AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática
|
|
|
- Davi Sabrosa Marreiro
- 9 Há anos
- Visualizações:
Transcrição
1 AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática a série do Ensino Médio Turma GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DA EDUCAÇÃO o semestre de 4 Data / / Escola Aluno Questão O gráfico a seguir foi obtido pela observação de um determinado fenômeno periódico. Observe. 4 y x 4 4 Mediante as informações apresentadas no gráfico, podemos afirmar que o período, a imagem e a amplitude deste fenômeno respectivamente, são: (A) Período = ; Imagem = {x R 4 y 4}; Amplitude = 8. (B) Período = 4; Imagem = {y R 4 y 4}; Amplitude = 4. (C) Período = {y R 4 y 4}; Imagem = 4; Amplitude = 4. (D) Período = 8; Imagem = ; Amplitude = {x R 4 y 4}. Avaliação de Matemática a série do Ensino Médio
2 RESOLUÇÃO: Avaliação de Matemática a série do Ensino Médio
3 Questão Em relação ao gráfico cartesiano da função y = cosx no intervalo [, π] é correto afirmar que (A) corta o eixo das abscissas em 4 pontos. (B) é sempre crescente. (C) sua imagem é o conjunto {y R y }. (D) tem valor mínimo para x = RESOLUÇÃO: Avaliação de Matemática a série do Ensino Médio
4 Questão Esboce o gráfico de f(x) = + sen(x). RESOLUÇÃO: 4 Avaliação de Matemática a série do Ensino Médio
5 Questão 4 Observe o gráfico da equação sen x = no intervalo [, 4π]. y, π 6 π π π 4π x, Conforme representado no gráfico da função, as soluções para essa equação no intervalo considerado são: (A) π, π, π, 4π. (B) π, π, π, π, 4π. (C) [π; π]; [π; 4π]. (D) 7π 6, π 6, 9π 6, π 6. Avaliação de Matemática a série do Ensino Médio 5
6 RESOLUÇÃO: 6 Avaliação de Matemática a série do Ensino Médio
7 Questão 5 Na Copa do Mundo de realizada na África do Sul, o Brasil participou da primeira fase do grupo G (Brasil, Coréia do Norte, Costa do Marfim e Portugal). Observe as tabelas a seguir. - RESULTADO DE CADA UM DOS TIMES ª FASE Nº de vitórias Nº de empates Nº de derrotas Brasil Portugal Costa do Marfim Coréia do Norte Disponível em: - acesso: 8//4 CÁLCULOS PARA A PONTUAÇÃO Nº de pontos Vitória Empate Derrota O total de pontos feitos por cada seleção pode ser representado pela matriz 4 X a seguir (A) (B) (C) (D) Avaliação de Matemática a série do Ensino Médio 7
8 RESOLUÇÃO: 8 Avaliação de Matemática a série do Ensino Médio
9 Questão 6 Em uma sala de aula do ano do Ensino Médio, foi realizada uma pesquisa referente á preferência de gêneros musicais. A sala é composta por 45 alunos, os gêneros preferidos são três: funk, rap e sertanejo. Sabe-se que o total de alunos que escolheram sertanejo mais os que escolheram rap é igual a 5, os alunos que escolheram rap e funk totalizaram 5 e os que preferem funk e sertanejo somam. Determine a quantidade de alunos que preferem cada gênero musical. RESOLUÇÃO: Avaliação de Matemática a série do Ensino Médio 9
10 Questão 7 Codificando um desenho por uma matriz Os pontos numerados de a do desenho foram unidos a partir de código definido em uma matriz. A matriz que representa esta escrita é A) B) Avaliação de Matemática a série do Ensino Médio
11 C) D) Avaliação de Matemática a série do Ensino Médio
12 RESOLUÇÃO: Avaliação de Matemática a série do Ensino Médio
13 Questão 8 A tabela a seguir contém dados sobre a audiência de três redes de televisão em três períodos do dia. Audiência Manhã Tarde Noite Total de Pontos Rede 4 Rede 4 7 Rede Nessa tabela, cada ponto positivo indica que pessoas que estão com a televisão conectada à rede, e cada ponto negativo indicam que pessoas que deixaram de sintonizar a rede no período avaliado. Considerando que são atribuídos diferentes pesos à audiência, em função do período do dia, o peso atribuído a cada um dos períodos é (A), 7,. (B), 4,. (C) 4,,. (D),, 5. RESOLUÇÃO: Avaliação de Matemática a série do Ensino Médio
