Prof. Márcio Nascimento. 1 de junho de 2015
|
|
|
- Victorio Gentil Amarante
- 9 Há anos
- Visualizações:
Transcrição
1 Introdução Prof. Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Matemática Básica II de junho de / 19
2 Sumário 1 Etimologia / 19
3 Sumário 1 Etimologia / 19
4 A palavra trigonometria tem origem na Grécia: τ ριγϖνoµετ ρια 4 / 19
5 A palavra trigonometria tem origem na Grécia: τ ριγϖνoµετ ρια τ ριγϖνo (Triângulo) + µετ ρηση (medida); 4 / 19
6 A palavra trigonometria tem origem na Grécia: τ ριγϖνoµετ ρια τ ριγϖνo (Triângulo) + µετ ρηση (medida); A Ciência dos Triângulos ; 4 / 19
7 A palavra trigonometria tem origem na Grécia: τ ριγϖνoµετ ρια τ ριγϖνo (Triângulo) + µετ ρηση (medida); A Ciência dos Triângulos ; Ramo da Matemática que estuda a aplicação da aritmética na geometria; 4 / 19
8 A palavra trigonometria tem origem na Grécia: τ ριγϖνoµετ ρια τ ριγϖνo (Triângulo) + µετ ρηση (medida); A Ciência dos Triângulos ; Ramo da Matemática que estuda a aplicação da aritmética na geometria; Vocábulo criado em 1595 pelo matemático alemão Bartholomaus Pitiscus ( ). 4 / 19
9 Sumário 1 Etimologia / 19
10 6 / 19
11 Criação da Matemática Grega; 6 / 19
12 Criação da Matemática Grega; Surgiu devido às necessidades da Astronomia, Navegação e Cartografia; 6 / 19
13 Criação da Matemática Grega; Surgiu devido às necessidades da Astronomia, Navegação e Cartografia; Inicialmente desenvolveu-se a Trigonometria Esférica, mas a Trigonometria Plana fez-se necessária; 6 / 19
14 Criação da Matemática Grega; Surgiu devido às necessidades da Astronomia, Navegação e Cartografia; Inicialmente desenvolveu-se a Trigonometria Esférica, mas a Trigonometria Plana fez-se necessária; Os estudos dos triângulos esféricos vinham sendo feitos desde os últimos pitagóricos (300 a.c.); 6 / 19
15 Criação da Matemática Grega; Surgiu devido às necessidades da Astronomia, Navegação e Cartografia; Inicialmente desenvolveu-se a Trigonometria Esférica, mas a Trigonometria Plana fez-se necessária; Os estudos dos triângulos esféricos vinham sendo feitos desde os últimos pitagóricos (300 a.c.); Euclides (300 a.c.): estudos sobre Geometria Esférica; 6 / 19
16 Criação da Matemática Grega; Surgiu devido às necessidades da Astronomia, Navegação e Cartografia; Inicialmente desenvolveu-se a Trigonometria Esférica, mas a Trigonometria Plana fez-se necessária; Os estudos dos triângulos esféricos vinham sendo feitos desde os últimos pitagóricos (300 a.c.); Euclides (300 a.c.): estudos sobre Geometria Esférica; Aristarco de Samos (300 a.c.): estimou uma razão entre as distâncias da Terra ao Sol e da Terra a Lua e também uma razão entre o diâmetro do Sol e o da Terra. 6 / 19
17 7 / 19
18 Eratóstenes (250 a.c.): calculou o raio da terra ( = 6360Km). [Obs: Raio polar: 6357Km; Raio Equatorial: 6378Km; Raio médio: 6371km;] 7 / 19
19 Eratóstenes (250 a.c.): calculou o raio da terra ( = 6360Km). [Obs: Raio polar: 6357Km; Raio Equatorial: 6378Km; Raio médio: 6371km;] Apolônio de Perga (200 a.c.): achou a aproximação de 3,1416 para o número π; (π = 3, ) 7 / 19
20 Eratóstenes (250 a.c.): calculou o raio da terra ( = 6360Km). [Obs: Raio polar: 6357Km; Raio Equatorial: 6378Km; Raio médio: 6371km;] Apolônio de Perga (200 a.c.): achou a aproximação de 3,1416 para o número π; (π = 3, ) Menelao de Alexandria (100 a.c.): vários teoremas sobre trigonometria esférica. 7 / 19
21 Eratóstenes (250 a.c.): calculou o raio da terra ( = 6360Km). [Obs: Raio polar: 6357Km; Raio Equatorial: 6378Km; Raio médio: 6371km;] Apolônio de Perga (200 a.c.): achou a aproximação de 3,1416 para o número π; (π = 3, ) Menelao de Alexandria (100 a.c.): vários teoremas sobre trigonometria esférica. Teodósio (20 a.c.): compilou o que os gregos sabiam sobre o assunto em seu livro Sobre a Esfera; 7 / 19
22 Eratóstenes (250 a.c.): calculou o raio da terra ( = 6360Km). [Obs: Raio polar: 6357Km; Raio Equatorial: 6378Km; Raio médio: 6371km;] Apolônio de Perga (200 a.c.): achou a aproximação de 3,1416 para o número π; (π = 3, ) Menelao de Alexandria (100 a.c.): vários teoremas sobre trigonometria esférica. Teodósio (20 a.c.): compilou o que os gregos sabiam sobre o assunto em seu livro Sobre a Esfera; Ptolomeu (150 d.c.): ápice da trigonometria grega com a obra Almagesto. 7 / 19
23 Sumário 1 Etimologia / 19
24 9 / 19
25 Considerado o Pai da Trigonometria, viveu em torno de 120 a.c. 9 / 19
