RESOLUÇÃO MATEMÁTICA 2ª FASE
|
|
|
- Cacilda Bastos da Conceição
- 8 Há anos
- Visualizações:
Transcrição
1 RESOLUÇÃO MATEMÁTICA ª FASE UFPR 01. Encontre o conjunto solução em IR das seguintes inequações: a) 5 x x. 5 x x x 3 (-1) 3 x 3 S x R / x b) 3x x x 1 3 3x 1 3 e 3x 1 3 3x 4 3x 4 x x x S x R / x 3 3 1
2 0. Na modelagem matemática de um processo de fabricação, é comum supor que não há perda de material com emendas, sobreposição de partes etc. Deseja-se construir um reservatório cilíndrico com diâmetro de 10 cm e capacidade de 1,5 m³. Neste problema, estamos nos referindo a um cilindro circular reto perfeito. Para fazer a lateral desse cilindro, será usada uma chapa metálica retangular de comprimento b e altura h. Use π = 3, 14 e dê suas respostas com duas casas decimais. a) Calcule o comprimento b que a chapa deve ter. πr b.3,14.0,6 b b 3,76 m b) Calcule a altura h que a chapa deve ter. V πr.h 1,5 3,14. 0,6.h 1,5 h 1,1304 h 1,33 m
3 RESOLUÇÃO MATEMÁTICA ª FASE UFPR 03. Em uma pesquisa de intenção de voto com 1075 eleitores, foi constatado que 344 pretendem votar no candidato A e 731 no candidato B. a) Qual é a porcentagem de pessoas entrevistadas que pretendem votar no candidato A? 344 P P 3% b) Sabendo que esse mesmo grupo de 1075 entrevistados é composto por 571 mulheres e 504 homens, e que 5% dos homens pretendem votar no candidato A, quantas mulheres pretendem votar no candidato B? De acordo com a informação dada no item b, temos um total de 504 homens e 5% destes pretendem votar no candidato A. Calculando esta porcentagem temos 0,5 x 504 = 16 homens pretendem votar no candidato A. Subtraindo o número total de homens destes que pretendem votar no candidato A teremos aqueles que pretendem votar no candidato B, ou seja, = 378 homens pretendem votar no candidato B. Do enunciado principal temos a informação que 731 pessoas pretendem votar no candidato B e conforme calculado neste item, sabemos que 378 homens pretendem votar no candidato B. Subtraindo o total de pessoa que pretendem votar no candidato B do número de homens que pretendem votar no candidato B, teremos o número de mulheres que pretendem votar no candidato B, ou seja: = 353 mulheres pretendem vota no candidato B. 3
4 04. Responda às seguintes perguntas a respeito da função gx a) Qual é o domínio de g? Condição de existência: 14x 0 4x 1 (-1) 1 x 4 1 Df x R / x 4 3x 4 : 1 4x b) Qual é a inversa de g? 3x 4 gx 1 4x 3y 4 x 1 4y x 4xy 3y 4 x 4 4xy 3y x 4 y 4x 3 x 4 y 4x 3 1 x 4 g x 4x 3 4
5 RESOLUÇÃO MATEMÁTICA ª FASE UFPR 05. Um agricultor tem arame suficiente para construir 10 m de cerca, com os quais pretende montar uma horta retangular de tamanho a ser decidido. a) Se o agricultor decidir fazer a horta com todos os lados de mesmo tamanho e utilizar todo o arame disponível cercando apenas três dos seus lados, qual será a área da horta? O desenho abaixo ilustra a situação: 3x 10 x 40 m A área (A) da horta será: A A 1600 m b) Qual é a área máxima que a horta pode ter se apenas três dos seus lados forem cercados e todo o arame disponível for utilizado? O desenho abaixo ilustra a situação: a x 10 a 10 x A a.x A 10 x.x A x 10x A área máxima corresponde ao y v, logo: y v yv 4a y y v v m 5
6 06. Seja C1 o círculo de raio r = e centro no ponto P = (3, 4). a) Qual é a equação do círculo C 1? x 3 y 4 4 A EQUAÇÃO REPRESENTA O CÍRCULO É UMA INEQUAÇÃO. x 3 y 4 4 REPRESENTA UMA CIRCUNFERÊNCIA, O QUE b) Considere o círculo C definido pela equação x + y = ρ. Para quais valores de ρ o círculo C 1 intersecta o círculo C? Seja C 1 a circunferência de centro no ponto (3,4) e raio igual a. A circunferência C tem centro na origem, logo a distância entre os centros de C 1 e C vale: Se d d 9 16 d 5 OC 5 e R, é imediato que OA 3 e OB 7. Logo: 3 ρ 7 A EQUAÇÃO x y ρ REPRESENTA UMA CIRCUNFERÊNCIA. A INEQUAÇÃO x y ρ REPRESENTA O CÍRCULO. 6