14 Questão 9 Um empresário mandou seu funcionário guardar três caixas de materiais. rapaz voltou exausto, e disse: A primeira e a segunda caixa, juntas, têm quilogramas. A primeira e a terceira, juntas, têm quilogramas. E a segunda e a terceira, juntas, têm quilogramas. Mas o empresário queria saber quantos quilogramas tinha cada caixa. Para o funcionário não se cansar mais, descubra isso para ele. (A) x = 8; y = - 8; z =. (B) x = 8; y = 9; z = 6. (C) x = 59; y = 5; z = 6. (D) x = 6; y = 5; z = 6. RESOLUÇÃO: 4 Avaliação de Matemática a série do Ensino Médio
15 Questão Na circunferência da figura a seguir estão assinalados dois ângulos centrais, um de medida 6º e outro de medida º. Observe N Q º P 6º M Podemos afirmar que a medida, em radianos e no sentido indicado, do arco MQ é: (A) (B) (C) (D) π 6 π π π 4 Avaliação de Matemática a série do Ensino Médio 5
16 RESOLUÇÃO: 6 Avaliação de Matemática a série do Ensino Médio
17 Questão Observe o gráfico a seguir. 4 / / / O gráfico representa as seguintes funções trigonométricas: y = cos(x) e y = + cos(4x). y = sen(x) e y = cos (x). y = sen(x) e y = + sen (4x). y = sen(x) e y = sen (4x). Avaliação de Matemática a série do Ensino Médio 7
18 RESOLUÇÃO: 8 Avaliação de Matemática a série do Ensino Médio
19 Questão Observe os dois polígonos representados no plano cartesiano y 6 5 F 4 B E G H A C D x Esses dois polígonos são congruentes, e podemos considerar que o polígono EFGH é uma translação do polígono ABCD, isto é, EFGH foi obtido a partir de duas movimentações de ABCD, sendo uma na horizontal e outra na vertical. A matriz A (4x) que representa as coordenadas dos vértices do polígono ABCD é: A) B) C) D) Avaliação de Matemática a série do Ensino Médio 9
20 RESOLUÇÃO: Avaliação de Matemática a série do Ensino Médio
2ª série do Ensino Médio Turma 1º Bimestre de 2017 Data / / Escola Aluno
AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 2ª série do Ensino Médio Turma 1º Bimestre de 2017 Data / / Escola Aluno EM 1 2 4 5 6 7 8 9 10 11 12 1 14 15 16 17 18 Avaliação da Aprendizagem em Processo
LISTA DE REVISÃO PROVA MENSAL 2º ANO 1º TRIMESTRE
ÁLGEBRA LISTA DE REVISÃO PROVA MENSAL º ANO 1º TRIMESTRE 1) O pêndulo de um relógio tem comprimento 0 cm e faz o movimento ilustrado na figura. Qual a medida do arco AB? A) 10 cm 0 cm 0π cm 0 D) cm E)
LISTA DE REVISÃO PROVA MENSAL 2º ANO 1º TRIMESTRE
ÁLGEBRA LISTA DE REVISÃO PROVA MENSAL º ANO 1º TRIMESTRE 1) O pêndulo de um relógio tem comprimento 0 cm e faz o movimento ilustrado na figura. Qual a medida do arco AB? A) 10 cm 0 cm 0π cm 0 D) cm E)
Circunferência. É o conjunto de pontos de um plano eqüidistantes de um ponto do plano chamado centro, e essa distância chama-se raio.
Trigonometria Matemática, 1º Ano, Função: conceito Circunferência É o conjunto de pontos de um plano eqüidistantes de um ponto do plano chamado centro, e essa distância chama-se raio. Matemática, 1º Ano,
Formação continuada em MATEMÁTICA Fundação CECIERJ/ Consórcio CEDERJ
Formação continuada em MATEMÁTICA Fundação CECIERJ/ Consórcio CEDERJ MATEMÁTICA 1º ANO 4º BIMESTRE/ 2013 Sandra Maria Vogas Vieira [email protected] TRIGONOMETRIA NA CIRCUNFERÊNCIA TAREFA 2 CURSISTA:
2ª série do Ensino Médio Turma. 1º Bimestre de 2018 Data / / Escola Aluno
AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 2ª série do Ensino Médio Turma 1º Bimestre de 2018 Data / / Escola Aluno 2 1 2 4 5 6 7 8 10 11 12 1 14 15 16 Avaliação da Aprendizagem em Processo Prova
AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática. A figura a seguir ilustra um arco BC de
GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DA EDUCAÇÃO AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática a série do Ensino Médio Turma 1 o Bimestre de 016 Data / / Escola Aluno EM Questão 1 A figura a seguir
Funções Trigonométricas
Funções Trigonométricas 1) Na figura abaixo, a área do triângulo ABC é 5 A 120 3 C B (a) (15 3) / 4 (b) (15 3) / 2 (c) 15/2 (d) (15 2) / 4 (e) 15 / 4 2) Sabendo-se que tan(x) = - 4/3 e que x é um arco
a) 7. b) 6. c) 5. d) 1. e) -1. a) 1 b) 1. c) 1. d) 1. e) 3.