26 Considerado o Pai da Trigonometria, viveu em torno de 120 a.c. Construiu tabelas de cordas (predecessoras das tabelas de senos). 9 / 19
27 Considerado o Pai da Trigonometria, viveu em torno de 120 a.c. Construiu tabelas de cordas (predecessoras das tabelas de senos). Organizou a confecção de um catálogo de estrelas e um calendário de equinócios. 9 / 19
28 O que se sabe sobre Hiparco é devido a Ptolomeu, que cita vários de seus resultados sobre Trigonometria e Astronomia. 10 / 19
29 O que se sabe sobre Hiparco é devido a Ptolomeu, que cita vários de seus resultados sobre Trigonometria e Astronomia. Fez um tratado de 12 livros que se ocupa da construção de uma tabela trigonométrica para usar em sua astronomia; 10 / 19
30 O que se sabe sobre Hiparco é devido a Ptolomeu, que cita vários de seus resultados sobre Trigonometria e Astronomia. Fez um tratado de 12 livros que se ocupa da construção de uma tabela trigonométrica para usar em sua astronomia; Usou a divisão do círculo em 360 partes como os babilônios; 10 / 19
31 O que se sabe sobre Hiparco é devido a Ptolomeu, que cita vários de seus resultados sobre Trigonometria e Astronomia. Fez um tratado de 12 livros que se ocupa da construção de uma tabela trigonométrica para usar em sua astronomia; Usou a divisão do círculo em 360 partes como os babilônios; Usou a trigonometria para prever eclipses, fazer calendários e navegação. 10 / 19
32 O que se sabe sobre Hiparco é devido a Ptolomeu, que cita vários de seus resultados sobre Trigonometria e Astronomia. Fez um tratado de 12 livros que se ocupa da construção de uma tabela trigonométrica para usar em sua astronomia; Usou a divisão do círculo em 360 partes como os babilônios; Usou a trigonometria para prever eclipses, fazer calendários e navegação. Criou o primeiro astrolábio, equipamento destinado a medir a distância (angular) de qualquer astro em relação ao horizonte; 10 / 19
33 Tabela de Cordas 11 / 19
34 Tabela de Cordas Os matemáticos gregos não usavam seno de um ângulo. Trabalhavam com a corda do arco duplo. 11 / 19
35 Tabela de Cordas Os matemáticos gregos não usavam seno de um ângulo. Trabalhavam com a corda do arco duplo. Por influência babilônia, os gregos usavam o raio com comprimento 60 e dividiam o círculo em 360 fatias. 11 / 19
36 Tabela de Cordas Os matemáticos gregos não usavam seno de um ângulo. Trabalhavam com a corda do arco duplo. Por influência babilônia, os gregos usavam o raio com comprimento 60 e dividiam o círculo em 360 fatias. senα = AC OA = 1 corda AD 2 OA = 1 corda AD / 19
37 Tabela de Cordas Os matemáticos gregos não usavam seno de um ângulo. Trabalhavam com a corda do arco duplo. Por influência babilônia, os gregos usavam o raio com comprimento 60 e dividiam o círculo em 360 fatias. 1 senα = AC corda AD OA = 2 = 1 corda AD OA 120 Os matemáticos gregos usavam as frações sexagemais babilônias, daí a razão de adotarem o raio igual a / 19
38 Sumário 1 Etimologia / 19
39 Segundo os Parâmetros Curriculares Nacionais (PCN), ensino médio, o objetivo do ensino da trigonometria é: 13 / 19
40 Segundo os Parâmetros Curriculares Nacionais (PCN), ensino médio, o objetivo do ensino da trigonometria é: Utilizar e interpretar modelos para resolução de situações-problema que envolvam medições, em especial o cálculo de distâncias inacessíveis, e para construir modelos que correspondem a fenômenos periódicos. 13 / 19
41 Segundo os Parâmetros Curriculares Nacionais (PCN), ensino médio, o objetivo do ensino da trigonometria é: Utilizar e interpretar modelos para resolução de situações-problema que envolvam medições, em especial o cálculo de distâncias inacessíveis, e para construir modelos que correspondem a fenômenos periódicos. Compreender o conhecimento científico e tecnológico como resultado de uma construção humana em um processo histórico e social, reconhecendo o uso de relações trigonométricas em diferentes épocas e contextos sociais. 13 / 19
42 EXEMPLO Vídeo 14 / 19
43 Sumário 1 Etimologia / 19
44 Unidades de medida de ângulos; 16 / 19
45 Unidades de medida de ângulos; Trigonometria no triângulo retângulo; 16 / 19
46 Unidades de medida de ângulos; Trigonometria no triângulo retângulo; Trigonometria na circunferência; 16 / 19
47 Unidades de medida de ângulos; Trigonometria no triângulo retângulo; Trigonometria na circunferência; Funções Trigonométricas; 16 / 19
