Seno e Cosseno de arco trigonométrico
|
|
|
- Iago Pereira Farias
- 9 Há anos
- Visualizações:
Transcrição
1 Caderno Unidade II Série Segmento: Pré-vestibular Resoluções Coleção: Alfa, Beta e Gama Disciplina: Matemática Volume: Unidade II: Série Seno e Cosseno de arco trigonométrico. sen90 cos80 sen70 ( ) ( ) cos0 cos60. A cos 5 sen0 cos 60. a) sen 0 sen 60 b) cos 0 cos 60 c) sen 5 sen 5 d) cos 5 cos 5 e) sen 0 sen 0 f ) cos 0 cos 0
2 Caderno Unidade II Série. Como x 0 temos: senx sen5x sen90 sen50 sen90 ( sen0 ) cos x cos0 cos60 5. Substituindo o 6 temos: cos 6 m sen 0 6 m 0 m 0 m 0 m 7 6. sen 0 sen 80 sen 0 ( sen 50 ) 0 ( sen 50 ) 0 7. S cos 0 cos cos cos S cos 0 cos cos cos S () 0 8. B cos 0 cos C 5 x AB ; y AC e z AF = Logo, sen x sen y sen z cos x cos y cos z sen sen sen cos cos cos sen sen sen cos cos cos
3 Caderno Unidade II Série 0. 0 x a) sen x x b) S sen x x ou x c) S ; 5 7 sen x x ou x 5 7 S,
4 Caderno Unidade II Série d) cos x 0 S {0} e) cos x 7 x ou x f) 7 S, 5 7 cos x ou S, 6 6
5 Caderno Unidade II Série. sen x sen x 0, 0 x. sen x(sen x ) 0 sen x 0 x 0 ou x ou x = ou sen x x S 0,,,. cos x 0, 0 x. cos x cos x x 0 ou x ou x S {0,, }. A sen x 5sen x 0, 0 < x < sen x 5 sen x (não convém) ou sen x. Com 0 < x <, temos x 6.. E sen x (sen x ) (sen x ), 0 x Não devemos dividir os dois membros da igualdade por sen x, pois perderíamos a solução vinda de sen x 0. Sendo assim, transferimos tudo para o primeiro membro e colocamos o fator comum em evidência. sen x (sen x ) (sen x ) 0 (sen x )(sen x ) 0 sen x 0 sen x x ou sen x 0 sen x x 5 ou x A soma vale
6 Caderno Unidade II Série 5. D cosx 0 x, cosx cosx cos x 0 C.E.: cos x cos x cos x cos xcos x cos x cos x cos x cos x cos x cos x cos x cos x cosx = Logo, x ou cos x 5 x. Então no intervalo 0 x < a maior raiz é (sen x )(cos x ) 0 com 0 x < sen x 0 sen x x ou cos x 0 cos x x S, 7. sen x cos x sen x, com x. sen x cos x sen x 0 sen x(cos x ) 0 sen x 0 x ou x ou cos x 0 cos x x 5 Portanto, x ou x 5 ou x x a) sen x S x x 6
7 Caderno Unidade II Série b) sen x 5 S x 0 x ou x 6 6 c) sen x 0 d) S x x cos x 5 S x 0 x ou x 7
8 Caderno Unidade II Série e) cos x 5 S x x f) cos x S {0} 9. D Observação: Onde está escrito cos 0 leia-se cos 0. sen x 0 8
9 Caderno Unidade II Série cos x 0 O subconjunto A do intervalo ]0, ] que satisfaz as duas condições é o intervalo,. 0. E Resolvendo em [0, ], a inequação cos x, temos: cos x x ou x 6 6 Portanto, a desigualdade apresenta soluções nos quadrantes.. D cos x sen x cos x Como 0 < x <.., cos x 8 9. A sen α cos α sen α Como está no terceiro quadrante, sen α
10 Caderno Unidade II Série. E 0 x, cos x e sen x m sen x cos x m m m m m m m m m m m 0 Resolvendo a equação, m ou m Assim: cos x m x sen x 0 cos x m x sen x S =,. E sen 0 cos 50 sen 60 cos 0 sen 0 cos 70 sen 0 ( cos 0 ) sen 0 cos 0 5. (sen )x ( cos )x sen 0 e 0 Temos uma equação do º grau em que a sen, b cos e c sen ( cos) sen (sen ) cos sen (cos sen ) cos cos x sen sen cos x sen ou cos x sen 6. A cos sen sen sen sen sen sen sen 0
11 Caderno Unidade II Série 7. C Elevando os dois membros da equação ao quadrado, temos: sen x cos x sen x sen x cos x cos x sen x cos x sen x cos x sen x cos x 8 8. C sen x cosx sen x cos x cos x cosx sen x sen x cosx sen x cos x cos x cos x sen x (cos x) sen x(cos x) cos x sen x cos x sen x 9. C sen α cos α sen α (sen α ) 0sen α sen α 0 e cos α 9 0 Como α está no quarto quadrante, sen α 0 e cos α Assim, sen α cos α A cos x sen x sen x sen x sen x sen x 0 sen x sen x sen x sen x ou sen x 5 As raízes compreendidas entre 0 e são e. 6 6 A soma delas é.