TRIGONOMETRIA CIRCULAR ) (UFRGS) Se θ = 8 o, então a) tg θ < cos θ < sen θ. b) sen θ < cos θ < tg θ. c) cos θ < sen θ < tg θ. d) sen θ < tg θ < cos θ. e) cos θ < tg θ < sen θ. ) (UFRGS) O menor valor que
Matemática. Questão a série do Ensino Médio Turma. 1 o semestre de 2014 Data / / Escola Aluno
AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 07 3 a série do Ensino Médio Turma GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DA EDUCAÇÃO 1 o semestre de 2014 Data / / Escola Aluno Questão 01 O campeonato
PROVA DE MATEMÁTICA DA FUVEST VESTIBULAR a Fase RESOLUÇÃO: Profa. Maria Antônia Gouveia.
PROVA DE MATEMÁTICA DA FUVEST VESTIBULAR 0 a Fase Profa. Maria Antônia Gouveia. QUESTÃO 58. Em uma festa com n pessoas, em um dado instante, mulheres se retiraram e restaram convidados na razão de homens
GOVERNO DO ESTADO DE MATO GROSSO SECRETARIA DE ESTADO DE CIÊNCIA E TECNOLOGIA UNIVERSIDADE DO ESTADO DE MATO GROSSO
0) Responda aos itens. GOVERNO DO ESTADO DE MATO GROSSO SECRETARIA DE ESTADO DE CIÊNCIA E TECNOLOGIA UNIVERSIDADE DO ESTADO DE MATO GROSSO FACET Faculdade de Ciências Exatas e Tecnológicas Avaliação 5/04/06
Matemática I Tecnólogo em Construção de Edifícios e Tecnólogo em Refrigeração e Climatização
22. Circunferência trigonométrica. Se inserirmos numa circunferência de raio unitário (r = 1) os eixos do sistema cartesiano ortogonal, de maneira que a origem do plano cartesiano coincida com o centro
Formação Continuada em MATEMÁTICA Fundação CECIERJ/Consórcio CEDERJ
Formação Continuada em MATEMÁTICA Fundação CECIERJ/Consórcio CEDERJ Matemática 1º Ano 4º Bimestre/2014 Plano de Trabalho Trigonometria na circunferência Tarefa 1 Cursista: Wendel do Nascimento Pinheiro
Nome do aluno: N.º: Para responder aos itens de escolha múltipla, não apresente cálculos nem justificações e escreva, na folha de respostas:
Teste de Matemática A 2017 / 2018 Teste N.º 2 Matemática A Duração do Teste (Caderno 1+ Caderno 2): 90 minutos 11.º Ano de Escolaridade Nome do aluno: N.º: Turma: Este teste é constituído por dois cadernos:
Trigonometria na Circunferência
FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ / SEEDUC-RJ COLÉGIO: C E BARÃO DE MACAÚBAS / C E HERBERT DE SOUZA PROFESSORA: MARISTELA ISOLANI TAVARES MATRÍCULA: 00/0912586-5 SÉRIE:
Acesso de Maiores de 23 anos Prova escrita de Matemática 7 de Junho de 2017 Duração da prova: 150 minutos. Tolerância: 30 minutos.
Acesso de Maiores de 23 anos Prova escrita de Matemática 7 de Junho de 2017 Duração da prova: 150 minutos. Tolerância: 30 minutos. Primeira Parte As oito questões desta primeira parte são de escolha múltipla.
PROVA DE MATEMÁTICA II
PROVA DE MATEMÁTCA 0. Em uma determinada prova, um professor observou que 0% dos seus alunos obtiveram nota exatamente igual a, % obtiveram média 6,, e a média m do restante dos alunos foi suficiente,
MATEMÁTICA - 3 o ANO MÓDULO 61 FUNÇÕES TRIGONOMÉTRICAS E TRANSLAÇÃO DE GRÁFICOS
MATEMÁTICA - 3 o ANO MÓDULO 61 FUNÇÕES TRIGONOMÉTRICAS E TRANSLAÇÃO DE GRÁFICOS y 1 0 π π π π 6 4 3 π senoide 3π 3π -1 y 1 Cossenoide 0 π π π π 6 4 3 π 3π π -1 y tangentoide π 0 π π π Como pode cair no
π. e) 6 π. c) π. d) 8 π b) 4
Lista de Exercícios º ANO Prof. Ulisses 1. (Mackenzie) Considerando o esboço do gráfico da função f(x) = cos x, entre 0 e π a reta que passa pelos pontos P e Q define com os eixos coordenados um triângulo
TESTE DE AVALIAÇÃO 11º ANO
TESTE DE AVALIAÇÃO 11º ANO NOME: N.º: TURMA: ANO LETIVO: / DATA: / / DURAÇÃO DO TESTE: 90 MINUTOS O teste é constituído por dois grupos. O Grupo I é constituído por itens de escolha múltipla e o Grupo
Relembrando: Ângulos, Triângulos e Trigonometria...
Relembrando: Ângulos, Triângulos e Trigonometria... Este texto é apenas um resumo. Procure estudar esses assuntos em um livro apropriado. Ângulo é a região de um plano delimitada pelo encontro de duas
Data: 02/12/2008. Nome:... Nº:... 11º Ano Turma A " # $ % & Duração da prova 90 min. Escola Secundária Afonso Lopes Vieira
Escola Secundária Afonso Lopes Vieira Nome:... Data: 0/1/008 Duração da prova 90 min Nº:... 11º Ano Turma A! " # $ % & 1. Relativamente à recta de equação y = x 1, qual das seguintes afirmações é verdadeira?
