Radianos e Graus. Prof. Márcio Nascimento.
|
|
|
- Sandra Molinari Carrilho
- 9 Há anos
- Visualizações:
Transcrição
1 Prof. Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Matemática Básica II de julho de / 23
2 Sumário 1 Comprimento de Curva / 23
3 Sumário 1 Comprimento de Curva / 23
4 Comprimento de Curva Como calcular o comprimento de uma curva? 4 / 23
5 Comprimento de Curva Como calcular o comprimento de uma curva? Uma boa tentativa é esticar a curva e medir... 4 / 23
6 Comprimento de Curva Como calcular o comprimento de uma curva? Uma boa tentativa é esticar a curva e medir... Uma outra maneira é fazer uma aproximação através de poligonais. 4 / 23
7 Comprimento de Curva No caso do círculo, em particular, podemos aproximar pelo comprimento de poĺıgonos inscritos 5 / 23
8 Comprimento de Curva Doravante, diremos apenas que o comprimento de uma circunferência é C e admitiremos que: 6 / 23
9 Comprimento de Curva Doravante, diremos apenas que o comprimento de uma circunferência é C e admitiremos que: O número π é o comprimento de uma semi-circunferência de raio 1 6 / 23
10 Comprimento de Curva Doravante, diremos apenas que o comprimento de uma circunferência é C e admitiremos que: O número π é o comprimento de uma semi-circunferência de raio 1 6 / 23
11 Comprimento de Curva Doravante, diremos apenas que o comprimento de uma circunferência é C e admitiremos que: O número π é o comprimento de uma semi-circunferência de raio 1 Desta forma, o comprimento C de uma circunferência de raio 1 é 2π. 6 / 23
12 Comprimento de Curva E qual o comprimento de uma circunferência de raio R? 7 / 23
13 Comprimento de Curva E qual o comprimento de uma circunferência de raio R? OA AC = OB = 1 = R = DB = AC.R DB AC DB 7 / 23
14 Comprimento de Curva E qual o comprimento de uma circunferência de raio R? OA AC = OB = 1 = R = DB = AC.R DB AC DB Observe que neste caso, DB e AC denotam medidas de arcos, não seguimentos. 7 / 23
15 Comprimento de Curva E qual o comprimento de uma circunferência de raio R? OA AC = OB = 1 = R = DB = AC.R DB AC DB Observe que neste caso, DB e AC denotam medidas de arcos, não seguimentos. Se considerarmos o arco de toda a circunferência, então AC é o comprimento da circunferência de raio 1, e DB o comprimento C da circunferência de raio R, daí: 7 / 23
16 Comprimento de Curva E qual o comprimento de uma circunferência de raio R? OA AC = OB = 1 = R = DB = AC.R DB AC DB Observe que neste caso, DB e AC denotam medidas de arcos, não seguimentos. Se considerarmos o arco de toda a circunferência, então AC é o comprimento da circunferência de raio 1, e DB o comprimento C da circunferência de raio R, daí: C = 2πR 7 / 23
17 Comprimento de Curva Veja que o número π não depende da circunferência considerada, é um invariante: 8 / 23
18 Comprimento de Curva Veja que o número π não depende da circunferência considerada, é um invariante: 8 / 23
19 Comprimento de Curva Veja que o número π não depende da circunferência considerada, é um invariante: C = 2π.R = π = C 2R 8 / 23
20 Sumário 1 Comprimento de Curva / 23
21 Considere uma circunferência de raio R. 10 / 23
22 Considere uma circunferência de raio R. Dado um ângulo α de vértice O, determina-se um arco AB na circunferência. 10 / 23
23 Considere uma circunferência de raio R. Dado um ângulo α de vértice O, determina-se um arco AB na circunferência. Observe que para cada ângulo α obtido dessa forma, temos um comprimento de arco AB diferente. 10 / 23
24 Considere uma circunferência de raio R. Dado um ângulo α de vértice O, determina-se um arco AB na circunferência. Observe que para cada ângulo α obtido dessa forma, temos um comprimento de arco AB diferente. Isso nos permite medir o ângulo α baseado no comprimento de arco AB e no raio R, isto é, podemos dizer que 10 / 23
25 Considere uma circunferência de raio R. Dado um ângulo α de vértice O, determina-se um arco AB na circunferência. Observe que para cada ângulo α obtido dessa forma, temos um comprimento de arco AB diferente. Isso nos permite medir o ângulo α baseado no comprimento de arco AB e no raio R, isto é, podemos dizer que AB α = R 10 / 23
26 Considere uma circunferência de raio R. Dado um ângulo α de vértice O, determina-se um arco AB na circunferência. Observe que para cada ângulo α obtido dessa forma, temos um comprimento de arco AB diferente. Isso nos permite medir o ângulo α baseado no comprimento de arco AB e no raio R, isto é, podemos dizer que AB α = R Esta unidade de medida é chamada radiano. 10 / 23
27 Assim, 1 radiano é o ângulo correspondente ao arco de comprimento AB = R, numa circunferência de raio R. 11 / 23
28 Assim, 1 radiano é o ângulo correspondente ao arco de comprimento AB = R, numa circunferência de raio R. A palavra radiano vem de raio, uma vez que esta unidade está diretamente ligada ao raio da circunferência. 11 / 23