7 RESOLUÇÃO MATEMÁTICA ª FASE UFPR 07. Considere a função xπ f( x ) 4.cos 3, com x (, + ). 4 a) Qual é o valor mínimo que a função f atinge? A função f atinge o valor mínimo quando xπ fmínimo 4.cos 3 4 f mínimo f 7 mínimo xπ cos 1, logo: 4 b) Para que valores de x temos f (x) = 1? xπ f x 4.cos 3 4 xπ 1 4.cos 3 4 xπ 4.cos 4 1 xπ cos 4 xπ 1 cos 4 xπ π xπ 5π +K π +K π x + 8K, K Z x + 8K, K Z 3 3 7
8 08. A velocidade de impressão de uma impressora é calculada em páginas por minuto (ppm). Suponha que determinada impressora tem velocidade de impressão de 15 ppm em preto-e-branco e de 8 ppm em cores. a) Quanto tempo essa impressora gasta para imprimir 30 páginas em preto-e-branco? Dê sua resposta no Dividindo 30 páginas por 15ppm temos: 15, minutos Transformando as unidades decimais em segundos tem-se: 15min0seg b) Trabalhando ininterruptamente durante 30 minutos, essa impressora imprimiu 366 páginas entre pretoe-branco e colorida. Quantas dessas páginas eram coloridas? Representando por x o tempo gasto para imprimir preto e branco e y o tempo gasto para imprimir colorido, temos: x + y = 30 minutos Sabendo que a velocidade de impressão é de 15 páginas por minuto para preto e branco e 8 páginas por minuto para colorida e que o total de páginas impressas foi 366, podemos escrever: 15x + 8y = 366 paginas Com isso tem-se um sistema de equações lineares de 1º grau para ser resolvido: x + y = 30 { 15x + 8y = 366 Isolando x = 30 y na primeira equação e substituindo na segunda equação teremos: 15(30 y) + 8y = 366. Resolvendo adequadamente esta equação, obtém-se como resultado o valor de y = 1 Sendo y = 1 minutos o tempo gasto para imprimir as páginas coloridas e sabendo que a velocidade de impressão de páginas coloridas é de 8 páginas por minuto, tem-se no produto 1x8 = 96 o número de páginas coloridas impressas. 8
9 RESOLUÇÃO MATEMÁTICA ª FASE UFPR 09. Considere o triângulo ao lado. a) Quanto mede o ângulo α? α 60º 75º 180º α 45º b) Quanto mede x? Aplicando a Lei dos Senos, temos: x 8 sen 60º sen 45º 3 x x 8 3 x x 4 6 cm 9
10 3 10. Dada a função polinomial p(x) x x 7x, faça o que se pede: a) Calcule p 5 3 p(x) x x 7x 3 p p p 5 15 b) Encontre as raízes de p(x). Pelo Teorema das Raízes Racionais, temos que as possíveis raízes racionais, são: x 1,. Verificando x como raiz, temos: x 4x 1 0 Por Bháskara, temos: x 3 x 3 1 S, 3, 3 10
Conhecimentos Específicos
PROCESSO SELETIVO 2017 Edital 24/2016 - NC Prova: 26/11/2016 INSCRIÇÃO TURMA NOME DO CANDIDATO ASSINO DECLARANDO QUE LI E COMPREENDI AS INSTRUÇÕES ABAIXO: CÓDIGO ORDEM INSTRUÇÕES Conhecimentos Específicos
COMENTÁRIO DA PROVA DE MATEMÁTICA. Professores Adilson Longen, Carlos Walter Kolb, Emerson Marcos Furtado e Oslei Domingos
COMENTÁRIO DA PROVA DE MATEMÁTICA Professores Adilson Longen, Carlos Walter Kolb, Emerson Marcos Furtado e Oslei Domingos Utilizamos a seguir alguns critérios para comentar a prova de Matemática da ª fase
UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE
www.elitecampinas.com.br Fone: (19) -71 O ELITE RESOLVE IME 004 PORTUGUÊS/INGLÊS Você na elite das universidades! UNICAMP 004 SEGUNDA FASE MATEMÁTICA www.elitecampinas.com.br Fone: (19) 51-101 O ELITE
Calculândia Escola de Reforço para Ensino Médio e Fundamental Exercícios Resolvidos MATEMÁTICA UFPR 2014/2015 1ª fase
55 - O motivo de uma pessoa ser destra ou canhota é um dos mistérios da ciência. Acredita-se que 11% dos homens e 9% das mulheres são canhotos. Supondo que 4% da população brasileira é constituída de homens,