12 Caderno Unidade II Série. E cos x sen x 0 ( sen x) sen x 0 sen x sen x 0 () () () 5 ( ) 5 sen x ( ) sen x x 5 sen x 5 sen x x ou x 6 6 Como x,, então 5 x. 6. E sen x cos x sen x senx senx senx sen xsen x sen x sen x 0 sen x (sen x ) 0 sen x 0 ou sen x No intervalo 0 x, temos: 5 x 0 ou x ou x ou x Soma: B cos x sen x sen x, C.E: sen x sen x sen x sen x sen x sen x sen x sen x sen x sen x 5 sen x x ou x 6 6 No intervalo 0 x <, a equação apresenta exatamente duas soluções.
13 Caderno Unidade II Série. ( cos x sen x)(cos x sen x) 0 cos x sen x 0 ou cos x sen x 0 º caso: cos x sen x 0 sen x sen x 0 sen x sen x 0 senx 5 5 sen x ( ) senx 7 sen x x ou x 6 6 º caso: cos x sen x 0 sen x sen x 0 sen x 5 7 sen x x ou x ou x ou x As soluções são os elementos do conjunto:,,,,, C sen x cos x 0 cos x cos x 0 Seja cos x t, temos t t 0 t ou t Ou seja, cos x (não convém) ou cos x Então, x ou x ou x 5 7 Soma: 5 ou 7 x 6. sen x cos x sen x cos x 0 sen x cos x (sen x cos x) 0 sen x 0 ou cos x 0 ou sen x cos x 0 º caso: sen x 0 x 0 ou x º caso: cos x 0
14 Caderno Unidade II Série x ou x º caso: sen x cos x 0 cos x cos x 0 cos x cos x x ou 5 x ou x ou x As soluções são os elementos do conjunto: 5 0,,,,,,, 7. C sen x sen x 0 Como sen x 0 para todo valor x (pois sen x ) a desigualdade é verdadeira sempre que: sen x 0 sen x 5 No intervalo 0 x <, temos x C x C (x) cos 6, x V (x) sen e 0 x 6 Sabemos que: L(x) V(x) C(x) x x L(x) sen cos 6 L() sen cos 6 L() sen cos
15 Caderno Unidade II Série L() 0 L() L() Como o custo e a venda são dados em milhares o lucro é de 000 reais. 9. D cos x cos sen x sen 0 Como são agudos de um triângulo retângulo, então portanto, sen cos. Como x é raiz da equação temos: cos cos sen sen 0 (substituindo sen cos ) cos cos cos 0 cos cos 0coscos 0 cos 0 (não convém) ou cos Logo, e. 6 e, 0. D x V (x) sen A função das vendas é máxima quando x 6 x 6 x sen, assim: 5
Módulo de Círculo Trigonométrico. Relação Fundamental da Trigonometria. 1 a série E.M.
Módulo de Círculo Trigonométrico Relação Fundamental da Trigonometria a série EM Círculo Trigonométrico Relação Fundamental da Trigonometria Exercícios Introdutórios Exercício Se sen x /, determine Exercício
Seno e cosseno de arcos em todos os. quadrantes
Trigonometria Seno e cosseno de arcos em todos os quadrantes Seno e cosseno de arcos em todos os quadrantes Exemplo: Vamos determinar X, com 0 x < 2π tal que sen x = - 1 2. Seno e cosseno de arcos em todos
MÓDULO 29. Trigonometria I. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. Fórmulas do arco duplo: 1) sen (2a) = 2) cos (2a) =
Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA MÓDULO 9 Trigonometria I Resumo das principais fórmulas da trigonometria Arcos Notáveis: Fórmulas do arco duplo: ) sen (a) ) cos (a) ) tg
Trigonometria III. Funções Secante e Cossecante. 2 ano E.M. Professores Cleber Assis e Tiago Miranda
Trigonometria III Funções Secante e Cossecante ano EM Professores Cleber Assis e Tiago Miranda Trigonometria III Funções Secante e Cossecante Exercícios Introdutórios Exercício a o quadrante b o quadrante
O conhecimento é a nossa propaganda.
Lista de Exercícios 1 Trigonometria Gabaritos Comentados dos Questionários 01) (UFSCAR 2002) O valor de x, 0 x π/2, tal que 4.(1 sen 2 x).(sec 2 x 1) = 3 é: a) π/2. b) π/3. c) π/4. d) π/6. e) 0. 4.(1 sen
LISTA DE EXERCICIOS TRIÂNGULOS QUAISQUER. 1) Na figura ao abaixo calcule o valor da medida x. 2) No triângulo abaixo, determine as medidas x e y.