29 Quando a circunferência tem raio 1, a medida do ângulo em radianos, corresponde a medida do arco determinado pelo ângulo. 12 / 23
30 Quando a circunferência tem raio 1, a medida do ângulo em radianos, corresponde a medida do arco determinado pelo ângulo. α = m 1 = m 12 / 23
31 Quando a circunferência tem raio 1, a medida do ângulo em radianos, corresponde a medida do arco determinado pelo ângulo. α = m 1 = m Por causa dessa facilidade a circunferência de raio 1 é tão utilizada. 12 / 23
32 Sumário 1 Comprimento de Curva / 23
33 são unidades de medidas para a mesma grandeza: ângulos. Assim, existe uma maneira de passar de uma unidade para a outra. Considere um ângulo de 1rad numa circunferência de raio / 23
34 são unidades de medidas para a mesma grandeza: ângulos. Assim, existe uma maneira de passar de uma unidade para a outra. Considere um ângulo de 1rad numa circunferência de raio 1. Se considerarmos o ângulo α formado pela abertura completa na circunferência considerada, então, em radianos, α = 2πrad. 14 / 23
35 são unidades de medidas para a mesma grandeza: ângulos. Assim, existe uma maneira de passar de uma unidade para a outra. Considere um ângulo de 1rad numa circunferência de raio 1. Se considerarmos o ângulo α formado pela abertura completa na circunferência considerada, então, em radianos, α = 2πrad. Como 1 grau é uma das 360 fatias de uma circunferência, segue que, em graus, α = / 23
36 são unidades de medidas para a mesma grandeza: ângulos. Assim, existe uma maneira de passar de uma unidade para a outra. Considere um ângulo de 1rad numa circunferência de raio 1. Se considerarmos o ângulo α formado pela abertura completa na circunferência considerada, então, em radianos, α = 2πrad. Como 1 grau é uma das 360 fatias de uma circunferência, segue que, em graus, α = Seja x a medida em graus do ângulo 1rad. 14 / 23
37 são unidades de medidas para a mesma grandeza: ângulos. Assim, existe uma maneira de passar de uma unidade para a outra. Considere um ângulo de 1rad numa circunferência de raio 1. Se considerarmos o ângulo α formado pela abertura completa na circunferência considerada, então, em radianos, α = 2πrad. Como 1 grau é uma das 360 fatias de uma circunferência, segue que, em graus, α = Seja x a medida em graus do ângulo 1rad. Então: x 1 = = x = 2π π 14 / 23
38 Ou seja, 15 / 23
39 Exemplo 16 / 23
40 Exemplo Expressar em radianos o ângulo de Converta 4π 3 radianos para graus. Um arco de circunferência mede 40cm e seu raio mede 10cm. Calcule a medida do arco em graus e radianos. 16 / 23
41 Exemplo Expressar em radianos o ângulo de R: = 0, 5rad Converta 4π 3 radianos para graus. Um arco de circunferência mede 40cm e seu raio mede 10cm. Calcule a medida do arco em graus e radianos. 16 / 23
42 Exemplo Expressar em radianos o ângulo de R: = 0, 5rad Converta 4π 3 R: radianos para graus. Um arco de circunferência mede 40cm e seu raio mede 10cm. Calcule a medida do arco em graus e radianos. 16 / 23
43 Exemplo Expressar em radianos o ângulo de R: = 0, 5rad Converta 4π 3 R: radianos para graus. Um arco de circunferência mede 40cm e seu raio mede 10cm. Calcule a medida do arco em graus e radianos. R: 4rad = 229, / 23
44 Exemplo Milha Náutica: se o ângulo central com vértice no centro da Terra mede 1, então o arco na superfície da Terra correspondente a este ângulo (também chamada de distância geodésica) é definida como 1 milha náutica. O raio da Terra é de aproximadamente 6367Km. 17 / 23
45 Exemplo Milha Náutica: se o ângulo central com vértice no centro da Terra mede 1, então o arco na superfície da Terra correspondente a este ângulo (também chamada de distância geodésica) é definida como 1 milha náutica. O raio da Terra é de aproximadamente 6367Km. Dois Navios estão separados na superfície terrestre por 70 milhas náuticas. Qual a distância geodésica entre eles? 17 / 23
46 Exemplo Milha Náutica: se o ângulo central com vértice no centro da Terra mede 1, então o arco na superfície da Terra correspondente a este ângulo (também chamada de distância geodésica) é definida como 1 milha náutica. O raio da Terra é de aproximadamente 6367Km. Dois Navios estão separados na superfície terrestre por 70 milhas náuticas. Qual a distância geodésica entre eles? R: = 0.02rad que corresponde a aproximadamente 129, 6Km 17 / 23
47 Exemplo Distâncias: Considerando um ponto específico no território de cada cidade, podemos estimar as distâncias entre os municípios através da fórmula: R. arccos[sen(lt 1 ).sen(lt 2 ) + cos(lt 1 ). cos(lt 2 ). cos(ln 1 LN 2 )] R: raio da Terra. (LT 1, LN 1 ), (LT 2, LN 2 ): coordenadas geográficas das cidades 1 e 2 respectivamente. A função arco cosseno retorna o valor do ângulo em radianos. 18 / 23