Colégio Santa Dorotéia
Colégio Santa Dorotéia Área de Disciplina: Ano: º Ensino Médio Professor: Elias Bittar Atividades para Estudos Autônomos Data: / / 08 Aluno(a): Nº: Turma: QUESTÃO (EPcar) Com a intenção de padronizar as
Colégio Santa Dorotéia
Área de Disciplina: Ano: º Ensino Médio Professor: Elias Bittar Atividades para Estudos Autônomos Data: / / 09 Aluno(a): Nº: Turma: QUEST (EPCar) Com a intenção de padronizar as barracas dos vendedores
Resolução do Vestibular UDESC 2019/1. Logo o dado foi jogado 8 vezes
As faces do cubo são os primos: 2, 3, 5, 7, 11 e 13 Fatorando 1171170 temos: 1171170 2 585585 3 195195 3 65065 5 13013 7 1859 11 169 13 13 13 1 Logo o dado foi jogado 8 vezes 1 2 A 1 3 1 1 4 2 0 1 2 0
Resolução prova de matemática UDESC
Resolução prova de matemática UDESC 009. Prof. Guilherme Sada Ramos Guiba 1. O enunciado da questão omite a palavra, mas quer dizer que 0% dos aprovados passaram somente na disciplina A, 50% passaram somente
26 A 30 D 27 C 31 C 28 B 29 B
26 A O total de transplantes até julho de 2015 é de 912 transplantes. Destes, 487 são de córnea. Logo 487/912 53,39% transplantes são de córnea. 27 C O número de subnutridos caiu de 1,03 bilhões de pessoas
RESPOSTA ESPERADA MATEMÁTICA
Questão 3 a) Quando se usa o cartucho Preto BR, o custo por página é igual a 90/80 /9. Para o cartucho Preto AR, esse custo baixa para 50/400 /6. Como /6 < /9, o cartucho Preto AR é mais econômico. Você
1) (Unicamp) Três planos de telefonia celular são apresentados na tabela abaixo:
Exercícios resolvidos e comentados 1) (Unicamp) Três planos de telefonia celular são apresentados na tabela abaixo: Plano Custo fixo mensal Custo adicional por minuto A R$ 35,00 R$ 0,50 B R$ 20,00 R$ 0,80
CÁLCULO I. 1 Concavidade. Objetivos da Aula. Aula n o 16: Máximos e Mínimos - 2 a Parte
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 16: Máximos e Mínimos - 2 a Parte Objetivos da Aula Denir e discutir a concavidade de uma função em um intervalo do domínio; Denir e calcular
Rumo Curso Pré Vestibular Assistencial - RCPVA Disciplina: Matemática Professor: Vinícius Nicolau 24 de Outubro de 2014
Sumário 1 Questões de Vestibular 1 1.1 UP 014...................................... 1 1.1.1 Questão 1................................. 1 1.1. Questão................................. 1 1.1.3 Questão 3.................................
Exercícios de Revisão
Professor: Cassio Kiechaloski Mello Disciplina: Matemática Exercícios de Revisão Geometria Analítica Geometria Plana Geometria Espacial Números Complexos Polinômios Na prova de recuperação final, não será
1ª Parte Questões de Múltipla Escolha. Matemática
c UFSCar ª Parte Questões de Múltipla Escolha Matemática O gráfico em setores do círculo de centro O representa a distribuição das idades entre os eleitores de uma cidade. O diâmetro AB mede 0 cm e o comprimento
Solução do Simulado PROFMAT/UESC 2012
Solução do Simulado PROFMAT/UESC 01 (1) Encontre uma fração equivalente a 9/5 cuja soma dos termos é igual a 196: (A) 96/100 (B) 106/90 (C) 116/80 (D) 16/70 (E) 136/60 9 5 = 9 5 14 14 = 16 70 () Um grupo
MAT146 - Cálculo I - Problemas de Otimização
Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira Um problema de otimização é aquele onde se procura determinar os valores extremos de uma função, isto é, o maior ou o menor valor que
TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa D. alternativa B. alternativa E
Questão TIPO DE PROVA: A Os números compreendidos entre 400 e 500, divisíveis ao mesmo tempo por 8 e 75, têm soma: a) 600 d) 700 b) 50 e) 800 c) 50 Questão Na figura, temos os esboços dos gráficos de f
