da Aula Calcular integrais de potências
Função Seno. Utilizando o aplicativo Geogebra para conhecer as funções Seno e Cosseno. Atividade 1: A projeção da função seno será sempre no eixo das.
O uso de smartphones no ensino de funções Ursula Tatiana Timm e-mail: [email protected] Jonathas Ieggli da Silva e-mail: [email protected] Utilizando o aplicativo Geogebra para conhecer as
Funções - Quarta Lista de Exercícios
Funções - Quarta Lista de Exercícios Módulo 1 - Funções Trigonométricas 1. Converta de graus para radianos: (a) 30 (b) 10 (c) 45 (d) 135 (e) 170 (f) 70 (g) 15 (h) 700 (i) 1080 (j) 36. Converta de radianos
Primeira prova de Álgebra II - 30/09/2010 Prof. - Juliana Coelho
Primeira prova de Álgebra II - 0/09/2010 Prof. - Juliana Coelho JUSTIFIQUE SUAS RESPOSTAS! Questões contendo só a resposta, sem desenvolvimento ou justificativa serão desconsideradas! QUESTÃO 1 (2,0 pts)
Notas de Aula de Matemática Básica I
UFF/GMA Notas de aula de MB-I Maria Lúcia/Marlene 015-1 IME Instituto de Matemática e Estatística GMA Departamento de Matemática Aplicada Notas de Aula de Matemática Básica I Maria Lúcia Tavares de Campos
Funções - Terceira Lista de Exercícios
Funções - Terceira Lista de Exercícios Módulo 1 - Trigonometria e Funções Trigonométricas 1. Converta de graus para radianos: a) 0 b) 10 c) 45 d) 15 e) 170 f) 70 g) 15 h) 700 i) 1080 j) 6. Converta de
LISTA TRIGONOMETRIA ENSINO MÉDIO
LISTA TRIGONOMETRIA ENSINO MÉDIO 1. Um papagaio ou pipa, é preso a um fio esticado que forma um ângulo de 45 com o solo. O comprimento do fio é de 100 m. Determine a altura do papagaio em relação ao solo.
Lista 10 - Funções Trigonométricas. Obs.: A resolução da Lista 10.1 encontra-se depois desta lista.
Lista 10 - Funções Trigonométricas Obs.: A resolução da Lista 10.1 encontra-se depois desta lista. 1) Resolução: a) Período 2 Imagem [ 2; 4] Gráfico da função sen x transladado unidades para a direita.
Circunferência. É o conjunto de pontos de um plano eqüidistantes de um ponto do plano chamado centro, e essa distância chama-se raio.
Trigonometria Matemática, 1º Ano, Função: conceito Circunferência É o conjunto de pontos de um plano eqüidistantes de um ponto do plano chamado centro, e essa distância chama-se raio. Matemática, 1º Ano,
CÁLCULO I. Calcular integrais envolvendo funções trigonométricas; Apresentar a substituição trigonométrica. Iniciaremos com o seguinte exemplo:
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Prof. Emerson Veiga Prof. Tiago Coelho Aula n o 8: Integrais Trigonométricas. Substituição Trigonométrica. Objetivos da Aula Calcular
MATEMÁTICA. Um pintor pintou 30% de um muro e outro pintou 60% do que sobrou. A porcentagem do muro que falta pintar
MATEMÁTICA d Um pintor pintou 0% de um muro e outro pintou 60% do que sobrou. A porcentagem do muro que falta pintar é: a) 0% b) % c) % d) 8% e) % ) 60% de 70% % ) 00% % 0% 8% d Se (x y) (x + y) 0, então
Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema III Trigonometria e Números Complexos. 6º Teste de avaliação versão A.
Escola Secundária com 3º ciclo D. Dinis º Ano de Matemática A Tema III Trigonometria e Números Complexos 6º Teste de avaliação versão A Grupo I As cinco questões deste grupo são de escolha múltipla. Para
Elementos de Matemática
Elementos de Matemática Exercícios de Trigonometria - atividades didáticas de 2007 Versão compilada no dia 23 de Maio de 2007. Departamento de Matemática - UEL Prof. Ulysses Sodré E-mail: [email protected]
DEPARTAMENTO DE MATEMÁTICA CICLO BÁSICO DO CTC MAT1157 Cálculo a uma Variável A G3 13 de junho de 2011 (versão Ia)
DEPARTAMENTO DE MATEMÁTICA CICLO BÁSICO DO CTC PUC-RIO MAT1157 Cálculo a uma Variável A G3 13 de junho de 2011 (versão Ia) Início: 7:00 Término: 8:35 Nome: Matrícula: Turma: Questão Valor Grau Revisão
3 Cálculo Integral em R n
3 Cálculo Integral em n Exercício 3.. Calcule os seguintes integrais. Universidade da Beira Interior Matemática Computacional II Engenharia Informática 4/5 Ficha Prática 3 3 x + y dxdy x y + x dxdy e 3
Lista 02 - Matemática Básica II
Lista 0 - Matemática Básica II - 016. 1. Encontre a medida em radianos do ângulo θ, sendo θ o ângulo central de um arco que mede s em um círculo de raio r. (a) r =, s = 9 (b) r = 1, s = π (c) r = 1 4,
3. (Ufscar) O gráfico em setores do círculo de centro O representa a distribuição das idades entre os eleitores de uma cidade.
LISTA DE RECUPERAÇÃO ÁLGEBRA º ANO º TRIMESTRE. (G - ifce) Considere um relógio analógico de doze horas. O ângulo obtuso formado entre os ponteiros que indicam a hora e o minuto, quando o relógio marca
ENSINO SECUNDÁRIO 11.º ANO. 1. Pela lei dos Senos, tem-se que: = 5. De onde se tem = Logo, a opção correta é a opção (C).
ENSINO SECUNDÁRIO.º ANO M A T E M Á T I C A A: R E S O L U Ç Ã O D O TR A B A L H O I N D I V I D U A L P R O F E S S O R C A R L O S MI G U E L SA N T O S. Pela lei dos Senos, tem-se que: De onde se tem
COLÉGIO PEDRO II UNIDADE REALENGO II LISTA DE REVISÃO PARA A 2ª CERTIFICAÇÃO. PROFESSORES: ANTÔNIO, CLAYTON e FELIPE COORDENADOR: DIEGO VIUG
COLÉGIO PEDRO II UNIDADE REALENGO II LISTA DE REVISÃO PARA A ª CERTIFICAÇÃO PROFESSORES: ANTÔNIO, CLAYTON e FELIPE COORDENADOR: DIEGO VIUG. (Unisinos) As funções seno e cosseno de qualquer ângulo x satisfazem
Espaços Vetoriais. Prof. Márcio Nascimento.
Espaços Vetoriais Prof. Márcio Nascimento [email protected] Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Linear