48 Exemplo 19 / 23
49 Exemplo 20 / 23
50 Exemplo A cidade de Canindé-CE tem as seguintes coordenadas geográficas 1 : ( S, W ) ( , ) Enquanto Juazeiro do Norte-CE tem como coordenadas geográficas: ( S, W ) ( , ) Transformando os ângulos (em graus) para a notação decimal: Canindé (LT 1, LN 1 ) : ( ; ) Juazeiro (LT 2, LN 2 ) : ( ; ) 1 Fonte: 21 / 23
51 Exemplo Admitindo o raio da terra igual a 6371Km e aplicando os dados na fórmula, teremos: 22 / 23
52 Exemplo Admitindo o raio da terra igual a 6371Km e aplicando os dados na fórmula, teremos: 1 d = R. arccos[sen(lt 1 ).sen(lt 2 ) + cos(lt 1 ). cos(lt 2 ). cos(ln 1 LN 2 )] 22 / 23
53 Exemplo Admitindo o raio da terra igual a 6371Km e aplicando os dados na fórmula, teremos: 1 d = R. arccos[sen(lt 1 ).sen(lt 2 ) + cos(lt 1 ). cos(lt 2 ). cos(ln 1 LN 2 )] 2 d = arccos[sen( ).sen( ) + cos( ). cos( ). cos( )] 22 / 23
54 Exemplo Admitindo o raio da terra igual a 6371Km e aplicando os dados na fórmula, teremos: 1 d = R. arccos[sen(lt 1 ).sen(lt 2 ) + cos(lt 1 ). cos(lt 2 ). cos(ln 1 LN 2 )] 2 d = arccos[sen( ).sen( ) + cos( ). cos( ). cos( )] 3 d = arccos[( ).( ) + ( ).( ).(1)] 22 / 23
55 Exemplo Admitindo o raio da terra igual a 6371Km e aplicando os dados na fórmula, teremos: 1 d = R. arccos[sen(lt 1 ).sen(lt 2 ) + cos(lt 1 ). cos(lt 2 ). cos(ln 1 LN 2 )] 2 d = arccos[sen( ).sen( ) + cos( ). cos( ). cos( )] 3 d = arccos[( ).( ) + ( ).( ).(1)] 4 d = arccos[ ] = 6371.( ) = Km 22 / 23
56 Exercício: Camocim: ( S, W ) Cariré: ( S, W ) Calcular a distância geodésica entre esses municípios. Admita o raio da Terra sendo 6371Km. d = R. arccos[sen(lt 1 ).sen(lt 2 )+cos(lt 1 ). cos(lt 2 ). cos(ln 1 LN 2 )] 23 / 23
57 Exercício: Camocim: ( S, W ) Cariré: ( S, W ) Calcular a distância geodésica entre esses municípios. Admita o raio da Terra sendo 6371Km. d = R. arccos[sen(lt 1 ).sen(lt 2 )+cos(lt 1 ). cos(lt 2 ). cos(ln 1 LN 2 )] 1 d = 123, 46Km 23 / 23
Radianos. Prof. Márcio Nascimento.
Radianos Prof. Márcio Nascimento [email protected] Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Matemática Básica II
Lista 02 - Matemática Básica II
Lista 0 - Matemática Básica II - 016. 1. Encontre a medida em radianos do ângulo θ, sendo θ o ângulo central de um arco que mede s em um círculo de raio r. (a) r =, s = 9 (b) r = 1, s = π (c) r = 1 4,
UNIVERSIDADE ESTADUAL VALE DO ACARAÚ. 2 a Lista de Exercícios - Matemática Básica II Professor Márcio Nascimento
UNIVERSIDADE ESTADUAL VALE DO ACARAÚ Coordenação de Matemática a Lista de Exercícios - Matemática Básica II - 015.1 Professor Márcio Nascimento 1. Encontre a medida em radianos do ângulo θ, sendo θ o ângulo
Trigonometria no Círculo - Funções Trigonométricas
Trigonometria no Círculo - Funções Trigonométricas Prof. Márcio Nascimento [email protected] Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em
Matemática 3 Módulo 3
Matemática Módulo COMENTÁRIOS ATIVIDADES PARA SALA 1. Lembrando... Se duas figuras são semelhantes, temos: 1 A = k; 1 = k, em que R 1 e R são medidas lineares A e A 1 e A são as áreas. Círculo I IV. =
Trigonometria no Círculo - Funções Trigonométricas
Trigonometria no Círculo - Funções Trigonométricas Prof. Márcio Nascimento [email protected] Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em
Proposta de teste de avaliação
Proposta de teste de avaliação Matemática A 11 O ANO DE ESCOLARIDADE Duração: 90 minutos Data: CADERNO I (60 minutos com calculadora) 1 Em R, a equação ( π) cos x = π : (A) admite a solução x = π ; (B)
Trigonometria no Triângulo Retângulo
Trigonometria no Triângulo Retângulo Prof. Márcio Nascimento [email protected] Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina:
Matemática Básica II - Trigonometria Nota 02 - Trigonometria no Triângulo Retângulo
Matemática Básica II - Trigonometria Nota 0 - Trigonometria no Triângulo Retângulo Márcio Nascimento da Silva Universidade Estadual Vale do Acaraú - UVA Curso de Licenciatura em Matemática [email protected]
REVISÃO DE TRIGONOMETRIA E GEOMETRIA ANALÍTICA
UNIVERSIDADE DE SÃO PAULO ESCOLA SUPERIOR DE AGRICULTURA LUIZ DE QUEIROZ DEPARTAMENTO DE ENGENHARIA DE BIOSSISTEMAS LEB340 TOPOGRAFIA E GEOPROCESSAMENTO I PROF. DR. CARLOS ALBERTO VETTORAZZI REVISÃO DE
Licenciatura em Matemática Fundamentos de Matemática Elementar 2 o /2010 Professora Adriana TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO E
Licenciatura em Matemática Fundamentos de Matemática Elementar 2 o /2010 Professora Adriana TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO E FUNÇÕES TRIGONOMÉTRICAS 1. Calcule sen x, tg x e cotg x sendo dado: a)
REVISÃO PROVA GLOBAL. Frações e números decimais. Prof. Danillo Alves