a) b) 5 3 sen 60 o = x. 2 2 = 5. 3 x = x = No triângulo da figura abaixo, o valor do x é igual a: a) 7 c) 2 31 e) 7 3 b) 31 d) 31 3
Matemática a. série do Ensino Médio Frentes e Eercícios propostos AULA FRENTE Num triângulo ABC em que AB = 5, B^ = º e C^ = 5º, a medida do lado AC é: a) 5 b) 5 c) 5 d) 5 e) 5 Sabendo-se que um dos lados
Prova final de MATEMÁTICA - 3o ciclo a Chamada
Prova final de MATEMÁTICA - o ciclo 2009-2 a Chamada Proposta de resolução 1. 1.1. Considerando que não queremos que o automóvel preto seja atribuído à mãe, e selecionando, ao acaso, um elemento da família,
Prova final de MATEMÁTICA - 3o ciclo a Fase
Prova final de MATEMÁTICA - o ciclo 015 - a Fase Proposta de resolução Caderno 1 1. Calculando o valor médio das temperaturas registadas, temos Resposta: Opção B 19 + 0 + + + 5 7 0 = 5 0 =,6..1. O triângulo
Matemática Unidade I Álgebra Série 15 - Progressão geométrica. a 4 = a 1 q 3 54 = 2 q 3 q 3 = 27 q = 3. a 5 = a 1 q 4 a 5 = a 5 = 162
0 a 4 = a q 3 54 = q 3 q 3 = 7 q = 3 a 5 = a q 4 a 5 = 3 4 a 5 = 6 Resposta: C 0 a 8 = a q 4 43 = 3 q6 3 5 3 = q 6 q 6 = 3 6 Como os termos são positivos, q > 0; assim: q = 3 a 5 = a q 3 a 5 = 3 33 a 5
Circunferências. λ : x y 4x 10y λ : x y 4x 5y 12 0
Circunferências 1. (Espcex (Aman) 014) Sejam dados a circunferência λ : x y 4x 10y 5 0 e o ponto P, que é simétrico de ( 1, 1) em relação ao eixo das abscissas. Determine a equação da circunferência concêntrica
Prova final de MATEMÁTICA - 3o ciclo a Fase
Prova final de MATEMÁTICA - 3o ciclo 2016-2 a Fase Proposta de resolução Caderno 1 1. Calculando a diferença entre 3 1 e cada uma das opções apresentadas, arredondada às centésimas, temos que: 3 1 2,2
CPV O cursinho que mais aprova na fgv
O cursinho que mais aprova na fgv FGV economia a Fase 0/dezembro/00 MATEMÁTICA 0 Na parte sombreada da figura, as extremidades dos segmentos de reta paralelos ao eixo y são pontos das representações gráficas
Matemática 3 Módulo 3
Matemática Módulo COMENTÁRIOS ATIVIDADES PARA SALA 1. Lembrando... Se duas figuras são semelhantes, temos: 1 A = k; 1 = k, em que R 1 e R são medidas lineares A e A 1 e A são as áreas. Círculo I IV. =
COLÉGIO PREVEST LISTA DE GEOMETRIA ESPACIAL CILINDROS, CONES E ESFERAS PROF. ULISSES MOTTA 1. (Ufpr 2017)
COLÉGIO PREVEST LISTA DE GEOMETRIA ESPACIAL CILINDROS, CONES E ESFERAS PROF. ULISSES MOTTA 1. (Ufpr 2017) Na modelagem matemática de um processo de fabricação, é comum supor que não há perda de material
UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ
UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ FUNDAMENTOS DE MATEMÁTICA PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR - 30/11/2014 CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES:
MATEMÁTICA COMENTÁRIO DA PROVA DE MATEMÁTICA
COMENTÁRIO DA PROVA DE MATEMÁTICA A prova atingiu vários aspectos positivos, como instrumento de aferição de conhecimento. A abrangência, a criatividade e a originalidade foram mantidas por meio de questões
2 Uma caixa d'água cúbica, de volume máximo, deve ser colocada entre o telhado e a laje de uma casa, conforme mostra a figura ao lado.
MATEMÁTICA Uma pessoa possui a quantia de R$7.560,00 para comprar um terreno, cujo preço é de R$5,00 por metro quadrado. Considerando que os custos para obter a documentação do imóvel oneram o comprador
1 35. b) c) d) 8. 2x 1 8x 4. 3x 3 8x 8. 4 tgα ˆ MAN é igual a 4. . e) Sendo x a medida do segmento CN, temos a seguinte figura:
7. Considere um retângulo ABCD em que o comprimento do lado AB é o dobro do comprimento do lado BC. Sejam M o ponto médio de BC e N o ponto médio de CM. A tangente do ângulo MAN ˆ é igual a a) 5. b) 5.