LISTA DE EXERCICIOS TRIÂNGULO RETÂNGULO 1) Um caminhão sobe uma rampa inclinada de 10º em relação ao plano horizontal. Se a rampa tem 30 m de comprimento, a quantos metros o caminhão se eleva, verticalmente
Colégio Nossa Senhora de Lourdes. Matemática - Professor: Leonardo Maciel
Colégio Nossa Senhora de Lourdes Matemática - Professor: Leonardo Maciel 1. (Pucrj 015) Uma pesquisa realizada com 45 atletas, sobre as atividades praticadas nos seus treinamentos, constatou que 15 desses
3. (Ufscar) O gráfico em setores do círculo de centro O representa a distribuição das idades entre os eleitores de uma cidade.
LISTA DE RECUPERAÇÃO ÁLGEBRA º ANO º TRIMESTRE. (G - ifce) Considere um relógio analógico de doze horas. O ângulo obtuso formado entre os ponteiros que indicam a hora e o minuto, quando o relógio marca
MATEMÁTICA MÓDULO 10 EQUAÇÕES E INEQUAÇÕES TRIGONOMÉTRICAS 1. EQUAÇÕES TRIGONOMÉTRICAS BÁSICAS 1.1. EQUAÇÃO EM SENO. sen a arcsena 2k, k arcsena 2k, k
EQUAÇÕES E INEQUAÇÕES TRIGONOMÉTRICAS. EQUAÇÕES TRIGONOMÉTRICAS BÁSICAS Vamos mostrar como resolver equações trigonométricas básicas, onde temos uma linha trigonométrica aplicada sobre uma função e igual
GOVERNO DO ESTADO DE MATO GROSSO SECRETARIA DE ESTADO DE CIÊNCIA E TECNOLOGIA UNIVERSIDADE DO ESTADO DE MATO GROSSO
0) Responda aos itens. GOVERNO DO ESTADO DE MATO GROSSO SECRETARIA DE ESTADO DE CIÊNCIA E TECNOLOGIA UNIVERSIDADE DO ESTADO DE MATO GROSSO FACET Faculdade de Ciências Exatas e Tecnológicas Avaliação 5/04/06
Matemática. Setor A. Índice-controle de Estudo. Prof.: Aula 19 (pág. 74) AD TM TC. Aula 20 (pág. 75) AD TM TC. Aula 21 (pág.
Matemática Setor A Prof.: Índice-controle de Estudo Aula 9 (pág. 7) AD TM TC Aula 0 (pág. 75) AD TM TC Aula (pág. 76) AD TM TC Aula (pág. 77) AD TM TC Aula (pág. 78) AD TM TC Aula (pág. 79) AD TM TC Aula
Relembrando: Ângulos, Triângulos e Trigonometria...
Relembrando: Ângulos, Triângulos e Trigonometria... Este texto é apenas um resumo. Procure estudar esses assuntos em um livro apropriado. Ângulo é a região de um plano delimitada pelo encontro de duas
Trigonometria I. Mais Linhas Trigonométricas. 2 ano E.M. Professores Cleber Assis e Tiago Miranda
Trigonometria I Mais Linhas Trigonométricas ano E.M. Professores Cleber Assis e Tiago Miranda Trigonometria I Mais Linhas Trigonométricas 1 Exercícios Introdutórios Exercício 1. Quais são os quadrantes
LISTA DE EXERCÍCIOS. Trigonometria no Triângulo Retângulo e Funções Trigonométricas
LISTA DE EXERCÍCIOS Pré-Cálculo UFF GMA 09 Trigonometria no Triângulo Retângulo e Funções Trigonométricas [0] (* Em sala de aula vimos como usar um quadrado e um triângulo equilátero para obter os valores
Funções Trigonométricas
Funções Trigonométricas 1) Na figura abaixo, a área do triângulo ABC é 5 A 120 3 C B (a) (15 3) / 4 (b) (15 3) / 2 (c) 15/2 (d) (15 2) / 4 (e) 15 / 4 2) Sabendo-se que tan(x) = - 4/3 e que x é um arco
LISTA TRIGONOMETRIA ENSINO MÉDIO
LISTA TRIGONOMETRIA ENSINO MÉDIO 1. Um papagaio ou pipa, é preso a um fio esticado que forma um ângulo de 45 com o solo. O comprimento do fio é de 100 m. Determine a altura do papagaio em relação ao solo.
RESOLUÇÃO DOS EXERCÍCIOS COMPLEMENTARES DE MATEMÁTICA - 1ª série do EM 3º BIM
RESOLUÇÃO DOS EXERCÍCIOS COMPLEMENTARES DE MATEMÁTICA - 1ª série do EM 3º BIM 01. RESOLUÇÃO : a) f() = 3. 0 = 18 0 = f() = b) f( 1) = ( 1). ( 1) = 1 + = 3 f( 1) = 3 c) f(10) = 10 +. 10 = 100 + 0 = f(10)
Questão 1 (UFMG) Sendo A = 88 o 20', B = 31 o 40' e C = radianos, a expressão A + B - C é igual a: a) radianos b) 116 o 40' ;
APOSTILAS (ENEM) VOLUME COMPLETO Exame Nacional de Ensino Médio (ENEM) 4 VOLUMES APOSTILAS IMPRESSAS E DIGITAIS Questão 1 (UFMG) Sendo A = 88 o 20', B = 31 o 40' e C = radianos, a expressão A + B - C é
MÓDULO 45 TRIGONOMETRIA II. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. 1. Considere a equação. (3 2 cos 2 x) 1 + tg 2. 6 tg = 0.
Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. Considere a equação TRIGONOMETRIA II ( cos ) + tg MÓDULO 5 tg = 0. a) Determine todas as soluções no intervalo [0, [. b) Para as soluções
LISTA DE REVISÃO PROVA TRIMESTRAL ÁLGEBRA 2º ANO
LISTA DE REVISÃO PROVA TRIMESTRAL ÁLGEBRA º ANO. (Udesc) Assinale a alternativa que corresponde ao valor da expressão: 7 cos cos sen tg A) B) 5 C) 9 D) E). (Aman) Os pontos P e Q representados no círculo
AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática. A figura a seguir ilustra um arco BC de
GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DA EDUCAÇÃO AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática a série do Ensino Médio Turma 1 o Bimestre de 016 Data / / Escola Aluno EM Questão 1 A figura a seguir
Aula 5 - Soluções dos Exercícios Propostos
Aula 5 - Soluções dos Exercícios Propostos Trigonometria I Solução. : (a A cada um minuto completado, o ponteiro dos segundos percorre uma volta completa de π radianos. Isso se o ponteiro dos segundos
MATEMÁTICA CADERNO 3 CURSO E. FRENTE 1 Álgebra. n Módulo 11 Módulo de um Número Real. 5) I) x + 1 = 0 x = 1 II) 2x 7 + x + 1 0
MATEMÁTICA CADERNO CURSO E ) I) + 0 II) 7 + + 0 FRENTE Álgebra n Módulo Módulo de um Número Real ) 6 + < não tem solução, pois a 0, a ) A igualdade +, com + 0, é verificada para: ọ ) + 0 ou ọ ) + + + +
1. Arcos de mais de uma volta. Vamos generalizar o conceito de arco, admitindo que este possa dar mais de uma volta completa na circunferência.
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Trigonometria II Prof.: Rogério
ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. Questão 01 [ 1,25 ]
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 017 Gabarito Questão 01 [ 1,5 ] Encontre as medidas dos lados e ângulos de dois triângulos ABC diferentes tais que AC = 1, BC = e A BC = 0 Considere
Trigonometria no Círculo - Funções Trigonométricas
Trigonometria no Círculo - Funções Trigonométricas Prof. Márcio Nascimento [email protected] Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em
COLÉGIO PEDRO II UNIDADE REALENGO II LISTA DE REVISÃO PARA A 2ª CERTIFICAÇÃO. PROFESSORES: ANTÔNIO, CLAYTON e FELIPE COORDENADOR: DIEGO VIUG
COLÉGIO PEDRO II UNIDADE REALENGO II LISTA DE REVISÃO PARA A ª CERTIFICAÇÃO PROFESSORES: ANTÔNIO, CLAYTON e FELIPE COORDENADOR: DIEGO VIUG. (Unisinos) As funções seno e cosseno de qualquer ângulo x satisfazem
Portanto, = 4 1= 2. LETRA D
TRIGONOMETRIA PARTE QUESTÃO 0 Maior valor (cos (0,0t) -) 585 r(t) 900 + 0,5.( ) Menor valor (cos(0,0t) ) 585 r(t) 500 + 0,5.() Somando, temos: 900 + 500 000 QUESTÃO 0 P QUESTÃO 0 Queremos calcular f()
Matemática 1 a QUESTÃO
Matemática a QUESTÃO IME-007/008 Temos que: i) sen 3 x + cos 3 x = (senx + cosx) (sen x senxcosx + cos x) = (senx + cosx) ( senxcosx) ii) sen xcos x = ( + senxcosx) ( senxcosx) Então, a equação dada é
1.1. Expressão geral de arcos com uma mesma extremidade Expressão geral de arcos com uma mesma extremidade
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA 1.1. Expressão geral de arcos
Projeto de Recuperação Final - 1ª Série (EM)
Projeto de Recuperação Final - 1ª Série (EM) MATEMÁTICA 1 MATÉRIA A SER ESTUDADA VOLUME CAPÍTULO ASSUNTO 4 1 4 14 5 15 5 1 5 17 5 18 5 19 0 1 Função modular I Atividades para sala: 1 Atividades para casa:
SIMULADO 3 INSTITUTO TECNOLÓGICO DE AERONÁUTICA VESTIBULAR 2018 GABARITO
SIMULADO 3 INSTITUTO TECNOLÓGICO DE AERONÁUTICA VESTIBULAR 018 GABARITO Física Inglês Português Matemática 1 C 1 * 1 D 1 B B B E C 3 B 3 B 3 D 3 D 4 E 4 C 4 A 4 E 5 A 5 B 5 C 5 C 6 C 6 E 6 E 6 A 7 E 7
TESTES. 5. (UFRGS) Os ponteiros de um relógio marcam duas. horas e vinte minutos. O menor ângulo entre os ponteiros é
TESTES (UFRGS) O valor de sen 0 o cos 60 o é 0 (Ufal) Se a medida de um arco, em graus, é igual a 8, sua medida em radianos é igual a ( /) 7 (6/) (6/) (UFRGS) Os ponteiros de um relógio marcam duas horas
Matemática Ensino Médio Anotações de aula Trigonometira
Matemática Ensino Médio Anotações de aula Trigonometira Prof. José Carlos Ferreira da Silva 2016 1 ÍNDICE Trigonometria Introdução... 04 Ângulos na circunferência...04 Relações trigonométricas no triângulo
Proposta de correcção
Ficha de Trabalho Matemática A - ºano Temas: Trigonometria (Triângulo rectângulo e círculo trigonométrico) Proposta de correcção. Relembrar que um radiano é, em qualquer circunferência, a amplitude do
Aula 5 Equação Diferencial de Segunda Ordem Linear e Coeficientes constantes:
Aula 5 Equação Diferencial de Segunda Ordem Linear e Coeficientes constantes: caso não Homogêneo Vamos estudar as equações da forma: ay + by + cy = G(x), onde G(x) é uma função polinomial, exponencial,
Módulo de Trigonometria. Seno, Cosseno e Tangente. 1 a série E.M.