Prof. Danillo Alves REVISÃO PROVA GLOBAL 1) ESTATÍSTICA; 2) TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO; 3) TRIÂNGULOS QUAISQUER. 4) Trigonometria na circunferência Frações e números decimais Professor: DANILLO
Aula 11 mtm B TRIGONOMETRIA
Aula 11 mtm B TRIGONOMETRIA Definição Circunferência de raio unitário, sobre a qual marcamos um ponto de origem e adotamos um sentido positivo de percurso (antihorário). Os eixos x e y dividem o círculo
Ano: 2º ano Ensino Médio Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 2º BIMESTRE
Nome: Nº: Ano: 2º ano Ensino Médio Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi a) Conteúdos : ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 2º BIMESTRE Razões trigonométricas no triângulo
MATEMÁTICA BÁSICA II TRIGONOMETRIA Aula 05
UNIVERSIDADE ESTADUAL VALE DO ACARAÚ CENTRO DE CIÊNCIAS EXATAS E TECNOLOGIA CURSO DE LICENCIATURA EM MATEMÁTICA MATEMÁTICA BÁSICA II TRIGONOMETRIA Aula 05 Prof. Márcio Nascimento [email protected]
Proposta de correcção
Ficha de Trabalho Matemática A - ºano Temas: Trigonometria (Triângulo rectângulo e círculo trigonométrico) Proposta de correcção. Relembrar que um radiano é, em qualquer circunferência, a amplitude do
REVISÃO DE CONCEITOS BÁSICOS
Carlos Aurélio Nadal Doutor em Ciências Geodésicas Professor Titular do Departamento de Geomática - Setor de Ciências da Terra Unidades de medidas que utilizavam o corpo humano 2,54cm 30,48cm 0,9144m 66cm
TESTES. 5. (UFRGS) Os ponteiros de um relógio marcam duas. horas e vinte minutos. O menor ângulo entre os ponteiros é
TESTES (UFRGS) O valor de sen 0 o cos 60 o é 0 (Ufal) Se a medida de um arco, em graus, é igual a 8, sua medida em radianos é igual a ( /) 7 (6/) (6/) (UFRGS) Os ponteiros de um relógio marcam duas horas
Colégio Pedro II Campus Realengo II Departamento de Matemática. Coordenador: Diego Viug Professor: Antônio Andrade 1ª série do ensino médio Turma:
Colégio Pedro II Campus Realengo II Departamento de Matemática Coordenador: Diego Viug Professor: Antônio Andrade 1ª série do ensino médio Turma: Nome do aluno: Arcos e ângulos Arco geométrico É uma das
Exercício 1) Uma praça circular tem 200 m de raio. Quantos metros de grade serão necessários para cerca-la?
O círculo e o número π As formas circulares aparecem com freqüência nas construções e nos objetos presente em nosso mundo. As formas circulares estão presentes: nas moedas, nos discos, roda do carro...
MATEMÁTICA. Capítulo 3 LIVRO 2. (I) Áreas das Figuras Planas (II) Áreas de Polígonos Regulares. Páginas: 168 à 188
MATEMÁTICA LIVRO Capítulo (I) Áreas das Figuras Planas (II) Áreas de Polígonos Regulares Páginas: 68 à 88 Áreas de Figuras Planas toda área é uma medida de superfície [u] unidade padrão [u]² [u] I. ÁREA
Trigonometria I. Círculo Trigonométrico. 2 ano E.M. Professores Cleber Assis e Tiago Miranda
Trigonometria I Círculo Trigonométrico ano E.M. Professores Cleber Assis e Tiago Miranda Trigonometria I Círculo Trigonométrico b) 6 1 Exercícios Introdutórios Exercício 1. Qual dos arcos abaixo é côngruo
1. Com o auxílio de régua graduada e transferidor, calcular sen 42, cos 42 e tg 42. Resolução Traçamos uma perpendicular a um dos lados desse ângulo:
Atividades Complementares 1. Com o auxílio de régua graduada e transferidor, calcular sen 4, cos 4 e tg 4. Traçamos uma perpendicular a um dos lados desse ângulo: Medimos, com auxílio da régua, os lados
A TERRA ESFÉRICA. Parte II Trigonometria Esférica, Ortodrômica e Loxodrômica. GA116 Sistemas de Referência e Tempo
A TERRA ESFÉRICA Parte II Trigonometria Esférica, Ortodrômica e Loxodrômica GA116 Sistemas de Referência e Tempo Profª. Érica S. Matos Departamento de Geomática Setor de Ciências da Terra Universidade
Redução ao Primeiro Quadrante
Redução ao Primeiro Quadrante Prof. Márcio Nascimento [email protected] Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina:
Professor Dacar Lista Desafio - Revisão Trigonometria
. (Fuvest 0) Uma das primeiras estimativas do raio da Terra é atribuída a Eratóstenes, estudioso grego que viveu, aproximadamente, entre 7 a.c. e 9 a.c. Sabendo que em Assuã, cidade localizada no sul do
Roteiro Recuperação Geometria 3º trimestre- 1º ano
Roteiro Recuperação Geometria 3º trimestre- 1º ano 1. Determine a área do trapézio isósceles de perímetro 26cm, que possui a medida de suas bases iguais a 4cm e 12cm. 2. O triângulo ABC está inscrito num
MATEMÁTICA. Capítulo 3 LIVRO 2. (I) Áreas das Figuras Planas (II) Áreas de Polígonos Regulares. Páginas: 168 à188
MATEMÁTICA LIVRO Capítulo (I) Áreas das Figuras Planas (II) Áreas de Polígonos Regulares Páginas: 68 à88 Áreas de Figuras Planas toda área é uma medida de superfície [u] unidade padrão [u]² [u] I. ÁREA
Revisão de Matemática