MATEMÁTICA FORMULÁRIO 11) A = onde. 13) Para z = a + bi, z = z = z (cosθ + i senθ) 14) (x a) 2 + (y b) 2 = r 2
[ MATEMÁTICA FORMULÁRIO 0 o 45 o 60 o cosec x =, sen x 0 sen x sen cos tg sec x =, cos x 0 cos x sen x tg x =, cos x 0 cos x cos x cotg x =, sen x 0 sen x sen x + cos x = ) a n = a + (n ) r ) A = onde
LISTA 4 = PIRÂMIDES E CONES
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL COLÉGIO DE APLICAÇÃO - INSTITUTO DE MATEMÁTICA LABORATÓRIO DE PRÁTICA DE ENSINO EM MATEMÁTICA Professores: Luis Mazzei e Mariana Duro Acadêmicos: Marcos Vinícius
V = π 3 r2 h Por semelhança de triângulos, é verdade que: r h = R H r = R H h Portanto, o volume pode ser escrito em termos h :
Universidade Federal de Viçosa Departamento de Matemática MAT 140 (Cálculo I - 017/II Exercícios Resolvidos e Comentados - Taxas Relacionadas 10 Um tanque tem a forma de um cone invertido, tendo altura
Matemática 1 a QUESTÃO
Matemática a QUESTÃO IME-007/008 Temos que: i) sen 3 x + cos 3 x = (senx + cosx) (sen x senxcosx + cos x) = (senx + cosx) ( senxcosx) ii) sen xcos x = ( + senxcosx) ( senxcosx) Então, a equação dada é
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito. c1 + c 2 = 1 c 1 + 4c 2 = 3. a n = n. c 1 = 1 2c 1 + 2c
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 2019.1 Gabarito Questão 01 [ 1,25 ::: (a)=0,50; (b)=0,75 ] Resolva as seguintes recorrências: (a) a n+2 5a n+1 + 4a n = 0, a 0 = 1, a 1 = 3. (b)
3 x + y y 17) V cilindro = πr 2 h
MATEMÁTICA FORMULÁRIO 0 o 45 o 60 o cosec x =, sen x 0 sen x sen sec x =, cos x 0 cos x cos sen x tg x =, cos x 0 cos x tg cos x cotg x =, sen x 0 sen x ) a n = a + (n ). r 0) A = onde b h D = sen x +
CPV - especializado na ESPM
- especializado na ESPM ESPM NOVEMBRO/006 PROVA E MATEMÁTICA 0. Entre as alternativas abaixo, assinale a de maior valor: a) 8 8 b) 6 c) 3 3 d) 43 6 e) 8 0 Das alternativas a) 8 8 = 3 3 b) 6 = 8 c) 3 3
{ } Questão 1. Considere as seguintes afirmações sobre o conjunto U = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9} Questão 2. Seja o conjunto = { : 0 e 2 2
NOTAÇÕES : conjunto dos números complexos. : conjunto dos números racionais. : conjunto dos números reais. : conjunto dos números inteiros. = 0,,,,.... { } { } * =,,,.... i : unidade imaginária; i =. z=x+iy,
02. Uma maneira rudimentar e eficiente para se medir o ângulo de inclinação α de uma rua R, em relação à horizontal H, é construir um triângulo
o PROCESSO SELETIVO/005 1 O DIA GABARITO 1 1 MATEMÁTICA QUESTÕES DE 01 A 15 01. Um motorista percorre 600 km em 9 horas, dirigindo durante 4 horas numa velocidade v 1, e 5 horas numa outra velocidade v.
UFBA / UFRB a fase Matemática RESOLUÇÃO: PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA
UFBA / UFRB 007 a fase Matemática PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA QUESTÕES de 0 a 06 LEIA CUIDADOSAMENTE O ENUNCIADO DE CADA QUESTÃO, FORMULE SUAS RESPOSTAS COM OBJETIVIDADE E CORREÇÃO DE LINGUAGEM
Problemas de Máximos e mínimos
roblemas de Máimos e mínimos rof. Me. Arton Barboni ) Obter dois números positivos cuja soma seja 60 e o produto o maior possível. * Supor, R + S = + = 60 (I) =. (II) De (I), segue que = 60 (III). Substituindo
ITA º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR
ITA - 2006 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Seja E um ponto externo a uma circunferência. Os segmentos e interceptam essa circunferência nos pontos B e A, e, C
Matemática B Intensivo V. 2
Matemática Intensivo V. Eercícios ) ) C ( ) (5 7) Usando a fórmula do ponto médio: X + X Y + Y C + 5 + 7 6 8 ( ) ERRT: considere (6 ). Temos d () d (C). ssim: ( 6) + ( b ) ( ) + ( 6 b) 9 + b 9 + b b +
Matemática. Ficha Extra - Temas do 2º Bim. 3 os anos Walter/Blaidi Nome: Nº: Turma:
Matemática Ficha Extra - Temas do º Bim. 3 os anos Walter/Blaidi 01 Nome: Nº: Turma: 1. (PUCRS) A região plana limitada por uma semicircunferência e seu diâmetro faz uma rotação completa em torno desse
as raízes de gof, e V(x v ) o vértice da parábola que representa gof no plano cartesiano. Assim sendo, 1) x x 2 = = 10 ( 4) 2) x v x 2
MATEMÁTICA 19 c Sejam as funções f e g, de em, definidas, respectivamente, por f(x) = x e g(x) = x 1. Com relação à função gof, definida por (gof) (x) = g(f(x)), é verdade que a) a soma dos quadrados de
Hewlett-Packard. Cilindros. Aulas 01 a 02. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz
Hewlett-Packard Cilindros Aulas 01 a 02 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Sumário Cilindros... 1 Cilindro... 1 Elementos do cilindro... 1 O cilindro possui:... 1 Classificação... 1 O cilindro
Soluções Comentadas Matemática Curso Mentor Escola de Especialistas da Aeronáutica. Barbosa, L.S.