Módulo de Trigonometria Seno, Cosseno e Tangente 1 a série E.M. Trigonometria Seno, Cosseno e Tangente. 1 Exercícios Introdutórios Exercício 1. Determine a) sen 10 o. b) sen 180 o. c) sen 40 o. d) sen
LISTA DE REVISÃO PROVA MENSAL 2º ANO 1º TRIMESTRE
ÁLGEBRA LISTA DE REVISÃO PROVA MENSAL º ANO 1º TRIMESTRE 1) O pêndulo de um relógio tem comprimento 0 cm e faz o movimento ilustrado na figura. Qual a medida do arco AB? A) 10 cm 0 cm 0π cm 0 D) cm E)
Trigonometria I. Círculo Trigonométrico. 2 ano E.M. Professores Cleber Assis e Tiago Miranda
Trigonometria I Círculo Trigonométrico ano E.M. Professores Cleber Assis e Tiago Miranda Trigonometria I Círculo Trigonométrico b) 6 1 Exercícios Introdutórios Exercício 1. Qual dos arcos abaixo é côngruo
Plano de Aulas. Matemática. Módulo 10 Ciclo trigonométrico (1 volta)
Plano de Aulas Matemática Módulo 0 Ciclo trigonométrico ( volta) Resolução dos exercícios propostos Retomada dos conceitos CAPÍTULO 0,07 rad _ 80 rad x? x. 0, 07 rad _ x rad 80 a), rad C x C x C 0 x C
Circunferência. É o conjunto de pontos de um plano eqüidistantes de um ponto do plano chamado centro, e essa distância chama-se raio.
Trigonometria Matemática, 1º Ano, Função: conceito Circunferência É o conjunto de pontos de um plano eqüidistantes de um ponto do plano chamado centro, e essa distância chama-se raio. Matemática, 1º Ano,
Do estudo dos triângulos e em especial do triângulo retângulo, temos as propriedades:
Trigonometria Trigonometria Introdução A trigonometria é um importante ramo da Matemática. Derivada da Geometria (o termo trigonometria significa medida dos triângulos) é uma importante ferramenta para
Profs. Alexandre Lima e Moraes Junior 1
Raciocínio Lógico-Quantitativo para Traumatizados Aula 08 Trigonometria. 8. Trigonometria... 8.. Introdução... 8.. Razões Trigonométricas em um Triângulo Retângulo...8 8... Seno, Cosseno, Tangente e Cotangente...8
Limite - Propriedades Adicionais
Limite - Propriedades Adicionais Juliana Pimentel [email protected] Propriedades Adicionais do Limite Os próximos três teoremas são propriedades adicionais de limites. Teorema (Teste da Comparação)
ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema I Geometria no Plano e no Espaço II
ESCOLA SECUNDÁRIA COM º CICLO D DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema I Geometria no Plano e no Espaço II Ficha de trabalho nº 4 1 Resolva o exercício 11 da página 80 do seu manual Considere
Resolvendo inequações: expressões com desigualdades (encontrar os valores que satisfazem a expressão)
R é ordenado: Se a, b, c R i) a < b se e somente se b a > 0 (a diferença do maior com o menor será positiva) ii) se a > 0 e b > 0 então a + b > 0 (a soma de dois números positivos é positiva) iii) se a
LISTA DE REVISÃO PROVA MENSAL 2º ANO 1º TRIMESTRE
ÁLGEBRA LISTA DE REVISÃO PROVA MENSAL º ANO 1º TRIMESTRE 1) O pêndulo de um relógio tem comprimento 0 cm e faz o movimento ilustrado na figura. Qual a medida do arco AB? A) 10 cm 0 cm 0π cm 0 D) cm E)
Ciclo trigonométrico
COLÉGIO PEDRO II CAMPUS REALENGO II 1ª SÉRIE MATEMÁTICA II Ciclo trigonométrico Ciclo trigonométrico Chamamos de ciclo ou circunferência trigonométrica uma circunferência de raio unitário orientada. Na
Relações Trigonométricas nos Triângulos
Relações Trigonométricas nos Triângulos Introdução - Triângulos Um triângulo é uma figura geométric a plana, constituída por três lados e três ângulos internos. Esses ângulos, tradicionalmente, são medidos
UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1
UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1 PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR - 16/10/2016 CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES: 1.