UNIVERSIDADE FEDERAL DO CEARÁ - UFC DEPARTAMENTO DE ENGENHARIA AGRÍCOLA DENA TOPOGRAFIA BÁSICA Revisão de Matemática Facilitador: Fabrício M. Gonçalves Unidades de medidas Unidade de comprimento (METRO)
Círculo Trigonométrico centro na origem raio 1 Ângulo central Unidades de medidas de ângulos; grau Grau: Grado: Radiano:
Círculo Trigonométrico A circunferência trigonométrica é de extrema importância para o nosso estudo da Trigonometria, pois é baseado nela que todos os teoremas serão deduzidos. Trata-se de uma circunferência
Trigonometria Básica e Relações Métricas
1. Em um triângulo isósceles, a base mede 6 cm e o ângulo oposto à base mede 120. Qual é a medida dos lados congruentes do triângulo? 2. Um triangulo tem lados iguais a 4cm, 5cm e 6cm. Calcule o cosseno
MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições Propostas de resolução
MATEMÁTICA A - o Ano N o s Complexos - Conjuntos e condições Propostas de resolução Exercícios de exames e testes intermédios. Escrevendo i na f.t. temos i i = ρ cis α, onde: ρ = i i = + ) = tg α = = ;
Solução Comentada da Prova de Matemática
Solução Comentada da Prova de Matemática 01. Considere, no plano cartesiano, os pontos P(0,1) e Q(,3). A) Determine uma equação para a reta mediatriz do segmento de reta PQ. B) Determine uma equação para
Observação: Todos os cálculos e desenvolvimentos deverão acompanhar a Lista. MF R: 3 MF R: 3 MF R: 5 F R:? M R:? M R:? D R:? D R:? MF R:? F R:?
Módulo 07. Exercícios Lista de exercícios do Módulo 07 Observação: Todos os cálculos e desenvolvimentos deverão acompanhar a Lista. Calcule os logarítmos:. log. log 6 6. log 4 4. log. log 7 7 6. log 7.
Trigonometria. Reforço de Matemática Básica - Professor: Marcio Sabino - 1 Semestre 2015
Trigonometria Reforço de Matemática ásica - Professor: Marcio Sabino - 1 Semestre 015 1. Trigonometria O nome Trigonometria vem do grego trigo-non triângulo + metron medida. Esta é um ramo da matemática
BANCO DE QUESTÕES MATEMÁTICA A 11. O ANO
BANCO DE QUESTÕES MATEMÁTICA A 11. O ANO DOMÍNIO: Trigonometria e funções trigonométricas 1. Considera o triângulo PQR e as medidas apresentadas na figura ao lado. O comprimento do lado QR é: (A) 4 (C)
REVISÃO MATEMÁTICA. 1. Unidades de medida Medida de comprimento - metro (m)
REVISÃO MATEMÁTICA 1. Unidades de medida 1.1. Medida de comprimento - metro (m) O metro é uma unidade básica para a representação de medidas de comprimento no sistema internacional de unidades (SI). Sheila
Professor Dacar Lista de Exercícios - Revisão Trigonometria
1. Obtenha a medida, em graus, de um arco AB de comprimento π metros, sabendo que ele está contido em uma circunferência de diâmetro igual a metros. Resposta:. (UFPR) Em uma circunferência de 1 dm de comprimento,
MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições Propostas de resolução
MATEMÁTICA A - o Ano N o s Complexos - Conjuntos e condições Propostas de resolução Exercícios de exames e testes intermédios. Analisando cada uma das afirmações temos (A) z z = z z é uma afirmação verdadeira
30's Volume 15 Matemática
30's Volume 1 Matemática www.cursomentor.com 9 de junho de 014 Q1. Considere os segmentos AB = x, BC =, CD = x + 1 e DE = x 18 e que AB = CD. Encontre x. BC DE Q. Em um triângulo ABC, AM é bissetriz interna
MATEMÁTICA. Questões de 01 a 04
GRUPO 1 TIPO A MAT. 5 MATEMÁTICA Questões de 01 a 04 01. Considere duas circunferências concêntricas em C, conforme figura, em que a externa representa o círculo trigonométrico e a interna, o velocímetro,
Material Teórico - Elementos Básicos de Geometria Plana - Parte 3. Oitavo Ano
Material Teórico - Elementos ásicos de Geometria Plana - Parte 3 Número π e o Comprimento do Círculo itavo no utor: Prof. Ulisses Lima Parente Revisor: Prof. ntonio Caminha M. Neto Portal da MEP 1 número
LISTA DE REVISÃO PROVA MENSAL 2º ANO 1º TRIMESTRE
ÁLGEBRA LISTA DE REVISÃO PROVA MENSAL º ANO 1º TRIMESTRE 1) O pêndulo de um relógio tem comprimento 0 cm e faz o movimento ilustrado na figura. Qual a medida do arco AB? A) 10 cm 0 cm 0π cm 0 D) cm E)
Olá! Brunna e Fernanda. Matemática. Somos do PET Engenharia Ambiental
Trigonometria Olá! Brunna e Fernanda Somos do PET Engenharia Ambiental Matemática Vamos pensar + Considere cinco circunferências concêntricas de raios diferentes e um mesmo ângulo central subtendendo arcos
P1 CORREÇÃO DA PROVA. GA116 Sistemas de Referência e Tempo
P1 CORREÇÃO DA PROVA GA116 Sistemas de Referência e Tempo Profª. Érica S. Matos Departamento de Geomática Setor de Ciências da Terra Universidade Federal do Paraná -UFPR 1. Sejam dois pontos A e B cujas
Questão 1. Considere os conjuntos S = {0, 2, 4, 6}, T = {1, 3, 5} e U = {0, 1} e as. A ( ) apenas I. B ( ) apenas IV. C ( ) apenas I e IV.