Soluções Comentadas Matemática Curso Mentor Escola de Especialistas da Aeronáutica Barbosa, L.S. [email protected] 4 de junho de 014 Sumário I Provas 5 1 Matemática 013 1 7 II Soluções 11 Matemática
MATEMÁTICA A - 12o Ano N o s Complexos - Potências e raízes Propostas de resolução
MATEMÁTICA A - 1o Ano N o s Complexos - Potências e raízes Propostas de resolução Exercícios de exames e testes intermédios 1. Escrevendo 1 + i na f.t. temos 1 + i ρ cis θ, onde: ρ 1 + i 1 + 1 1 + 1 tg
MATEMÁTICA - CEFET2013 Professor Marcelo QUESTÃO 01
MATEMÁTICA - CEFET013 Professor Marcelo QUESTÃO 01 Em um plano, uma reta que passa pelo ponto P(8,10) tangencia a circunferência x +y 4x 6y 3 = 0 no ponto A. A medida do segmento PA, em unidades de comprimento,
MATEMÁTICA Professores: Andrey, Cristiano e Julio
MATEMÁTICA Professores: Andrey, Cristiano e Julio Questões Substituindo os valores dados na fórmula teremos: x 1 = x 0+1 = (x 0 )2 +a 2.x 0 = (2)2 +5 = 9 2.2 4 e x 2 = x 1+1 = (x 1 )2 +a = ( 9 4 )2 +5
INSTITUTO FEDERAL DE BRASILIA 3ª Lista GABARITO DATA: 14/09/2016
INSTITUTO FEDERAL DE BRASILIA ª Lista MATEMÁTICA GEOMETRIA ANALÍTICA GABARITO DATA: 14/09/016 1) No plano cartesiano, 0xy, a circunferência C tem centro no ponto P (, 1), e a reta t é tangente a C no ponto
Prova final de MATEMÁTICA - 3o ciclo Época especial
Prova final de MATEMÁTICA - 3o ciclo 017 - Época especial Proposta de resolução Caderno 1 1. Como 3π 9,7 então vem que 9, < 3π < 9,3, pelo que, de entre as opções apresentadas, o número 9,3 é a única aproximação
x = 4 2sen30 0 = 4 2(1/2) = 2 2 e y = 4 2 cos 30 0 = 4 2( 3/2) = 2 6.
CURSO DE PRÉ CÁLCULO ONLINE - PET MATEMÁTICA / UFMG LISTA DE EXERCÍCIOS RESOLVIDOS: Exercício 1 Calcule o valor de x e y indicados na figura abaixo. Solução: No triângulo retângulo ABD, temos que AD mede
Matemática E Intensivo V. 1
GABARITO Matemática E Intensivo V. Exercícios 0) 5 0) 5 Seja o termo geral = 3n, então: Par =, temos: a = 3. = 3 = Par =, temos: a = 3. = 6 = 5 Par = 3, temos: a 3 = 3. 3 = 9 = 8 Então a + a + a 3 = +
Prova final de MATEMÁTICA - 3o ciclo a Fase
Prova final de MATEMÁTICA - 3o ciclo 015-1 a Fase Proposta de resolução Caderno 1 1. 1.1. Os alunos que têm uma altura inferior a 155 cm são os que medem 150 cm ou 15 cm. Assim, o número de alunos com
CPV 82% de aprovação na ESPM
8% de aprovação na ESPM ESPM NOVEMBRO/00 Prova E MATemática. Assinale a alternativa cujo valor seja a soma dos valores das demais: a) 0 + b) 5% c) d) 75% de 3 e) log 0,5 a) 0 + + 3,5 5 b) 5 % 5 00 0 0,5
C O L É G I O F R A N C O - B R A S I L E I R O
C O L É G I O F R A N C O - B R A S I L E I R O Nome: N.º: Turma: Professor: IRAN MARCELINO Ano: ª Data: / / 014 CONTEÚDO: LISTA DE RECUPERAÇÃO (MATEMÁTICA ) Equação modular Inequação modular Áreas de
ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. Questão 01 [ 1,25 ]
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 017 Gabarito Questão 01 [ 1,5 ] Encontre as medidas dos lados e ângulos de dois triângulos ABC diferentes tais que AC = 1, BC = e A BC = 0 Considere
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 20 DE JULHO 2018 CADERNO 1
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) ª FASE 0 DE JULHO 08 CADERNO... P00/00 Como se trata de uma distribuição normal temos que: ( ) 0,9545. P µ σ
QUESTÃO 1 EXPECTATIVA DE RESPOSTA
MATEMÁTICA 1 Um quatrefoil é uma figura simétrica comumente usada em arte, design e arquitetura. Sua forma é antiga e o nome vem do latim, significando quatro folhas. Ele possui quatro folhas de mesmo
Relações Métricas nos Triângulos. Joyce Danielle de Araújo
Relações Métricas nos Triângulos Joyce Danielle de Araújo Trigonometria A palavra trigonometria é de origem grega, onde: Trigonos = Triângulo Metrein = Mensuração - Relação entre ângulos e distâncias;
2ª série do Ensino Médio Turma 1º Bimestre de 2017 Data / / Escola Aluno
AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 2ª série do Ensino Médio Turma 1º Bimestre de 2017 Data / / Escola Aluno EM 1 2 4 5 6 7 8 9 10 11 12 1 14 15 16 17 18 Avaliação da Aprendizagem em Processo
MATEMÁTICA COMENTÁRIO DA PROVA DE MATEMÁTICA
COMENTÁRIO DA PROVA DE MATEMÁTICA A prova manteve a característica dos anos anteriores quanto à boa qualidade, contextualização e originalidade nos enunciados. Boa abrangência: 01) Funções (relação entre
3º trimestre SALA DE ESTUDOS Data: 11/17 Ensino Médio 3º ano A, B e C. Prof. Maurício Nome: nº
º trimestre SALA DE ESTUDOS Data: 11/17 Ensino Médio º ano A, B e C. Prof. Maurício Nome: nº CONTEÚDOS: EQUAÇÃO DA RETA E EQUAÇÃO DA CIRCUNFERÊNCIA. 1. (Eear 017) O triângulo ABC a) escaleno b) isósceles
Concluimos dai que o centro da circunferência é C = (6, 4) e o raio é
QUESTÕES-AULA 17 1. A equação x 2 + y 2 12x + 8y + 0 = 0 representa uma circunferência de centro C = (a, b) e de raio R. Determinar o valor de a + b + R. Solução Completamos quadrados na expressão dada.