48 Unidades de medida de ângulos; Trigonometria no triângulo retângulo; Trigonometria na circunferência; Funções Trigonométricas; Lei dos Senos e Lei dos Cossenos; 16 / 19
49 Unidades de medida de ângulos; Trigonometria no triângulo retângulo; Trigonometria na circunferência; Funções Trigonométricas; Lei dos Senos e Lei dos Cossenos; Equações Trigonométricas; 16 / 19
50 Unidades de medida de ângulos; Trigonometria no triângulo retângulo; Trigonometria na circunferência; Funções Trigonométricas; Lei dos Senos e Lei dos Cossenos; Equações Trigonométricas; Coordenadas Polares. 16 / 19
51 Datas importantes Primeira Avaliação: 29/06 17 / 19
52 Datas importantes Primeira Avaliação: 29/06 Segunda Avaliação: 10/08 17 / 19
53 Datas importantes Primeira Avaliação: 29/06 Segunda Avaliação: 10/08 Entrega dos vídeos: 14/09 17 / 19
54 Datas importantes Primeira Avaliação: 29/06 Segunda Avaliação: 10/08 Entrega dos vídeos: 14/09 Terceira Avaliação: 21/09 17 / 19
55 Datas importantes Primeira Avaliação: 29/06 Segunda Avaliação: 10/08 Entrega dos vídeos: 14/09 Terceira Avaliação: 21/09 Avaliação Final: 28/09 17 / 19
56 Videos Objetivos: Experimentar um recurso didático; 18 / 19
57 Videos Objetivos: Experimentar um recurso didático; Trabalhar a expressão oral e corporal; 18 / 19
58 Videos Objetivos: Experimentar um recurso didático; Trabalhar a expressão oral e corporal; Produzir material que possa ser útil a outras pessoas; 18 / 19
59 Videos Objetivos: Experimentar um recurso didático; Trabalhar a expressão oral e corporal; Produzir material que possa ser útil a outras pessoas; Contato com tecnologias eletrônicas/digitais. 18 / 19
60 Videos Metodologia Equipes de no máximo três componentes; 19 / 19
61 Videos Metodologia Equipes de no máximo três componentes; Cada equipe produz um vídeo sobre uma aplicação da trigonometria; 19 / 19
62 Videos Metodologia Equipes de no máximo três componentes; Cada equipe produz um vídeo sobre uma aplicação da trigonometria; O vídeo deve ter duração de 5 a 15 minutos; 19 / 19
63 Videos Metodologia Equipes de no máximo três componentes; Cada equipe produz um vídeo sobre uma aplicação da trigonometria; O vídeo deve ter duração de 5 a 15 minutos; Dependendo da qualidade, poderá ser publicado na internet. 19 / 19
MATEMÁTICA BÁSICA II TRIGONOMETRIA
UNIVERSIDADE ESTADUAL VALE DO ACARAÚ CENTRO DE CIÊNCIAS EXATAS E TECNOLOGIA CURSO DE LICENCIATURA EM MATEMÁTICA MATEMÁTICA BÁSICA II TRIGONOMETRIA Prof. Márcio Nascimento [email protected] 2014.1
Educação Matemática MATEMÁTICA LICENCIATURA. Professora Andréa Cardoso
Educação Matemática MATEMÁTICA LICENCIATURA Professora Andréa Cardoso OBJETIVO DA AULA: Reconhecer a importância da Trigonometria na compreensão de fenômenos naturais 2 UNIDADE I: EDUCAÇÃO MATEMÁTICA E
PARTE 2 do curso Ptolomeu, Copérnico e Galileu
PARTE 2 do curso Ptolomeu, Copérnico e Galileu O que será abordado neste curso: O Caminho até a Teoria da Gravitação de Newton: Parte 1 (4 aulas) Conceitos básicos de Astronomia: Movimento do Sol e dos
PARTE 2 do curso Ptolomeu, Copérnico e Galileu
PARTE 2 do curso Ptolomeu, Copérnico e Galileu O que será abordado neste curso: O Caminho até a Teoria da Gravitação de Newton: Parte 1 (4 aulas) Conceitos básicos de Astronomia: Movimento do Sol e dos
Um pouco de história da trigonometria. Professor: Antonio Carlos Brolezzi IME/USP
Um pouco de história da trigonometria Professor: Antonio Carlos Brolezzi IME/USP http://www.ime.usp.br/~brolezzi [email protected] Os povos da Antiguidade admiravam o céu, seus mistérios e sua influência
Trigonometria no Círculo - Funções Trigonométricas
Trigonometria no Círculo - Funções Trigonométricas Prof. Márcio Nascimento [email protected] Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em
Universidade Federal de Alfenas - UNIFAL. Disciplina: História da Matemática Professora: Andrea Cardoso Aluno: Wagner Vinícius Volpi
Universidade Federal de Alfenas - UNIFAL Disciplina: História da Matemática Professora: Andrea Cardoso Aluno: Wagner Vinícius Volpi Introdução Trigonometria trigonos (triângulos) + meiruns (medida) = medida
PARTE 2 do curso Ptolomeu, Galileu e Copérnico
PARTE 2 do curso Ptolomeu, Galileu e Copérnico O que será abordado neste curso: O Caminho até a Teoria da Gravitação de Newton: Parte 1 (4 aulas) Conceitos básicos de Astronomia: Movimento do Sol e dos
POR QUE GEOCENTRISMO PREVALECEU?