Proposta de teste de avaliação
Proposta de teste de avaliação Matemática A. O ANO DE ESCOLARIDADE Duração: 90 minutos Data: O teste é constituído por dois grupos, I e II. O Grupo I inclui cinco questões de escolha múltipla. O Grupo
Equações e Funções Trigonométricas
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2013.2 Equações e Funções Trigonométricas Isabelle da Silva Araujo - Engenharia de Produção Equações Trigonométricas Equações trigonométricas são aquelas
MATEMÁTICA. Questões de 01 a 12
GRUPO 5 TIPO A MAT. 1 MATEMÁTICA Questões de 01 a 12 01. Um circo com a forma de um cone circular reto sobre um cilindro circular reto de mesmo raio está com a lona toda furada. O dono do circo, tendo
Teste de Avaliação. Nome N. o Turma Data /mar./2019. Avaliação E. Educação Professor. Duração (Caderno 1 + Caderno 2): 90 minutos. MATEMÁTICA 9.
Teste de Avaliação Nome N. o Turma Data /mar./2019 Avaliação E. Educação Professor MATEMÁTICA 9. o ANO Duração (Caderno 1 + Caderno 2): 90 minutos O teste é constituído por dois cadernos (Caderno 1 e Caderno
MA51A - Cálculo Aplicado Prof a Diane Rizzotto Rossetto. LISTA 1 - Revisão
Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Curitiba - DAMAT MA51A - Cálculo Aplicado Prof a Diane Rizzotto Rossetto LISTA 1 - Revisão Questão 1: Se 2 x = 256, o valor de x
Escola Secundária Poeta António Aleixo
Escola Secundária Poeta António Aleixo 6.º Teste de Matemática A.º Ano 0-06-00.ª Parte Para cada uma das sete questões desta primeira parte, seleccione a resposta correcta de entre as quatro alternativas
Olá! Brunna e Fernanda. Matemática. Somos do PET Engenharia Ambiental
Trigonometria Olá! Brunna e Fernanda Somos do PET Engenharia Ambiental Matemática Vamos pensar + Considere cinco circunferências concêntricas de raios diferentes e um mesmo ângulo central subtendendo arcos
UFBA / UFRB a fase Matemática RESOLUÇÃO: PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA
UFBA / UFRB 007 a fase Matemática PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA QUESTÕES de 0 a 06 LEIA CUIDADOSAMENTE O ENUNCIADO DE CADA QUESTÃO, FORMULE SUAS RESPOSTAS COM OBJETIVIDADE E CORREÇÃO DE LINGUAGEM
Trigonometria no Círculo - Funções Trigonométricas
Trigonometria no Círculo - Funções Trigonométricas Prof. Márcio Nascimento [email protected] Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em
Resolução _ Lista ENEM Função, Função do 1º e 2º Graus de 2010 até Gabarito: T(h) h 22h 85. (h 22h 85) [(h 11) 36] 36 (h 11).
Resolução _ Lista ENEM Função, Função do 1º e º Graus de 010 até 015 Gabarito: Resposta da questão 1: Escrevendo a lei de T na forma canônica, vem T(h) h h 85 (h h 85) [(h 11) 6] 6 (h 11). Assim, a temperatura
3.º Teste de Matemática A Versão 1 11.º Ano de escolaridade 9 fevereiro 2012
3.º Teste de Matemática A Versão 1 11.º Ano de escolaridade 9 fevereiro 01 1.ª Parte Para cada uma das cinco questões desta primeira parte seleciona a resposta correta de entre as quatro alternativas que
Mat. Professor: Gabriel Ritter. Monitor: Rodrigo Molinari
Mat. Professor: PC Gabriel Ritter Monitor: Rodrigo Molinari Funções Trigonométricas: Seno, Cosseno e Tangente 05 out RESUMO Seno A função seno é f: e associa cada número real ao seu seno, ou seja, f(x)=senx.