CPV O cursinho que mais aprova na GV
O cursinho que mais aprova na GV FGV Administração Prova Objetiva 07/dezembro/008 MATEMÁTICA 0. Uma pesquisa de mercado sobre determinado eletrodoméstico mostrou que 7% dos entrevistados preferem a marca
MATEMÁTICA. Questões de 01 a 04
GRUPO 1 TIPO A MAT. 5 MATEMÁTICA Questões de 01 a 04 01. Considere duas circunferências concêntricas em C, conforme figura, em que a externa representa o círculo trigonométrico e a interna, o velocímetro,
FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 1
FICHA de AVALIAÇÃO de MATEMÁTICA A 11º Ano Versão 1 Nome: Nº Turma: Apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efetuar e todas as justificações necessárias Quando,
Aula 25. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil
Assíntotas, Esboço de Gráfico e Aplicações Aula 25 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 09 de Maio de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia
MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução
MATEMÁTICA A - 1o Ano N o s Complexos - Equações e problemas Propostas de resolução Exercícios de exames e testes intermédios 1. Simplificando as expressões de z 1 e z, temos que: Como i 19 i + i i, vem
COMENTÁRIO DA PROVA DE MATEMÁTICA
COMENTÁRIO DA PROVA DE MATEMÁTICA A proposta de uma avaliação para a ª fase deve, ao nosso ver, contemplar características tais como: Abrangência Gradação Pertinência Criatividade Contextualização Correção
Prova Escrita de MATEMÁTICA A - 12o Ano a Fase
Prova Escrita de MATEMÁTICA A - o Ano 00 - a Fase Proposta de resolução GRUPO I. Como só existem bolas azuis e roxas, e a probabilidade de extrair uma bola da caixa, e ela ser azul é igual a, então existem
RESPOSTAS ESPERADAS MATEMÁTICA
RESPOSTS ESPERDS MTEMÁTI Questão 1 a) omo o ângulo de giro do ponteiro é diretamente proporcional à velocidade, podemos escrever 10 40km x 104 km Desse modo, x 104 10 / 40 91 Resposta: O ângulo mede 91º
MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO DEP
MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO DEP - DEPA (Casa de Thomaz Coelho/889) CONCURSO DE ADMISSÃO Á ª SÉRIE DO ENSINO MÉDIO PROVA DE MATEMÁTICA 00/004 GABARITO QUESTÃO ALTERNATIVA B D C 4 A 5 C 6 C
Concurso Vestibular 2005 PROVA DE MATEMÁTICA
Concurso Vestibular 2005 PROVA DE MATEMÁTICA 21. Considerando os números 8 e 3, é correto afirmar (01) que 4 é o máximo divisor comum de 3 e 8. (02) que 17 é o máximo divisor comum de 3 e 8. (04) que 4
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 20 DE JULHO 2018 CADERNO 1
Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 7-A 500-36 Lisboa Tel.: +35 76 36 90 / 7 03 77 Fax: +35 76 64 4 http://www.apm.pt email: [email protected] PROPOSTA DE RESOLUÇÃO DA
PROVA DE MATEMÁTICA PRIMEIRA ETAPA MANHÃ
PROVA DE MATEMÁTICA PRIMEIRA ETAPA - 1997 - MANHÃ QUESTÃO 01 Durante o período de exibição de um filme, foram vendidos 2000 bilhetes, e a arrecadação foi de R$ 7.600,00. O preço do bilhete para adulto
Universidade Federal dos Vales do Jequitinhonha e Mucuri.
INSTRUÇÕES Ministério da Educação Universidade Federal dos Vales do Jequitinhonha e Mucuri Pró-Reitoria de Pesquisa e Pós-Graduação Diretoria de Educação Aberta e a Distância Especialização em Matemática
Observação: Todos os cálculos e desenvolvimentos deverão acompanhar a Lista. MF R: 3 MF R: 3 MF R: 5 F R:? M R:? M R:? D R:? D R:? MF R:? F R:?