POR QUE GEOCENTRISMO PREVALECEU? Não percebemos a Terra se movendo contraintuitivo Modelo heliocêntrico contrariava frontalmente o pensamento aristotélico. Aristóteles: Sol jamais poderia ocupar o centro
A história da Astronomia
ASTRONOMIA A história da Astronomia Profª Eliana D'Avila OBSERVANDO O CÉU Desde a antiguidade o ser humano observa o céu. As especulações sobre a natureza do Universo devem remontar aos tempos pré-históricos,
Algumas Dúvidas Frequentes
Algumas Dúvidas Frequentes - Usando a sombra de um gnomon. -O que há de incorreto/incompleto nas respostas abaixo? Como você pode saber quando é meio-dia? R: Quando não houver sombra na estaca (comprimento
Esfera Celeste: estrelas fixas
Esfera Celeste: estrelas fixas http://astro.if.ufrgs.br/coord/esferaceleste.jpg App interessante: Google Sky Map Sistema Horizontal de Coordenadas h z A Coordenadas (ângulos): altura (h): -90 o h 90 o
A Ciência em Alexandria. Reconstrução do Átrio da Biblioteca de Alexandria
A Ciência em Alexandria Reconstrução do Átrio da Biblioteca de Alexandria A Escola de Alexandria Após a morte de Alexandre Magno (325 a. C.) o seu império fragmentou-se. O Egipto passou a ser governado
REVISÃO DE TRIGONOMETRIA E GEOMETRIA ANALÍTICA
UNIVERSIDADE DE SÃO PAULO ESCOLA SUPERIOR DE AGRICULTURA LUIZ DE QUEIROZ DEPARTAMENTO DE ENGENHARIA DE BIOSSISTEMAS LEB340 TOPOGRAFIA E GEOPROCESSAMENTO I PROF. DR. CARLOS ALBERTO VETTORAZZI REVISÃO DE
Trigonometria no Círculo - Funções Trigonométricas
Trigonometria no Círculo - Funções Trigonométricas Prof. Márcio Nascimento [email protected] Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em
Ciência Grega. Astronomia Fundamental. Tibério B. Vale
Astronomia Fundamental Tibério B. Vale Descendem dos Minoanos e Micênicos (3000 a 2500 a.c.) Contemporâneos ao Sumérios e Antigo Império Egípcios (Era do Bronze). Mar Egeu: Creta e Cíclades Sofreram diversas
Caro aluno: vamos conhecer um pouco da História da Matemática? Por que seno se chama seno?
GUTIERRE, Liliane dos Santos. Uma aula de trigonometria. UFRN. Natal, 009. Caro aluno: vamos conhecer um pouco da História da Matemática? Por que seno se chama seno? Primeiramente, falemos do nosso calendário:
Introdução à Astronomia Semestre:
Introdução à Astronomia Semestre: 2015.1 Sergio Scarano Jr 22/10/2013 Horário de Atendimento do Professor Professor: Sergio Scarano Jr Sala: 119 Homepage: http://www.scaranojr.com.br/ * http://200.17.141.35/scaranojr/
História da trigonometria
Trigonometria História da trigonometria A história da trigonometria e das funções trigonométricas pode abranger em torno de 4000 anos. Etimologia A nossa palavra moderna seno é derivada do latim sinus,
TRIGONOMETRIA CONTEXTUALIZADA: MEDINDO A ALTURA DO MORRO BOM JESUS EM CARUARU - PE
TRIGONOMETRIA CONTEXTUALIZADA: MEDINDO A ALTURA DO MORRO BOM JESUS EM CARUARU - PE Davi Severino de Araújo; Diego Jonata de Medeiros; Ithallo Rosemberg Praxedes de Pontes dos Santos; Joicy Lariça Gonçalves
3ª Igor/ Eduardo. Competência Objeto de aprendizagem Habilidade
Matemática 3ª Igor/ Eduardo 9º Ano E.F. Competência Objeto de aprendizagem Habilidade C3 - Espaço e forma Números racionais. Números irracionais. Números reais. Relações métricas nos triângulos retângulos.
Trigonometria na Circunferência
FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ / SEEDUC-RJ COLÉGIO: C E BARÃO DE MACAÚBAS / C E HERBERT DE SOUZA PROFESSORA: MARISTELA ISOLANI TAVARES MATRÍCULA: 00/0912586-5 SÉRIE:
RELATÓRIO: OFICINA DE TRIGONOMETRIA. Bolsistas: Clarice F. Vivian. Isabel Teixeira. Murilo Medeiros
UNIVERSIDADE FEDERAL DO PAMPA UNIPAMPA CAMPUS CAÇAPAVA DO SUL CURSO DE LICENCIATURA EM CIÊNCIAS EXATAS PIBID MATEMÁTICA RELATÓRIO: OFICINA DE TRIGONOMETRIA Bolsistas: Clarice F. Vivian Isabel Teixeira
Ensino de Astronomia
Ensino de Astronomia História Aula I Astronomia antiga Curso de extensão Ensino de Astronomia no ABC Em algum lugar, algo maravilhoso está esperando para ser descoberto Carl Sagan O que é Astronomia? Astronomia
MATEMÁTICA BÁSICA II TRIGONOMETRIA Aula 05
UNIVERSIDADE ESTADUAL VALE DO ACARAÚ CENTRO DE CIÊNCIAS EXATAS E TECNOLOGIA CURSO DE LICENCIATURA EM MATEMÁTICA MATEMÁTICA BÁSICA II TRIGONOMETRIA Aula 05 Prof. Márcio Nascimento [email protected]
Caderno 1: (É permitido o uso de calculadora.) Não é permitido o uso de corretor. Deves riscar aquilo que pretendes que não seja classificado.