Notas de Aula de Matemática Básica I
UFF/GMA Notas de aula de MB-I Maria Lúcia/Marlene 015-1 IME Instituto de Matemática e Estatística GMA Departamento de Matemática Aplicada Notas de Aula de Matemática Básica I Maria Lúcia Tavares de Campos
QUESTÕES-AULA 37. (a) O período da função F (x) é T = 3 0 = 3. Dividimos a reta em intervalos da forma:
QUESTÕES-AULA 37 1. Considere a função f(x) = 4 x, 0 x < 3. 3 (a) Construa uma função periódica F (x) definida em todo o R, tal que F (x) = f(x) para todo x [0, 3). (b) Determine o período, a frequência
SE18 - Matemática. LMAT 6B1-1 - Números Complexos: Forma T rigonométrica. Questão 1
SE18 - Matemática LMAT 6B1-1 - Números Complexos: Forma T rigonométrica Questão 1 (Mackenzie 1996) Na figura a seguir, P e Q são, respectivamente, os afixos de dois complexos z 1 e z 2. Se a distância
GABARITO PROVA B GABARITO PROVA A. Colégio Providência Avaliação por Área 2ª SÉRIE ENSINO MÉDIO
Colégio Providência Avaliação por Área Matemática e suas tecnologias 1ª ETAPA Data: 11/05/2015 2ª SÉRIE ENSINO MÉDIO GABARITO PROVA A GABARITO PROVA B A B C D 1 XXXX xxxxx xxxxx xxxxx 2 4 5 6 7 8 9 10
Provas de Acesso ao Ensino Superior Para Maiores de 23 Anos
Provas de Acesso ao Ensino Superior Para Maiores de 23 Anos Candidatura de 207 EXAME DE MATEMÁTICA Tempo para realização da prova: 2 horas Tolerância: 30 minutos Material admitido: material de escrita
Nome do aluno: N.º: Na resposta aos itens de resposta aberta, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias.
Teste de Matemática A 2018 / 2019 Teste N.º 3 Matemática A Duração do Teste (Caderno 1+ Caderno 2): 90 minutos 11.º Ano de Escolaridade Nome do aluno: N.º: Turma: Este teste é constituído por dois cadernos:
Novo Espaço Matemática A 11.º ano Proposta de Teste Intermédio [janeiro 2015]
Proposta de Teste Intermédio [janeiro 015] Nome: Ano / Turma: N.º: Data: - - GRUPO I Na resposta a cada um dos itens deste grupo, seleciona a única opção correta. Escreve, na folha de respostas: o número
Escola Naval 2010 ( ) ( ) 8 ( ) 4 ( ) 4 (
Escola Naval 0 1. (EN 0) Os gráficos das funções reais f e g de variável real, definidas por f(x) = x e g(x) = 5 x interceptam-se nos pontos A = (a,f(a)) e B = (b,f(b)), a b. Considere os polígonos CAPBD
Se tgx =, então cosx =. 3 3 O valor máximo de y = senx cos 60 + sen 60 cosx é 2.
4 4 A distância do ponto P (- 2; 6) à reta de equação 3x + 4y 1 = 0 é. 19. 0 0 Se cos x > 0, então 0 < x < 90. Se tgx =, então cosx =. 2 2. 3 3 O valor máximo de y = senx cos 60 + sen 60 cosx é 2. 4 4
Matemática. Setor A. Índice-controle de Estudo. Prof.: Aula 19 (pág. 74) AD TM TC. Aula 20 (pág. 75) AD TM TC. Aula 21 (pág.
Matemática Setor A Prof.: Índice-controle de Estudo Aula 9 (pág. 7) AD TM TC Aula 0 (pág. 75) AD TM TC Aula (pág. 76) AD TM TC Aula (pág. 77) AD TM TC Aula (pág. 78) AD TM TC Aula (pág. 79) AD TM TC Aula
3 x + y y 17) V cilindro = πr 2 h
MATEMÁTICA FORMULÁRIO 0 o 45 o 60 o cosec x =, sen x 0 sen x sen sec x =, cos x 0 cos x cos sen x tg x =, cos x 0 cos x tg cos x cotg x =, sen x 0 sen x ) a n = a + (n ). r 0) A = onde b h D = sen x +
Projeto de Recuperação FINAL 1ª Série EM
MATEMÁTICA Objetivo: Proporcionar ao aluno a oportunidade de rever os conteúdos trabalhados durante o semestre nos quais apresentou dificuldade e que servirão como pré-requisitos para os conteúdos que
Para mais exemplos veja o vídeo:
Resumo de matemática: Frente 1: Critério 01: Função: Função é uma relação do conjunto A para o conjunto B, em que os elementos do conjunto A sempre serão x e os elementos do conjunto B sempre serão y (ou
Lista 8 - Bases Matemáticas
Lista 8 - Bases Matemáticas Funções - Parte Funções Quadráticas, Exponenciais, Logarítmicas e Trigonométricas Funções Quadráticas 1 Esboce o gráfico das seguintes funções, indicando em quais intervalos
Trigonometria I. Círculo Trigonométrico. 2 ano E.M. Professores Cleber Assis e Tiago Miranda
Trigonometria I Círculo Trigonométrico ano E.M. Professores Cleber Assis e Tiago Miranda Trigonometria I Círculo Trigonométrico b) 6 1 Exercícios Introdutórios Exercício 1. Qual dos arcos abaixo é côngruo
AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática. 3ª série do Ensino Médio Turma 1º semestre de 2015 Data / / Escola Aluno
AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 11 3ª série do Ensino Médio Turma 1º semestre de 2015 Data / / Escola Aluno Questão 1 Considere uma matriz formada por elementos que são, ao mesmo tempo,
Trigonometria no Círculo - Funções Trigonométricas
Trigonometria no Círculo - Funções Trigonométricas Prof. Márcio Nascimento [email protected] Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em
Proposta de correcção
Ficha de Trabalho Matemática A - ºano Temas: Trigonometria (Triângulo rectângulo e círculo trigonométrico) Proposta de correcção. Relembrar que um radiano é, em qualquer circunferência, a amplitude do
Aula 13 mtm B TRIGONOMETRIA
Aula 13 mtm B TRIGONOMETRIA Definição Função Seno: f(x) = a ± b.sen(mx + n) Função Cosseno: f(x) = a ± b.cos(mx + n) a - Parâmetro aditivo da função. b - Parâmetro multiplicativo da função. m Parâmetro
AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Caderno do Professor. 2ª série do Ensino Médio MATEMÁTICA
AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Caderno do Professor 2ª série do Ensino Médio MATEMÁTICA São Paulo Agosto de 2015 9ª edição Gabarito 2ª Série E.M. QUESTÃO A B C D 01 02 03 04 05 06 07 08 09 10 11
Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema I Geometria no Plano e no Espaço II. 2º Teste de avaliação.
Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema I Geometria no Plano e no Espaço II 2º Teste de avaliação Grupo I As cinco questões deste grupo são de escolha múltipla. Para cada uma
Prova Final de Matemática a Nível de Escola Prova 82/1ª Fase 2018 Caderno Único: Página 1/9
Prova Final de Matemática a Nível de Escola 3º Ciclo do Ensino Básico Decreto-Lei nº139/01, de 5 de julho Prova 8/1ª Fase 9 Páginas Duração da Prova (CADERNO ÚNICO): 90 minutos. Tolerância: 30 minutos.
FORMAÇÃO CONTINUADA FUNDAÇÃO CECIERJ / CONSÓRCIO CEDERJ
FORMAÇÃO CONTINUADA FUNDAÇÃO CECIERJ / CONSÓRCIO CEDERJ Matemática 1º ano 4º Bimestre /2014 Plano de Trabalho-2 Cursista Isa Louro Delbons Grupo - 02 Tutor Rodolfo Gregório de Moraes Um matemático é uma
Escola Secundária de Santa Maria da Feira
Escola Secundária de Santa Maria da Feira Ficha de Trabalho de Matemática A 11º Ano FT-1 I Parte Escolha Múltipla 1. Quantas soluções tem a equação cos α = tg α no intervalo [0,π ]? (A) 0 (B) 1 (C) (D)
F I C H A D E D I A G N O S E. [ ] 7 ; 9 [ [π; 7 [
Curso CCS e CCT Soluções COLÉGIO INTERNACIONAL DE VILAMOURA INTERNATIONAL SCHOOL T E S T E D E A V A L I A Ç Ã O F I C H A D E D I A G N O S E Disciplina Matemática A Ensino Secundário Ano 10º - A e B
MATEMÁTICA A - 12o Ano N o s Complexos - Operações e simplificação de expressões
MATEMÁTICA A - 1o Ano N o s Complexos - Operações e simplificação de expressões Exercícios de exames e testes intermédios 1. Na figura ao lado, estão representadas, no plano complexo, as imagens geométricas
LISTA DE EXERCÍCIOS Cálculo I -A- Humberto José Bortolossi
GMA DEPARTAMENTO DE MATEMÁTICA APLICADA LISTA DE EXERCÍCIOS Cálculo I -A- Humberto José Bortolossi ttp://www.professores.uff.br/jbortol/ 02 Modelando com Funções, Funções Elementares e Obtendo Gráficos
Função Seno. Utilizando o aplicativo Geogebra para conhecer as funções Seno e Cosseno. Atividade 1: A projeção da função seno será sempre no eixo das.
O uso de smartphones no ensino de funções Ursula Tatiana Timm e-mail: [email protected] Jonathas Ieggli da Silva e-mail: [email protected] Utilizando o aplicativo Geogebra para conhecer as
FNT AULA 6 FUNÇÃO SENO E COSSENO
FNT AULA 6 FUNÇÃO SENO E COSSENO CIRCUNFERÊNCIA TRIGONOMÉTRICA Chama-se circunferência trigonométrica a circunferência de raio unitário (R=1), com centro na origem de um sistema cartesiano. +1 R = 1 360º
12 m. 1 m 3 m. 2. Para o revestimento do fundo dessa piscina, foram usados menos de azulejos.