NOTAÇÕES C : conjunto dos números complexos. [a, b] = {x R ; a x b}. Q : conjunto dos números racionais. ]a, b[= {x R ; a < x < b}. R : conjunto dos números reais. i : unidade imaginária ; i = 1. Z : conjunto
AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Ficha de Trabalho nº3 - Trigonometria - 12º ano Exames
AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Ficha de Trabalho nº3 - Trigonometria - 1º ano Exames 006-010 sin x ln x g( Recorrendo às x capacidades gráficas da calculadora, visualize o gráfico da função g e reproduza-o
2 Uma caixa d'água cúbica, de volume máximo, deve ser colocada entre o telhado e a laje de uma casa, conforme mostra a figura ao lado.
MATEMÁTICA Uma pessoa possui a quantia de R$7.560,00 para comprar um terreno, cujo preço é de R$5,00 por metro quadrado. Considerando que os custos para obter a documentação do imóvel oneram o comprador
MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições Propostas de resolução
MATEMÁTICA A - o Ano N o s Complexos - Conjuntos e condições Propostas de resolução Exercícios de exames e testes intermédios. Escrevendo i na f.t. temos i i = ρe iα, onde: ρ = i i = + ) = tg α = = ; como
Caderno 1: (É permitido o uso de calculadora.) Não é permitido o uso de corretor. Deves riscar aquilo que pretendes que não seja classificado.
Proposta de Resolução [maio - 018] Caderno 1: (É permitido o uso de calculadora.) O teste é constituído por dois cadernos (Caderno 1 e Caderno ). Utiliza apenas caneta ou esferográfica, de tinta azul ou
COLÉGIO SHALOM Ensino Fundamental 8 Ano Prof.º: Wesley Disciplina Geometria Aluno (a):. No.
COLÉGIO SHALOM Ensino Fundamental 8 Ano Prof.º: Wesley Disciplina Geometria Aluno (a):. No. Trabalho de Recuperação Data: / 12/2016 Valor: Orientações: -Responder manuscrito; -Cópias de colegas, entrega
NOTAÇÕES. R : conjunto dos números reais C : conjunto dos números complexos
NOTAÇÕES R : conjunto dos números reais C : conjunto dos números complexos i : unidade imaginária: i = 1 z : módulo do número z C Re(z) : parte real do número z C Im(z) : parte imaginária do número z C
Trigonometria no triângulo retângulo
COLÉGIO PEDRO II CAMPUS REALENGO II LISTA DE APROFUNDAMENTO - ENEM MATEMÁTICA PROFESSOR: ANTÔNIO ANDRADE COORDENADOR: DIEGO VIUG Trigonometria no triângulo retângulo Questão 01 A figura a seguir é um prisma
EBS DA GRACIOSA - ENSINO SECUNDÁRIO 11.º ANO
EBS DA GRACIOSA - ENSINO SECUNDÁRIO.º ANO M A T E M Á T I C A : RES O L U Ç Ã O D A F I C H A D E AV A L I A Ç Ã O P R O F E S S O R C A R L O S MI G U E L SA N T O S GRUPO I. Pelo facto de o triângulo
LISTA DE REVISÃO PROVA MENSAL 2º ANO 1º TRIMESTRE
ÁLGEBRA LISTA DE REVISÃO PROVA MENSAL º ANO 1º TRIMESTRE 1) O pêndulo de um relógio tem comprimento 0 cm e faz o movimento ilustrado na figura. Qual a medida do arco AB? A) 10 cm 0 cm 0π cm 0 D) cm E)
Prof. Márcio Nascimento. 1 de junho de 2015
Introdução Prof. Márcio Nascimento [email protected] Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Matemática Básica
Prova Vestibular ITA 2000
Prova Vestibular ITA Versão. ITA - (ITA ) Sejam f, g : R R definidas por f ( ) = e g cos 5 ( ) =. Podemos afirmar que: f é injetora e par e g é ímpar. g é sobrejetora e f é bijetora e g é par e f é ímpar
GABARITO CURSO DE FÉRIAS MATEMÁTICA Professor: Fabrício Maia
Professor: Fabrício Maia EXERCÍCIOS DE SALA 1 4 5 7 8 9 10 C E B B A C A B A E 11 1 1 14 15 1 17 18 19 0 B A D B B E E A B D EXERCÍCIOS PROPOSTOS 1 4 5 7 8 9 10 11 1 A D A B B C B E C D E C 1 14 15 1 17
Medida de Ângulos em Radianos
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Medida de Ângulos
Matemática: Trigonometria Vestibulares UNICAMP
Matemática: Trigonometria Vestibulares 015-011 - UNICAMP 1. (Unicamp 015) A figura abaixo exibe um círculo de raio r que tangencia internamente um setor circular de raio R e ângulo central θ. a) Para θ
1. Área do triângulo
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Geometria Plana II Prof.:
8.1. Comprimento de Arco. Nesta seção, nós aprenderemos sobre: Comprimento de Arco e suas funções. MAIS APLICAÇÕES DE INTEGRAÇÃO
MAIS APLICAÇÕES DE INTEGRAÇÃO 8.1 Comprimento de Arco Nesta seção, nós aprenderemos sobre: Comprimento de Arco e suas funções. COMPRIMENTO DE ARCO Podemos pensar em colocar um pedaço de barbante sobre
Grupo de exercícios I - Geometria plana- Professor Xanchão
Grupo de exercícios I - Geometria plana- 1. (G1 - ifce 01) Na figura abaixo, R, S e T são pontos sobre a circunferência de centro O. Se x é o número real, tal que a = 5x e b = 3x + 4 são as medidas dos
MAT111 - Cálculo I - IF TRIGONOMETRIA. As Funçoes trigonométricas no triângulo retângulo
MAT111 - Cálculo I - IF - 010 TRIGONOMETRIA As Funçoes trigonométricas no triângulo retângulo Analisando a figura a seguir, temos que os triângulos retângulos OA 1 B 1 e OA B, são semelhantes, pois possuem
TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa D. alternativa B. alternativa E
Questão TIPO DE PROVA: A Os números compreendidos entre 400 e 500, divisíveis ao mesmo tempo por 8 e 75, têm soma: a) 600 d) 700 b) 50 e) 800 c) 50 Questão Na figura, temos os esboços dos gráficos de f
Prof. Márcio Nascimento. 3 de setembro de 2014
Ângulos Prof. Márcio Nascimento [email protected] Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Matemática Básica II
Trigonometria. Trigonometria no Triângulo Retângulo. Pré-Cálculo. Trigonometria. Humberto José Bortolossi. Parte 7. trigonometria
Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Trigonometria Parte 7 Parte 7 Pré-Cálculo 1 Parte 7 Pré-Cálculo 2 Trigonometria trigonometria Trigonometria
Provas de Acesso ao Ensino Superior Para Maiores de 23 Anos
Provas de Acesso ao Ensino Superior Para Maiores de 23 Anos Candidatura de 205 EXAME DE MATEMÁTICA Tempo para realização da prova: 2 horas Tolerância: 30 minutos Material admitido: material de escrita
PROFORM Programa de Formação Diferenciada Curso Introdutório de Matemática para Engenharia CIME
PROFORM Programa de Formação Diferenciada Curso Introdutório de Matemática para Engenharia CIME 2012.2 Parte II Kerolaynh Santos e Tássio Magassy Engenharia Civil Identidades Trigonométricas Definição:
Aula 11 Polígonos Regulares
MODULO 1 - AULA 11 Aula 11 Polígonos Regulares Na Aula 3, em que apresentamos os polígonos convexos, vimos que um polígono regular é um polígono convexo tal que: a) todos os lados são congruentes entre
LISTA DE EXERCÍCIOS DE REVISÃO DE MATEMÁTICA 2º ANO PROF.: ARI
01.: (FATEC) Um terreno retangular tem 170 m de perímetro. e a razão entre as medidas dos lados é 0,7, então a área desse terreno, em metros quadrados, é igual a: a) 7000 b) 5670 c) 4480 d) 1750 e) 1120
Nome do aluno: N.º: Na resposta aos itens de resposta aberta, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias.
Teste de Matemática A 2018 / 2019 Teste N.º 3 Matemática A Duração do Teste (Caderno 1+ Caderno 2): 90 minutos 11.º Ano de Escolaridade Nome do aluno: N.º: Turma: Este teste é constituído por dois cadernos:
Circunferência. MA092 Geometria plana e analítica. Interior e exterior. Circunferência e círculo. Francisco A. M. Gomes
Circunferência MA092 Geometria plana e analítica Francisco A. M. Gomes UNICAMP - IMECC Setembro de 2016 A circunferência é o conjunto dos pontos de um plano que estão a uma mesma distância (denominada
GABARITO PROVA B GABARITO PROVA A. Colégio Providência Avaliação por Área 2ª SÉRIE ENSINO MÉDIO
Colégio Providência Avaliação por Área Matemática e suas tecnologias 1ª ETAPA Data: 11/05/2015 2ª SÉRIE ENSINO MÉDIO GABARITO PROVA A GABARITO PROVA B A B C D 1 XXXX xxxxx xxxxx xxxxx 2 4 5 6 7 8 9 10
Gabarito Extensivo MATEMÁTICA volume 1 Frente B
Gabarito Etensivo MATEMÁTICA volume Frente B sen cos tan 0 5 60 0) E 5 5 6 9 +y=+8= sen0 y y 8 cateto oposto ipotenusa 0) m Seja O a origem no solo alinado verticalmente com o bastão. A medida OB será
rad rad 7 (D) 4 rad 3. Numa circunferência de raio 2 cm, um arco com 8 cm de comprimento, tem de amplitude:
Ficha de Trabalho Ficha final de Trigonometria Matemática 11ºano 1. Das circunferências de centros O e E, da figura sabe-se que: OA = 1 cm, EC= cm, AÔB = 1 e CD = cm. Qual das afirmações é verdadeira:
Matemática. Resolução das atividades complementares. M21 Geometria Analítica: Cônicas
Resolução das atividades complementares Matemática M Geometria Analítica: Cônicas p. FGV-SP) Determine a equação da elipse de centro na origem que passa pelos pontos A, 0), B, 0) e C0, ). O centro da elipse
Prova final de MATEMÁTICA - 3o ciclo a Fase
Prova final de MATEMÁTICA - o ciclo 015 - a Fase Proposta de resolução Caderno 1 1. Calculando o valor médio das temperaturas registadas, temos Resposta: Opção B 19 + 0 + + + 5 7 0 = 5 0 =,6..1. O triângulo
Manual de Matemática. Trigonometria na Circunferência. A área de um triângulo qualquer pode ser definida por:
A área de um triângulo qualquer pode ser definida por: a b sen C a c sen B b c sen A A = ou A = ou A = Eemplo: Determine a área do triângulo ABC. B c = cm 60º A a = 6 cm C a csenb A = 6 A = A = 6 cm Trigonometria
Como estudar Matemática para o ENEM
Como estudar para o ENEM 1. A grande pirâmide de Quéops, antiga construção localizada no Egito, é uma pirâmide regular de base quadrada, com 137m de altura. Cada face dessa pirâmide é um triângulo isóscele
Provas de Acesso ao Ensino Superior Para Maiores de 23 Anos
Provas de Acesso ao Ensino Superior Para Maiores de 23 Anos Candidatura de 206 Exame de Matemática Tempo para realização da prova: 2 horas Tolerância: 30 minutos Material admitido: material de escrita
Relembrando: Ângulos, Triângulos e Trigonometria...