Proposta de Resolução [maio - 018] Caderno 1: (É permitido o uso de calculadora.) O teste é constituído por dois cadernos (Caderno 1 e Caderno ). Utiliza apenas caneta ou esferográfica, de tinta azul ou
A Geometria e as Distâncias Astronômicas na Grécia Antiga
A Geometria e as Distâncias Astronômicas na Grécia Antiga Geraldo Ávila Depto de Matemática Universidade de Brasília 70910 Brasília - DF Os tamanhos do Sol e da Lua e as distancias desses astros à Terra
Provas de Acesso ao Ensino Superior Para Maiores de 23 Anos
Provas de Acesso ao Ensino Superior Para Maiores de 23 Anos Candidatura de 206 Exame de Matemática Tempo para realização da prova: 2 horas Tolerância: 30 minutos Material admitido: material de escrita
Radianos e Graus. Prof. Márcio Nascimento.
Prof. Márcio Nascimento [email protected] Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Matemática Básica II - 2015.1
CURSO DE FORMAÇÃO CONTINUADA DE PROFESSORES DE MATEMÁTICA. 9º Ano do Ensino Fundamental. 3º Bimestre 2012 PLANO DE TRABALHO
CURSO DE FORMAÇÃO CONTINUADA DE PROFESSORES DE MATEMÁTICA 9º Ano do Ensino Fundamental 3º Bimestre 2012 PLANO DE TRABALHO Cursista: SHEYLA DA SILVA MARTINS Tarefa 2: Círculo, Circunferência e Razões Trigonométricas
Secretaria de Estado da Educação de Santa Catarina 22ª GEREI
Secretaria de Estado da Educação de Santa Catarina 22ª GEREI 1) Escola de Ensino Médio Macário Borba Município: Sombrio Disciplina: Matemática Série: 2º ano Nível: Ensino Médio Turma: 01 Professora: Patrícia
Trigonometria: alguns fatos históricos
Trigonometria: alguns fatos históricos Universidade Federal de Pelotas Prof. Dr. Maurício Zahn 1 2 3 Conteúdo 1 2 3 Conceito O nome Trigonometria vem do grego trigōnon - triângulo + metron - medida ).
Estudo da Trigonometria (I)
Instituto Municipal de Ensino Superior de Catanduva SP Curso de Licenciatura em Matemática 3º ano Prática de Ensino da Matemática III Prof. M.Sc. Fabricio Eduardo Ferreira [email protected] Estudo da
Radianos. Prof. Márcio Nascimento.
Radianos Prof. Márcio Nascimento [email protected] Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Matemática Básica II
Fundamentos de Astronomia e Astrofísica
Fundamentos de Astronomia e Astrofísica Astronomia Antiga, Esfera Celeste, Coordenadas e Movimento Diurno dos Astros Rogemar A. Riffel Sala: N101 e-mail: [email protected] http://www.if.ufrgs.br/~rogemar
PLANO DE ENSINO E APRENDIZAGEM
SERVIÇO PÚBLICO FEDERAL UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE CIÊNCIAS EXATAS E NATURAIS CURSO DE LICENCIATURA PLENA EM MATEMÁTICA PARFOR PLANO DE ENSINO E APRENDIZAGEM I IDENTIFICAÇÃO: PROFESSOR (A)
2ª série do Ensino Médio
2ª série do Ensino Médio Geometria Plana Cálculo de Áreas e Relações na Circunferência. Polígonos Regulares, Polígonos Inscritos na Circunferência e Trigonometria. Relações Métricas no Triângulo Retângulo
Cronograma - 2º Bimestre / 2016
Prof.: TIAGO LIMA Disciplina: MATEMÁTICA Série: 1º ano EM 25/04 e 28/04 02/05 e 04/05 09/05 e 12/05 23/05 e 26/05 30/05 e 02/06 06/06 e 09/06 13/06 e 16/06 20/06 e 23/06 27/06 e 30/06 04/07 e 07/07 Função
Introdução à Astronomia Fundamental. A Astronomia da Antiguidade aos Tempos Modernos
A Astronomia da Antiguidade aos Tempos Modernos Introdução à Astronomia Fundamental A Astronomia é provavelmente a ciência natural mais antiga, datando a épocas da antiguidade, com suas origens em praticas
O USO DE CONCEITOS DE TRIGONOMETRIA NA CONSTRUÇÃO DE TELHADOS
O USO DE CONCEITOS DE TRIGONOMETRIA NA CONSTRUÇÃO DE TELHADOS José Ferreira Guedes Filho Instituto Federal de Educação, Ciência e Tecnologia da Paraíba, [email protected] Resumo: A matemática surgiu
REVISÃO MATEMÁTICA. 1. Unidades de medida Medida de comprimento - metro (m)
REVISÃO MATEMÁTICA 1. Unidades de medida 1.1. Medida de comprimento - metro (m) O metro é uma unidade básica para a representação de medidas de comprimento no sistema internacional de unidades (SI). Sheila
Esfera Celeste: estrelas fixas
Esfera Celeste: estrelas fixas http://astro.if.ufrgs.br/coord/esferaceleste.jpg App interessante: Google Sky Map Sistema Horizontal de Coordenadas h z A Coordenadas (ângulos): altura (h): -90 o h 90 o
Provas de Acesso ao Ensino Superior Para Maiores de 23 Anos
Provas de Acesso ao Ensino Superior Para Maiores de 23 Anos Candidatura de 2015 PROVA MODELO DE MATEMÁTICA Tempo para realização da prova: 2 horas Tolerância: 30 minutos Material admitido: material de
Trigonometria. 1 História. 2 Aplicações
Trigonometria 1 História As origens da trigonometria são incertas. É possível encontrar problemas que envolvem a cotangente no Papiro Rhind e uma notável tábua de secantes na tábua cuneiforme babilônica