PROVA DE MATEMÁTICA Uma piscina retangular mede 6 m de largura, 2 m de comprimento e sua profundidade varia de m a 3 m. Nesta figura, está representada uma seção dessa piscina ao longo de seu comprimento:
3ª série do Ensino Médio Turma 1º Bimestre de 2017 Data / / Escola Aluno
AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 3ª série do Ensino Médio Turma 1º Bimestre de 2017 Data / / Escola Aluno EM 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Avaliação da Aprendizagem em Processo
Estudando Trigonometria com applets desenvolvidos no software GeoGebra
Estudando Trigonometria com applets desenvolvidos no software GeoGebra Elaborada por: Larissa de Sousa Moreira e Cíntia da Silva Gomes Orientada por: Gilmara Teixeira Barcelos e Silvia Cristina Freitas
LISTA DE REVISÃO PROVA MENSAL 2 ANO PROF. JADIEL 2º TRIMESTRE. 1) (Ufsm - modificada) Sobre a função representada no gráfico, é correto afirmar:
LISTA DE REVISÃO PROVA MENSAL ANO PROF. JADIEL º TRIMESTRE 1) (Ufsm - modificada) Sobre a função representada no gráfico, é correto afirmar: A) O período da função é 4π. B) O domínio é o intervalo [-3,
UFJF ICE Departamento de Matemática Cálculo I Primeira Avaliação Primeiro Semestre Letivo de /04/2014 FILA A Aluno (a): Matrícula: Turma:
UFJF ICE Departamento de Matemática Cálculo I Primeira Avaliação Primeiro Semestre Letivo de 014 6/04/014 FILA A Aluno (a): Matrícula: Turma: Instruções Gerais: 1- A prova pode ser feita a lápis, exceto
FUNÇÕES TRIGONOMÉTRICAS. Teorema de Pitágoras Razões trigonométricas Circunferência trigonométrica
FUNÇÕES TRIGONOMÉTRICAS Teorema de Pitágoras Razões trigonométricas Circunferência trigonométrica Teorema de Pitágoras Em qualquer triângulo retângulo, o quadrado da medida da hipotenusa é igual à soma
Matemática Trigonometria TRIGONOMETRIA
TRIGONOMETRIA Aula 43 Página 83 1. Calcule o seno, o cosseno e a tangente de 750. Aula 43 Página 83 2. Calcule o seno, o cosseno e a tangente de π/4. Aula 43 Caderno de Exercícios Pág. 47 1. Obtenha a
F I C H A D E D I A G N O S E. Curso CCS e CCT Componente de Formação Geral Data / / Nome Nº GRUPO I. [ ] 7 ; 9 [ [π; 7 [
COLÉGIO INTERNACIONAL DE VILAMOURA INTERNATIONAL SCHOOL Disciplina Matemática A T E S T E D E A V A L I A Ç Ã O F I C H A D E D I A G N O S E Ensino Secundário Ano 10º - A e B Duração 90 min Curso CCS
2 a SÉRIE MATEMÁTICA. Caderno do Aluno Volume 1 ENSINO MÉDIO
a SÉRIE ENSINO MÉDIO Caderno do Aluno Volume 1 MATEMÁTICA GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DA EDUCAÇÃO MATERIAL DE APOIO AO CURRÍCULO DO ESTADO DE SÃO PAULO CADERNO DO ALUNO MATEMÁTICA ENSINO
MATEMÁTICA. Questões de 01 a 04
GRUPO 1 TIPO A MAT. 5 MATEMÁTICA Questões de 01 a 04 01. Considere duas circunferências concêntricas em C, conforme figura, em que a externa representa o círculo trigonométrico e a interna, o velocímetro,
MATEMÁTICA A - 12o Ano N o s Complexos - Operações e simplificação de expressões
MATEMÁTICA A - 1o Ano N o s Complexos - Operações e simplificação de expressões Exercícios de exames e testes intermédios 1. Na figura ao lado, estão representados, no plano complexo, uma circunferência
AFA Uma pequena fábrica de cintos paga a seus funcionários o salário, conforme tabela abaixo
AFA 2010 1. Uma pequena fábrica de cintos paga a seus funcionários o salário, conforme tabela abaixo CARGO SALÁRIOS Nº DE (em reais) FUNCIONÁRIOS COSTUREIRO(A) 1 000 10 SECRETÁRIO(A) 1 500 4 CONSULTOR
TESTES. 5. (UFRGS) Os ponteiros de um relógio marcam duas. horas e vinte minutos. O menor ângulo entre os ponteiros é
TESTES (UFRGS) O valor de sen 0 o cos 60 o é 0 (Ufal) Se a medida de um arco, em graus, é igual a 8, sua medida em radianos é igual a ( /) 7 (6/) (6/) (UFRGS) Os ponteiros de um relógio marcam duas horas
Nome do aluno: N.º: Para responder aos itens de escolha múltipla, não apresente cálculos nem justificações e escreva, na folha de respostas:
Teste de Matemática A 018 / 019 Teste N.º 5 Matemática A Duração do Teste (Caderno 1 + Caderno ): 90 minutos 1.º Ano de Escolaridade Nome do aluno: N.º: Turma: Este teste é constituído por dois cadernos:
Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema I Geometria no Plano e no Espaço II. 2º Teste de avaliação.