Taxas Trigonométricas
Taas Trigonométricas Obs.: Com é mais difícil (confere a resolução). 1) A intensidade da componente F é p% da intensidade da força F. Então, p vale (a) sen(α) (b) 1sen(α) (c) cos(α) (d) 1cos(α) (e) cos(α)/1
Professor Dacar Lista de Exercícios - Revisão Trigonometria
1. Obtenha a medida, em graus, de um arco AB de comprimento π metros, sabendo que ele está contido em uma circunferência de diâmetro igual a metros. Resposta:. (UFPR) Em uma circunferência de 1 dm de comprimento,
Atividades de Recuperação Paralela de Matemática
Atividades de Recuperação Paralela de Matemática 2º ANO Ensino Médio 1º Trimestre Leia as orientações de estudos antes de responder as questões. Conteúdos para estudos: ÁLGEBRA Medidas de arcos Ciclo trigonométrico
Matemática 3 Módulo 3
Matemática Módulo COMENTÁRIOS ATIVIDADES PARA SALA 1. Lembrando... Se duas figuras são semelhantes, temos: 1 A = k; 1 = k, em que R 1 e R são medidas lineares A e A 1 e A são as áreas. Círculo I IV. =
EXTENSIVO APOSTILA 04 EXERCÍCIOS DE SALA MATEMÁTICA A
EXTENSIVO APOSTILA 04 EXERCÍCIOS DE SALA MATEMÁTICA A AULA 10 f(x) = x 4x f(x) > 0 x < 0 ou x > 4 f(x) < 0 0 < x < 4 0) x + 3x < 0 S: {x IR / x < 1 ou x > } 03) x 10x + 9 0 S: {x IR / x 1 ou x 9} 04) São
FUNÇÕES TRIGONOMÉTRICAS. Teorema de Pitágoras Razões trigonométricas Circunferência trigonométrica
FUNÇÕES TRIGONOMÉTRICAS Teorema de Pitágoras Razões trigonométricas Circunferência trigonométrica Teorema de Pitágoras Em qualquer triângulo retângulo, o quadrado da medida da hipotenusa é igual à soma
Nome do aluno: N.º: Para responder aos itens de escolha múltipla, não apresente cálculos nem justificações e escreva, na folha de respostas:
Teste de Matemática A 017 / 018 Teste N.º 1 Matemática A Duração do Teste (Caderno 1+ Caderno ): 90 minutos 11.º Ano de Escolaridade Nome do aluno: N.º: Turma: Este teste é constituído por dois cadernos:
MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO DEP
MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO DEP - DEPA (Casa de Thomaz Coelho/889) CONCURSO DE ADMISSÃO Á ª SÉRIE DO ENSINO MÉDIO PROVA DE MATEMÁTICA 00/004 GABARITO QUESTÃO ALTERNATIVA B D C 4 A 5 C 6 C
Trigonometria no Círculo - Funções Trigonométricas
Trigonometria no Círculo - Funções Trigonométricas Prof. Márcio Nascimento [email protected] Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em
Resolução prova de matemática UDESC
Resolução prova de matemática UDESC 009. Prof. Guilherme Sada Ramos Guiba 1. O enunciado da questão omite a palavra, mas quer dizer que 0% dos aprovados passaram somente na disciplina A, 50% passaram somente
MAT111 - Cálculo I - IF TRIGONOMETRIA. As Funçoes trigonométricas no triângulo retângulo
MAT111 - Cálculo I - IF - 010 TRIGONOMETRIA As Funçoes trigonométricas no triângulo retângulo Analisando a figura a seguir, temos que os triângulos retângulos OA 1 B 1 e OA B, são semelhantes, pois possuem
Como a PA é decrescente, a razão é negativa. Então a PA é dada por
Detalhamento das Soluções dos Exercícios de Revisão do mestre 1) A PA será dada por Temos Então a PA será dada por:, e como o produto é 440: Como a PA é decrescente, a razão é negativa. Então a PA é dada
Fórmulas da Soma e da Diferença
Fórmulas da Soma e da Diferença Prof. Márcio Nascimento [email protected] Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina:
Equações e Funções Trigonométricas
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2013.2 Equações e Funções Trigonométricas Isabelle da Silva Araujo - Engenharia de Produção Equações Trigonométricas Equações trigonométricas são aquelas
UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE
www.elitecampinas.com.br Fone: (19) -71 O ELITE RESOLVE IME 004 PORTUGUÊS/INGLÊS Você na elite das universidades! UNICAMP 004 SEGUNDA FASE MATEMÁTICA www.elitecampinas.com.br Fone: (19) 51-101 O ELITE
o tempo gasto por A para percorrê-la. Tomaremos t A como nossa unidade de tempo, como mostra o quadro a seguir: Atleta Tempo Distância percorrida
GABARITO QUESTÕES DISSERTATIVAS MATEMÁTICA Questão dissertativa 1 Observamos que para cada uma das questões dissertativas há mais de uma resolução. Na questão dissertativa 1, a resposta à tarefa de listar
a) 7. b) 6. c) 5. d) 1. e) -1. a) 1 b) 1. c) 1. d) 1. e) 3.