Relembrando: Ângulos, Triângulos e Trigonometria... Este texto é apenas um resumo. Procure estudar esses assuntos em um livro apropriado. Ângulo é a região de um plano delimitada pelo encontro de duas
Resolução UFTM. Questão 65
UFTM Questão 65 Sabe-se que a diferença entre as medidas do comprimento a e da largura b de um tapete retangular é igual a x, e que o seu perímetro é igual a 1x. A área desse tapete pode ser corretamente
{ } Questão 1. Considere as seguintes afirmações sobre o conjunto U = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9} Questão 2. Seja o conjunto = { : 0 e 2 2
NOTAÇÕES : conjunto dos números complexos. : conjunto dos números racionais. : conjunto dos números reais. : conjunto dos números inteiros. = 0,,,,.... { } { } * =,,,.... i : unidade imaginária; i =. z=x+iy,
x = 4 2sen30 0 = 4 2(1/2) = 2 2 e y = 4 2 cos 30 0 = 4 2( 3/2) = 2 6.
CURSO DE PRÉ CÁLCULO ONLINE - PET MATEMÁTICA / UFMG LISTA DE EXERCÍCIOS RESOLVIDOS: Exercício 1 Calcule o valor de x e y indicados na figura abaixo. Solução: No triângulo retângulo ABD, temos que AD mede
EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA
EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA - 015 1. (Unicamp 015) Seja r a reta de equação cartesiana x y 4. Para cada número real t tal que 0 t 4, considere o triângulo T de vértices em (0, 0),
MATEMÁTICA. Trigonometria na Circunferência. Professor : Dêner Rocha. Monster Concursos 1
MATEMÁTICA Trigonometria na Circunferência Professor : Dêner Rocha Monster Concursos 1 Unidades de medidas de ângulos Existem algumas unidades conhecidas com as quais podemos medir um ângulo. A mais conhecida
RESPOSTA ESPERADA MATEMÁTICA
Questão 1 a) Suponha que o ângulo de giro do ponteiro seja diretamente proporcional à velocidade Nesse caso, qual é o ângulo entre a posição atual do ponteiro (0 km/h) e sua posição quando o velocímetro
Apostila De Matemática ESFERA
Apostila De Matemática ESFERA ESFERA Consideremos um ponto O e um segmento de medida r. Chama-se esfera de centro O e raio r ao conjunto dos pontos P do espaço, tais que a distancia OP seja menor ou igual
A triângulo equilátero = 3.R2. 3. A hexágono = 2. A triângulo equilátero. Letra B
GEOMETRIA PLANA ÁREAS QUESTÃO 01 QUESTÃO 03 A = 1 + 16/ -1 = 1 QUESTÃO 0 A hexágono = 3.R. 3 A triângulo equilátero = 3.R. 3 A hexágono =. A triângulo equilátero A triângulo equilátero A hexágono = 1 No
RESOLUÇÃO MATEMÁTICA 2ª FASE
RESOLUÇÃO MATEMÁTICA ª FASE UFPR 01. Encontre o conjunto solução em IR das seguintes inequações: a) 5 x x. 5 x x x 3 (-1) 3 x 3 S x R / x b) 3x 1 3. 3x 1 3 3 3x 1 3 3x 1 3 e 3x 1 3 3x 4 3x 4 x x 3 3 4
Relações Métricas nos Triângulos. Joyce Danielle de Araújo
Relações Métricas nos Triângulos Joyce Danielle de Araújo Trigonometria A palavra trigonometria é de origem grega, onde: Trigonos = Triângulo Metrein = Mensuração - Relação entre ângulos e distâncias;
Plano de Aulas. Matemática. Módulo 10 Ciclo trigonométrico (1 volta)
Plano de Aulas Matemática Módulo 0 Ciclo trigonométrico ( volta) Resolução dos exercícios propostos Retomada dos conceitos CAPÍTULO 0,07 rad _ 80 rad x? x. 0, 07 rad _ x rad 80 a), rad C x C x C 0 x C
MATEMÁTICA. Questões de 01 a 12
GRUPO 5 TIPO A MAT. 1 MATEMÁTICA Questões de 01 a 12 01. Um circo com a forma de um cone circular reto sobre um cilindro circular reto de mesmo raio está com a lona toda furada. O dono do circo, tendo