Escola Secundária com º ciclo D. Dinis 11º Ano de Matemática A Tema I Geometria no Plano e no Espaço II º Teste de avaliação Grupo I As cinco questões deste grupo são de escolha múltipla. Para cada uma
MAT111 - Cálculo I - IF TRIGONOMETRIA. As Funçoes trigonométricas no triângulo retângulo
MAT111 - Cálculo I - IF - 010 TRIGONOMETRIA As Funçoes trigonométricas no triângulo retângulo Analisando a figura a seguir, temos que os triângulos retângulos OA 1 B 1 e OA B, são semelhantes, pois possuem
LISTA DE EXERCÍCIOS. Trigonometria no Triângulo Retângulo e Funções Trigonométricas
LISTA DE EXERCÍCIOS Pré-Cálculo UFF GMA 09 Trigonometria no Triângulo Retângulo e Funções Trigonométricas [0] (* Em sala de aula vimos como usar um quadrado e um triângulo equilátero para obter os valores
Nome do aluno: N.º: Para responder aos itens de escolha múltipla, não apresente cálculos nem justificações e escreva, na folha de respostas:
Teste de Matemática A 017 / 018 Teste N.º 1 Matemática A Duração do Teste (Caderno 1+ Caderno ): 90 minutos 11.º Ano de Escolaridade Nome do aluno: N.º: Turma: Este teste é constituído por dois cadernos:
ESCOLA SECUNDÁRIA DA RAMADA. Teste de Matemática A. Grupo I
ESCOLA SECUNDÁRIA DA RAMADA Teste de Matemática A 30 de maio de 2017 12º A Versão 1 Grupo I As cinco questões deste grupo são de escolha múltipla. Para cada uma delas, são indicadas quatro alternativas,
Solução Comentada da Prova de Matemática
Solução Comentada da Prova de Matemática 01. Considere, no plano cartesiano, os pontos P(0,1) e Q(,3). A) Determine uma equação para a reta mediatriz do segmento de reta PQ. B) Determine uma equação para
IME º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR
IME - 2006 1º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Sejam a 1 = 1 i, a n = r + si e a n+1 = (r s) + (r + s)i (n > 1) termos de uma sequência. DETERMINE, em função de n,
APOSTILA PREPARATÓRIA DE MEDICINA PROVAS DA SUPREMA DE MATEMÁTICA
APOSTILA PREPARATÓRIA DE MEDICINA PROVAS DA SUPREMA DE MATEMÁTICA RESOLVIDAS E COMENTADAS RESOLUÇÃO DETALHADA DE TODAS AS QUESTÕES ESTUDE CERTO! COMPRE JÁ A SUA! WWW.LOJAEXATIANDO.COM.BR [email protected]
III CAPÍTULO 21 ÁREAS DE POLÍGONOS
1 - RECORDANDO Até agora, nós vimos como calcular pontos, retas, ângulos e distâncias, mas não vimos como calcular a área de nenhuma figura. Na aula de hoje nós vamos estudar a área de polígonos: além
LISTA DE EXERCICIOS TRIÂNGULOS QUAISQUER. 1) Na figura ao abaixo calcule o valor da medida x. 2) No triângulo abaixo, determine as medidas x e y.
LISTA DE EXERCICIOS TRIÂNGULO RETÂNGULO 1) Um caminhão sobe uma rampa inclinada de 10º em relação ao plano horizontal. Se a rampa tem 30 m de comprimento, a quantos metros o caminhão se eleva, verticalmente
EBS DA GRACIOSA - ENSINO SECUNDÁRIO 11.º ANO
EBS DA GRACIOSA - ENSINO SECUNDÁRIO.º ANO M A T E M Á T I C A : RES O L U Ç Ã O D A F I C H A D E AV A L I A Ç Ã O P R O F E S S O R C A R L O S MI G U E L SA N T O S GRUPO I. Pelo facto de o triângulo
MÉTODOS MATEMÁTICOS. Claudia Mazza Dias Sandra Mara C. Malta
MÉTODOS MATEMÁTICOS Claudia Mazza Dias Sandra Mara C. Malta 1 Métodos Matemáticos Aulas: De 03/11 a 08/11-8:30 as 11:00h Ementa: 1. Funções 2. Eq. Diferenciais Ordinárias de 1 a ordem 3. Sistemas de Equações
ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI -UNITAU MATEMÁTICA-PROF. CARLINHOS/KOBA-3º ENSINO MÉDIO
ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI -UNITAU MATEMÁTICA-PROF. CARLINHOS/KOBA-3º ENSINO MÉDIO EXERCÍCIOS PARA ESTUDO DE RECUPERAÇÃO DO 1º SEMESTRE MATEMÁTICA I 1) Um ponto P pertence ao eixo das ordenadas
MATEMÁTICA FORMULÁRIO 11) A = onde. 13) Para z = a + bi, z = z = z (cosθ + i senθ) 14) (x a) 2 + (y b) 2 = r 2
[ MATEMÁTICA FORMULÁRIO 0 o 45 o 60 o cosec x =, sen x 0 sen x sen cos tg sec x =, cos x 0 cos x sen x tg x =, cos x 0 cos x cos x cotg x =, sen x 0 sen x sen x + cos x = ) a n = a + (n ) r ) A = onde