TRIGONOMETRIA CIRCULAR ) (UFRGS) Se θ = 8 o, então a) tg θ < cos θ < sen θ. b) sen θ < cos θ < tg θ. c) cos θ < sen θ < tg θ. d) sen θ < tg θ < cos θ. e) cos θ < tg θ < sen θ. ) (UFRGS) O menor valor que
ENSINO SECUNDÁRIO 11.º ANO. 1. Pela lei dos Senos, tem-se que: = 5. De onde se tem = Logo, a opção correta é a opção (C).
ENSINO SECUNDÁRIO.º ANO M A T E M Á T I C A A: R E S O L U Ç Ã O D O TR A B A L H O I N D I V I D U A L P R O F E S S O R C A R L O S MI G U E L SA N T O S. Pela lei dos Senos, tem-se que: De onde se tem
MÓDULO 29. Trigonometria I. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. Fórmulas do arco duplo: 1) sen (2a) = 2) cos (2a) =
Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA MÓDULO 9 Trigonometria I Resumo das principais fórmulas da trigonometria Arcos Notáveis: Fórmulas do arco duplo: ) sen (a) = ) cos (a) = 3)
EXERCÍCIOS MATEMÁTICA 2
EXERCÍCIOS MATEMÁTICA 1. (Fgv 01) Em 1º de junho de 009, João usou R$ 150.000,00 para comprar cotas de um fundo de investimento, pagando R$ 1,50 por cota. Três anos depois, João vendeu a totalidade de
IME º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR
IME - 2006 1º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Sejam a 1 = 1 i, a n = r + si e a n+1 = (r s) + (r + s)i (n > 1) termos de uma sequência. DETERMINE, em função de n,
Lista de Matemática 2-1 s anos- Trigonometria
Lista de Matemática - 1 s anos- Trigonometria 1. (Upe-ssa 017) Se a função trigonométrica y a bsen(px) tem imagem I [1, ] e período, qual é o valor da soma a b p? Adote. a) b) 6 c) 8 d) 10 e) 11. (Ufpr
Aula 34. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil
Técnicas de Integração - Continuação Aula 34 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 03 de Junho de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica
Exercícios de Matemática Trigonometria Equações Trigonométricas
Exercícios de Matemática Trigonometria Equações Trigonométricas 1. (Ufpe) Quantas soluções a equação sen x + [(sen x)/2] + [(sen x)/4] +... = 2, cujo lado esquerdo consiste da soma infinita dos termos
Para mais exemplos veja o vídeo:
Resumo de matemática: Frente 1: Critério 01: Função: Função é uma relação do conjunto A para o conjunto B, em que os elementos do conjunto A sempre serão x e os elementos do conjunto B sempre serão y (ou
( ) ( ) FUVEST 08/01/ /11/2008 Seu pé direito nas melhores Faculdades MATEMÁTICA
FUVEST 08/0/009 //008 Seu pé direito nas melhores Faculdades MTEMÁTIC 0. Na figura, a reta r tem equação y x + no plano cartesiano Oxy. lém disso, os pontos 0,,, estão na reta r, sendo 0 0,). Os pontos
Esta é só uma amostra do livro do Prof César Ribeiro.