1.0. Conceitos Utilizar os critérios de divisibilidade por 2, 3, 5 e Utilizar o algoritmo da divisão de Euclides.
Conteúdo Básico Comum (CBC) Matemática - do Ensino Fundamental do 6º ao 9º ano Os tópicos obrigatórios são numerados em algarismos arábicos Os tópicos complementares são numerados em algarismos romanos
II- Contando a História da Trigonometria
I- Introdução A palavra trigonometria é formada por três radicais gregos: tri = três, gonos = ângulos e metron = medir. Daí, o seu significado: medida dos triângulos. Dizemos, então, que a Trigonometria
Resolução do Vestibular UDESC 2019/1. Logo o dado foi jogado 8 vezes
As faces do cubo são os primos: 2, 3, 5, 7, 11 e 13 Fatorando 1171170 temos: 1171170 2 585585 3 195195 3 65065 5 13013 7 1859 11 169 13 13 13 1 Logo o dado foi jogado 8 vezes 1 2 A 1 3 1 1 4 2 0 1 2 0
E.E.M.FRANCISCO HOLANDA MONTENEGRO PLANO DE CURSO ENSINO MÉDIO
E.E.M.FRANCISCO HOLANDA MONTENEGRO PLANO DE CURSO ENSINO MÉDIO DISCIPLINA: GEOMETRIA SÉRIE: 1º ANO (B, C e D) 2015 PROFESSORES: Crislany Bezerra Moreira Dias BIM. 1º COMPETÊNCIAS/ HABILIDADES D48 - Identificar
Revisão de Matemática
UNIVERSIDADE FEDERAL DO CEARÁ - UFC DEPARTAMENTO DE ENGENHARIA AGRÍCOLA DENA TOPOGRAFIA BÁSICA Revisão de Matemática Facilitador: Fabrício M. Gonçalves Unidades de medidas Unidade de comprimento (METRO)
FUNDAÇÃO CECIERJ/CONSÓRCIO CEDERJ
FUNDAÇÃO CECIERJ/CONSÓRCIO CEDERJ FORMAÇÃO CONTINUADA EM MATEMÁTICA PLANO DE TRABALHO Círculo, Circunferência e Razões Trigonométricas no triângulo retângulo. Claudia Valin dos Santos Rio de Janeiro 2014
Astronomia de posição (II)
Sistema de coordenadas horizontal, equatorial, eclíptico e galáctico. Determinação de distâncias (métodos clássicos): Eratostenes, Hiparco, Aristarco e Copérnico Astronomia de posição (II) Gastão B. Lima
Ciclo Trigonomé trico
Ciclo Trigonomé trico Aluno: Professores: Camila Machado, Joelson Rolino, Josiane Paccini, Rafaela Fidelis, Rafaela Nascimento. Aula 1 As origens da trigonometria Não se sabe ao certo da origem da trigonometria,
Trigonometria no Triângulo Retângulo
Trigonometria no Triângulo Retângulo Prof. Márcio Nascimento [email protected] Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina:
Bruno Fraga, Lafayette e Vitim Braga
Bruno Fraga, Lafayette e Vitim Braga Detalhes que fazem a diferença PROF. BRUNO FRAGA 1. Cuidados com Escalas Ao navegar, um petroleiro choca-se com um arrecife, abrindo um buraco nos tanques de armazenamento
Formação continuada em MATEMÁTICA Fundação CECIERJ/ Consórcio CEDERJ
Formação continuada em MATEMÁTICA Fundação CECIERJ/ Consórcio CEDERJ MATEMÁTICA 1º ANO 4º BIMESTRE/ 2013 Sandra Maria Vogas Vieira [email protected] TRIGONOMETRIA NA CIRCUNFERÊNCIA TAREFA 2 CURSISTA:
Astronomia de posição (II)
Sistema de coordenadas horizontal, equatorial, eclíptico e galáctico. Determinação de distâncias (métodos clássicos): Eratostenes, Hiparco, Aristarco e Copérnico. Astronomia de posição (II) Gastão B. Lima
Topografia. Revisão Matemática. Aula 2. Prof. Diego Queiroz. Vitória da Conquista, Bahia. Contato: (77)
Topografia Revisão Matemática Prof. Diego Queiroz Contato: (77) 9165-2793 [email protected] Aula 2 Vitória da Conquista, Bahia Tópicos abordados Unidades de Medida; Trigonometria Plana; Relações Métricas
1 EMENTA 2 OBJETIVOS DO COMPONENTE CURRICULAR 3 CONTEÚDO PROGRAMÁTICO. Cálculo e Raios e comprimentos Plano cartesiano Análise de gráficos
PLANO DE ENSINO Disciplina Fundamentos de Matemática Código Docente Daniela Macêdo Damaceno Pinheiro Semestre I/2013.1 Carga horária 80h 1 EMENTA Frações Produtos notáveis Funções, equações e inequações
Relações Métricas nos Triângulos. Joyce Danielle de Araújo
Relações Métricas nos Triângulos Joyce Danielle de Araújo Trigonometria A palavra trigonometria é de origem grega, onde: Trigonos = Triângulo Metrein = Mensuração - Relação entre ângulos e distâncias;
Astronomia de posição (II)
Sistema de coordenadas horizontal, equatorial, eclíptico e galáctico. Determinação de distâncias (métodos clássicos): Eratostenes, Hiparco, Aristarco e Copérnico. Astronomia de posição (II) Gastão B. Lima