Módulo 07. Exercícios Lista de exercícios do Módulo 07 Observação: Todos os cálculos e desenvolvimentos deverão acompanhar a Lista. Calcule os logarítmos:. log. log 6 6. log 4 4. log. log 7 7 6. log 7.
Prova 3 Matemática. N ọ DE INSCRIÇÃO:
Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta
Solução Comentada Prova de Matemática
18. Um reservatório, com capacidade para 680 litros, tem a forma de um cilindro circular reto. Se o raio da base deste reservatório mede 1 metro, sua altura mede: A) 1 m (Considere π =,14) B) 1,4 m C)
Prova 3 Matemática. N ọ DE INSCRIÇÃO:
Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta
Prova 3 Matemática. N ọ DE INSCRIÇÃO:
Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta
Prova 3 Matemática. N ọ DE INSCRIÇÃO:
Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta
Grupo de exercícios I - Geometria plana- Professor Xanchão
Grupo de exercícios I - Geometria plana- 1. (G1 - ifce 01) Na figura abaixo, R, S e T são pontos sobre a circunferência de centro O. Se x é o número real, tal que a = 5x e b = 3x + 4 são as medidas dos
Exercícios de Aprofundamento Mat Geom Espacial
1. (Fuvest 015) No cubo ABCDEFGH, representado na figura abaixo, cada aresta tem medida 1. Seja M um ponto na semirreta de origem A que passa por E. Denote por θ o ângulo BMH e por x a medida do segmento
(d) Quais das sentenças abaixo são verdadeiras? Explique sua resposta. (a) 3 IR (b) IN IR (c) Z IR. IR Q (i) 3 2
LISTA - 1 1 Números Reais 1. Expresse cada número como decimal: (a) 7 10 (b) 2 5 (c) 9 15 (d) 7 8 (e) 17 20 (f) 4 11 (g) 8 7 (h) 56 14 2. Expresse cada número decimal como uma fração na forma mais reduzida
Gabarito: 1 3r 4r 5r 6 r. 2. 3r 4r ,5 m. 45 EG m, constituem uma. AA' AP 8km. Resposta da questão 1: [C]
Gabarito: Resposta da questão 1: [C] Sejam x, x r e x r as medidas, em metros, dos lados do triângulo, com x, r 0. Aplicando o Teorema de Pitágoras, encontramos x r. Logo, os lados do triângulo medem r,
A Matemática no Vestibular do ITA. Material Complementar: Coletânea de Questões Isoladas ITA 1970
A Matemática no Vestibular do ITA Material Complementar: Coletânea de Questões Isoladas ITA 1970 Essas 24 questões foram coletadas isoladamente em diversas fontes bibliográficas. Seguindo sugestão de uma
Colégio FAAT Ensino Fundamental e Médio
Colégio FAAT Ensino Fundamental e Médio Recuperação do 4 Bimestre Matemática Prof. Leandro Conteúdo: Cilindro. Pirâmide e Cone. Esfera. Posições relativas entre retas. Equação geral da circunferênc Distância
INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A
INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A - 009. A LISTA DE EXERCÍCIOS a Questão:. Para cada uma das funções seguintes, determine as derivadas indicadas: a) f(u) = u, u() =,
2º trimestre Lista de exercícios Ensino Médio 2º ano classe: Prof. Maurício Nome: nº
º trimestre Lista de exercícios Ensino Médio º ano classe: Prof. Maurício Nome: nº --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
MATEMÁTICA. Um pintor pintou 30% de um muro e outro pintou 60% do que sobrou. A porcentagem do muro que falta pintar
MATEMÁTICA d Um pintor pintou 0% de um muro e outro pintou 60% do que sobrou. A porcentagem do muro que falta pintar é: a) 0% b) % c) % d) 8% e) % ) 60% de 70% % ) 00% % 0% 8% d Se (x y) (x + y) 0, então
BANCO DE EXERCÍCIOS - 24 HORAS
BANCO DE EXERCÍCIOS - 24 HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº 17 GABARITO COMENTADO 1) O valor, em reais, pago pelo contribuinte é 0,15. (34000 26000) = 0,15. 000 = 1200
3. (Ufscar) O gráfico em setores do círculo de centro O representa a distribuição das idades entre os eleitores de uma cidade.
LISTA DE RECUPERAÇÃO ÁLGEBRA º ANO º TRIMESTRE. (G - ifce) Considere um relógio analógico de doze horas. O ângulo obtuso formado entre os ponteiros que indicam a hora e o minuto, quando o relógio marca
30's Volume 18 Matemática
0's Volume 18 Matemática wwwcursomentorcom 0 de dezembro de 2014 Q1 Num cilindro reto de base circular, cujo diâmetro mede 2 m, e de altura igual a 10 m, faz-se um furo central, vazando-se esse cilindro,