Esta é só uma amostra do livro do Prof César Ribeiro Para adquirir este (e outros livros do autor) vá ao site: http://wwwescolademestrescom/dicasemacetes Conheça também nosso Blog: http://blogescolademestrescom
Técnicas de Integração II. Algumas Integrais Trigonométricas
Técnicas de Integração II Algumas Integrais Trigonométricas Prof. Dr. José Ricardo de Rezende Zeni UNESP, FEG, Depto de Matemática Guaratinguetá, agosto de 2017 Direitos reservados. Reprodução autorizada
Congruência de triângulos
Segmento: Pré-vestibular Coleção: Alfa, Beta e Gama Disciplina: Matemática Volume: 1 Unidade IV: Série 4 Resoluções Congruência de triângulos 1. a) 90 + 3x + x + x + 30 360 6x + 10 360 6x 40 x 40 b) 105
Conjunto dos Números Complexos
Conjunto dos Unidade Imaginária Seja a equação: x + 0 Como sabemos, no domínio dos números reais, esta equação não possui solução, criou-se então um número cujo quadrado é. Esse número, representado pela
Gabarito Simulado 14/08/2004
Gabarito - ITA 06/05/017 Matemática Gabarito Simulado 14/08/004 1 C 5 D 9 A 13 E 17 E A 6 B 10 C 14 C 18 B 3 E 7 A 11 A 15 B 19 C 4 C 8 C 1 D 16 A 0 D RESOLUÇÃO SIMULADO IME-ITA MATEMÁTICA - CICLO 3 Questão
Nome do aluno: N.º: Para responder aos itens de escolha múltipla, não apresente cálculos nem justificações e escreva, na folha de respostas:
Teste de Matemática A 018 / 019 Teste N.º 1 Matemática A Duração do Teste (Caderno 1+ Caderno ): 90 minutos 11.º Ano de Escolaridade Nome do aluno: N.º: Turma: Este teste é constituído por dois cadernos:
Prova Final de Matemática a Nível de Escola Prova 82/1ª Fase 2018 Caderno Único: Página 1/9
Prova Final de Matemática a Nível de Escola 3º Ciclo do Ensino Básico Decreto-Lei nº139/01, de 5 de julho Prova 8/1ª Fase 9 Páginas Duração da Prova (CADERNO ÚNICO): 90 minutos. Tolerância: 30 minutos.
Função Trigonométrica. Determinar a função dado o gráfico
Função Trigonométrica Determinar a função dado o gráfico 1. (G1 - cftmg 201) O esboço do gráfico da função f(x) a bcos(x) é mostrado na figura seguinte. Nessa situação, o valor de a b é a) 2 b) 3 c) d)
Arco Duplo. Se a área do triângulo T 1 é o triplo da área do triângulo T 2, então o valor de cosθ é igual a. a) 1. b) 1. d) 1.
Arco Duplo. (Insper 0) Movendo as hastes de um compasso, ambas de comprimento, é possível determinar diferentes triângulos, como os dois representados a seguir, fora de escala. Se a área do triângulo T
GGE RESPONDE MATEMÁTICA IME 2019 (2ª FASE)
GGE RESPONDE MATEMÁTICA IME 9 (ª FASE). Um jogo de dominó possui 8 peças com duas pontas numeradas de zero a seis, independentemente, de modo que cada peça seja única, conforme ilustra a Figura. O jogo
Exercícios. setor Aula 39 DETERMINANTES (DE ORDENS 1, 2 E 3) = Resposta: 6. = sen 2 x + cos 2 x Resposta: 1
setor 0 00508 Aula 39 ETERMINANTES (E ORENS, E 3) A toda matriz quadrada A de ordem n é associado um único número, chamado de determinante de A e denotado, indiferentemente, por det(a) ou por A. ETERMINANTES
1. Com o auxílio de régua graduada e transferidor, calcular sen 42, cos 42 e tg 42. Resolução Traçamos uma perpendicular a um dos lados desse ângulo:
Atividades Complementares 1. Com o auxílio de régua graduada e transferidor, calcular sen 4, cos 4 e tg 4. Traçamos uma perpendicular a um dos lados desse ângulo: Medimos, com auxílio da régua, os lados
5 Demonstrações das fórmulas da adição de arcos no contexto da trigonometria no círculo trigonométrico
49 5 Demonstrações das fórmulas da adição de arcos no contexto da trigonometria no círculo trigonométrico Os conceitos inicialmente construídos, tendo o triângulo retângulo como referência serão estendidos
2ª série do Ensino Médio Turma. 1º Bimestre de 2018 Data / / Escola Aluno
AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 2ª série do Ensino Médio Turma 1º Bimestre de 2018 Data / / Escola Aluno 2 1 2 4 5 6 7 8 10 11 12 1 14 15 16 Avaliação da Aprendizagem em Processo Prova
Assinale as questões verdadeiras some os resultados obtidos e marque na Folha de Respostas:
PROVA DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - MAIO DE 0. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Assinale as questões
MATEMÁTICA Professores: Andrey, Cristiano e Julio
MATEMÁTICA Professores: Andrey, Cristiano e Julio Questões Substituindo os valores dados na fórmula teremos: x 1 = x 0+1 = (x 0 )2 +a 2.x 0 = (2)2 +5 = 9 2.2 4 e x 2 = x 1+1 = (x 1 )2 +a = ( 9 4 )2 +5
UFSC Parte 2. Prof. BAIANO
UFSC Parte Prof. BAIANO UFSC. Se f : é a função definida por f( ) = sen, então f() >. rad 6 rad 6 + + 6 36 4 - - INCORRETO UFSC 4. Na Figura, a reta r é tangente à circunferência λ, de centro no ponto
Matemática A Extensivo V. 3
Extensivo V. Exercícios 01) 01. Falso. Substitua a e b por e, respectivamente. ( + ) = + 9+ 16 = 7 = 7 = 7 (falso) Como a equação já não vale para esses números, não vale para todos os reais. 0. Verdadeiro.