Astrofísica Geral. Tema 02: Noções de Astronomia
es de Astronomia Outline 1 Forma e movimentos da Terra 2 Constelações 3 Estações do ano 4 Esfera celeste 5 Medidas de tempo 6 Bibliografia 2 / 49 Índice 1 Forma e movimentos da Terra 2 Constelações 3 Estações
Plano de trabalho : Trigonometria na Circunferência
FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ / SEEDUC-RJ COLÉGIO: Escola Estadual Marques Rebelo MATRÍCULA: 0912761-4 SÉRIE: 1 a Série do Ensino médio. TUTOR (A): ANTôNIO DE ALMEIDA
Modelos do Sistema Solar. Roberto Ortiz EACH/USP
Modelos do Sistema Solar Roberto Ortiz EACH/USP Grécia antiga (750 a.c. 146 a.c.) Desenvolvimento da Matemática, Geometria, Astronomia, Filosofia, Política, etc. Em sua obra Metafísica, Aristóteles (384
MATRIZ DE REFERÊNCIA-Ensino Médio Componente Curricular: Matemática
MATRIZ DE REFERÊNCIA-Ensino Médio Componente Curricular: Matemática Conteúdos I - Conjuntos:. Representação e relação de pertinência;. Tipos de conjuntos;. Subconjuntos;. Inclusão;. Operações com conjuntos;.
Funções Trigonométricas8
Licenciatura em Ciências USP/Univesp FUNÇÕES TRIGONOMÉTRICAS 8 137 TÓPICO Gil da Costa Marques 8.1 Trigonometria nos Primórdios 8. Relações Trigonométricas num Triângulo Retângulo 8..1 Propriedades dos
-Tales de Mileto (585 a.c.) geometria dos egípcios aplicada ao céu- previsão de um eclipse solar em 5 de Maio de 585 a.c. -Pitágoras (500 a.c.
-Tales de Mileto (585 a.c.) geometria dos egípcios aplicada ao céu- previsão de um eclipse solar em 5 de Maio de 585 a.c. -Pitágoras (500 a.c.) círculo e esfera como símbolos da perfeição -Aristóteles
MATEMÁTICA BÁSICA II TRIGONOMETRIA Aula 03
UNIVERSIDDE ESTDUL VLE DO CRÚ CENTRO DE CIÊNCIS EXTS E TECNOLOGI CURSO DE LICENCITUR EM MTEMÁTIC MTEMÁTIC ÁSIC II TRIGONOMETRI ula 03 Prof. Márcio Nascimento [email protected] 204. Razões Trigonométricas
MAT001 Cálculo Diferencial e Integral I
1 MAT001 Cálculo Diferencial e Integral I GEOMETRIA ANALÍTICA Coordenadas de pontos no plano cartesiano Distâncias entre pontos Sejam e dois pontos no plano cartesiano A distância entre e é dada pela expressão
Planificação Anual GR Disciplina Matemática 9.ºAno
Planificação Anual GR 500 - Disciplina Matemática 9.ºAno Período letivo Competências Conteúdos Estratégias / Processos de operacionalização Recursos didácticos Avaliação Blocos previstos Resolver problemas
Matemática Básica II - Trigonometria Nota 02 - Trigonometria no Triângulo Retângulo
Matemática Básica II - Trigonometria Nota 0 - Trigonometria no Triângulo Retângulo Márcio Nascimento da Silva Universidade Estadual Vale do Acaraú - UVA Curso de Licenciatura em Matemática [email protected]
Acadêmico(a) Turma: Capítulo 5: Trigonometria. Definição: Todo triângulo que tenha um ângulo de 90º (ângulo reto)
1 Acadêmico(a) Turma: 5.1. Triangulo Retângulo Capítulo 5: Trigonometria Definição: Todo triângulo que tenha um ângulo de 90º (ângulo reto) Figura 1: Ângulos e catetos de um triangulo retângulo. Os catetos
Caderno 1: (É permitido o uso de calculadora.) Não é permitido o uso de corretor. Deves riscar aquilo que pretendes que não seja classificado.
Proposta de Resolução [dezembro - 017] Caderno 1: (É permitido o uso de calculadora.) O teste é constituído por dois cadernos (Caderno 1 e Caderno ). Utiliza apenas caneta ou esferográfica, de tinta azul
Provas de Acesso ao Ensino Superior Para Maiores de 23 Anos
Provas de Acesso ao Ensino Superior Para Maiores de 23 Anos Candidatura de 207 EXAME DE MATEMÁTICA Tempo para realização da prova: 2 horas Tolerância: 30 minutos Material admitido: material de escrita
Provas de Acesso ao Ensino Superior Para Maiores de 23 Anos
Provas de Acesso ao Ensino Superior Para Maiores de 23 Anos Candidatura de 205 EXAME DE MATEMÁTICA Tempo para realização da prova: 2 horas Tolerância: 30 minutos Material admitido: material de escrita
Caderno 1: 35 minutos. Tolerância: 10 minutos. É permitido o uso de calculadora.
Prova Final de Matemática Prova 92 1.ª Fase 3.º Ciclo do Ensino Básico 2017 Decreto-Lei n.º 139/2012, de 5 de julho Duração da Prova (Caderno 1 + Caderno 2): 90 minutos. Tolerância: 30 minutos. Caderno
INTRODUÇÃO À ENGENHARIA
INTRODUÇÃO À ENGENHARIA 2015 AULA PRÁTICA No. 04 TRIGONOMETRIA NOTA PROF. ANGELO BATTISTINI NOME RA TURMA NOTA Objetivos: Verificar e medir relações trigonométricas importantes. Conhecimentos desenvolvidos:
Astrofísica Geral. Tema 02: Noções de Astronomia
ma 02: Noções de Astronomia Outline 1 Forma e movimentos da rra 2 Constelações 3 Estações do ano 4 Esfera celeste 5 Medidas de tempo 6 Bibliografia 2 / 48 Outline 1 Forma e movimentos da rra 2 Constelações
-Tales de Mileto (585 a.c.) geometria dos egípcios aplicada ao céu- previsão de um eclipse solar em 5 de Maio de 585 a.c. -Pitágoras (500 a.c.
-Tales de Mileto (585 a.c.) geometria dos egípcios aplicada ao céu- previsão de um eclipse solar em 5 de Maio de 585 a.c. -Pitágoras (500 a.c.) círculo e esfera como símbolos da perfeição -Aristóteles
Aula 11 mtm B TRIGONOMETRIA
Aula 11 mtm B TRIGONOMETRIA Definição Circunferência de raio unitário, sobre a qual marcamos um ponto de origem e adotamos um sentido positivo de percurso (antihorário). Os eixos x e y dividem o círculo
Modelos do Sistema Solar. Roberto Ortiz EACH/USP
Modelos do Sistema Solar Roberto Ortiz EACH/USP Grécia antiga (750 a.c. 146 a.c.) Desenvolvimento da Matemática, Geometria, Astronomia, Filosofia, Política, etc. Em sua obra Metafísica, Aristóteles (384
A GEOMETRIA DO GLOBO TERRESTRE
Sumário A GEOMETRIA DO GLOBO TERRESTRE Grupo de Pesquisa em Matemática para o Ensino Médio GPMatEM Prof Luciana Martino: [email protected] Prof Marcos: [email protected] Prof Maria Helena:
Trigonometria e relações trigonométricas
Trigonometria e relações trigonométricas Em trigonometria, os lados dos triângulos retângulos assumem nomes particulares, apresentados na figura ao lado. O lado mais comprido, oposto ao ângulo de 90º (ângulo
Matemática 9º ano 3º bimestre/2013 Plano de Trabalho
Formação Continuada em Matemática Fundação CECIERJ/ CEDERJ Matemática 9º ano 3º bimestre/2013 Plano de Trabalho Tarefa 2: Triângulo Retângulo, Circunferência e Círculo, Trigonometria no Triângulo Retângulo.
FUNÇÕES TRIGONOMÉTRICAS. Teorema de Pitágoras Razões trigonométricas Circunferência trigonométrica
FUNÇÕES TRIGONOMÉTRICAS Teorema de Pitágoras Razões trigonométricas Circunferência trigonométrica Teorema de Pitágoras Em qualquer triângulo retângulo, o quadrado da medida da hipotenusa é igual à soma
Introdução. Nome: Rodolfo da Costa Neves Série: 1º ano do ensino médio / 4º Bimestre Grupo: 11 Tutor: Carlos Eduardo Lima de Barros.
Nome: Rodolfo da Costa Neves Série: 1º ano do ensino médio / 4º Bimestre Grupo: 11 Tutor: Carlos Eduardo Lima de Barros Introdução Abordagem ao tema A palavra trigonometria tem origem grega e seu significado
O ENSINO E APRENDIZAGEM DOS CONCEITOS TRIGONOMÉTRICOS: CONTRIBUIÇÕES DA APRENDIZAGEM SIGNIFICATIVA
O ENSINO E APRENDIZAGEM DOS CONCEITOS TRIGONOMÉTRICOS: CONTRIBUIÇÕES DA APRENDIZAGEM SIGNIFICATIVA Apresentação: Comunicação Oral Antonio Gutemberg Resende 1 RESUMO Neste trabalho propõe-se uma alternativa
Curso de Astronomia Básica. 1.1 História da Astronomia
Curso de Astronomia Básica 1.1 História da Astronomia Pré-história Análise involuntária e cotidiana dos fenômenos naturais O aproveitamento das observações para otimização das tarefas A abóbada celeste
Trigonometria no Triângulo Retângulo Exercícios
Trigonometria no Triângulo Retângulo Exercícios Prof. Márcio Nascimento [email protected] Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática
DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA:
ANO LETIVO 2016/2017 DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: Matemática (9º Ano) METAS CURRICULARES/CONTEÚDOS... 1º PERÍODO - (15 de setembro a 16 de dezembro) Metas Curriculares Conteúdos Aulas
