Continuidade de uma função
|
|
|
- Margarida de Escobar Balsemão
- 9 Há anos
- Visualizações:
Transcrição
1 Continuidade de uma função Consideremos f : D f uma função real de variável real (f.r.v.r.) e a um ponto de acumulação de D f que pertence a D f. Diz-se que a função f é contínua em a se lim f x f a. x a Diz-se que a função f é contínua se f é contínua em qualquer ponto do seu domínio. Diz-se que f é contínua à direita em a se diz-se que f é contínua à esquerda em a se lim f x f a ; x a Da definição de limite segundo Cauchy, resulta que lim f x f a. x a f é contínua em a sse x : x D f x a f x f a Da definição de limite segundo Heine, resulta que f é contínua em a sse para qualquer sucessão x n, de elementos de D f, se x n a então f x n f a. Ana Matos - AMI 7/8 (versão de 26 de Março 8) Acet. Continuidade 1
2 Prolongamento por continuidade Sendo f e g duas funções com domínios D f e D g, diz-se que g é um prolongamento de f (ou que f é uma restrição de g) se D f D g e x D f, f x g x. Diz-se que f é prolongável por continuidade a a, sendo a um ponto de acumulação de D f que não pertence a D f, se existe um prolongamento de f, com domínio D f a, contínuo em a. Proposição: Seja f : D f e a um ponto de acumulação de D f, com a D f. f é prolongável por continuidade a a sse existe (e é finito) lim f x. x a Neste caso, o prolongamento por continuidade de f a a é a função definida por g : D f a g x f x, se x D f lim f x, se x a x a Exemplo: O prolongamento por continuidade de g : definida por g x sinx x sinx x, se x 1, se x. é a função Ana Matos - AMI 7/8 (versão de 26 de Março 8) Acet. Continuidade 2
3 Teoremas fundamentais das funções contínuas Se a, b D f, então diz-se que f é contínua no intervalo a, b se f é contínua em a, b, é contínua à direita em a e é contínua à esquerda em b. Teorema de Bolzano (ou do Valor Intermédio): Seja f : D f uma função contínua em a, b, com a b. Então, para qualquer k estritamente compreendido entre f a e f b, existe pelo menos um c a, b tal que f c k. Intuitivamente, uma função contínua num intervalo não passa de um valor a outro sem assumir todos os valores intermédios. Corolário 1: Se f é contínua no intervalo a, b e não se anula em algum ponto de a, b, então em todos os pontos de a,b a função f tem o mesmo sinal. Corolário 2: Se f é contínua no intervalo a, b e f a f b então f tem pelo menos um zero em a,b. Teorema de Weirstrass: Qualquer função contínua num intervalo a,b (fechado e limitado) tem máximo e mínimo nesse intervalo. Observação: Em qualquer um destes resultados, as condições são apenas condições suficientes; não são condições necessárias. Ana Matos - AMI 7/8 (versão de 26 de Março 8) Acet. Continuidade 3
4 Propriedades das funções contínuas (relativamente às operações) Proposição: Se f,g são funções contínuas em a e k, então: as funções kf, f g, f g, f g e f são contínuas em a; se g a, as funções 1 g e f g são contínuas em a. Proposição: Se f é uma função contínua em a e g é contínua em f a, então g fécontínua em a. Teorema (continuidade da função inversa): Se f : I é uma função contínua e estritamente monótona em I, então: f é invertível em I; f 1 é estritamente monótona; f 1 é contínua. Observação: O facto de f ser estritamente monótona em I garante que f é injectiva em I. Ana Matos - AMI 7/8 (versão de 26 de Março 8) Acet. Continuidade 4
5 Aplicação às funções trigonométricas inversas A função seno tem domínio econtradomínio 1, 1, é periódica (com período 2, é ímpar, anula-se em x k, com k ; não é injectiva nem sobrejectiva. Restringindo-a a,, temos a restrição principal do seno: 2 2 sen : 2, 1, 1, 2 que é contínua e estritamente crescente em,, logo 2 2 invertível e com inversa contínua e estritamente crescente em 1,1 : sen x arcsen x arcsen : 1, 1 2, 2 e y arcsen x sen y x y 2, 2 Ana Matos - AMI 7/8 (versão de 26 de Março 8) Acet. Continuidade 5
6 A função coseno tem domínio econtradomínio 1, 1, é periódica (com período 2, é par e anula-se para x k 2, com k ; não é injectiva nem sobrejectiva. Restringindo-a a,, temos a restrição principal do coseno: cos :, 1, 1, que é contínua e estritamente decrescente em,, logo é invertível e a sua inversa é contínua e estritamente decrescente em 1,1 : π 1 π cosx arccos x arccos : 1, 1, e y arccosx cosy x y, Ana Matos - AMI 7/8 (versão de 26 de Março 8) Acet. Continuidade 6
7 A função tangente, definida por tgx cosx senx, tem domínio \ k : k e contradomínio, é periódica (com 2 período, é ímpar e anula-se em x k, com k ; não é injectiva mas é sobrejectiva: Restringindo-a a, 2 2 tangente, temos a restrição principal da tg : 2,, 2 que é contínua e estritamente crescente em,, logo é 2 2 invertível e a sua inversa é contínua e estritamente crescente em : - - tg x arctg x arctg : 2, 2 e y arctg x tg y x y 2, 2 Ana Matos - AMI 7/8 (versão de 26 de Março 8) Acet. Continuidade 7
8 A função cotangente, definida por cotg x cosx senx, tem domínio \ k : k e contradomínio, é periódica (com período, é ímpar anula-se em x k, com k ; não é injectiva 2 mas é sobrejectiva: Restringindo-a a,, obtemos a restrição principal da cotangente: cotg :,, que é contínua e estritamente decrescente em,, logo é invertível e a sua inversa é contínua e estritamente decrescente em : π π cotg x arccotg x arccotg :, e y arccotg x cotg y x y, Ana Matos - AMI 7/8 (versão de 26 de Março 8) Acet. Continuidade 8
Limites e continuidade
Limites e continuidade Limite (finito) de uma função em a Salvo indicação em contrário, quando nos referimos a uma função estamos sempre a considerar funções reais de variável real (f.r.v.r.), ou seja,
A. Funções trigonométricas directas
A. Funções trigonométricas directas As funções seno, cosseno, tangente e cotangente são contínuas e periódicas nos respectivos domínios. Todas elas são funções não injectivas e, portanto, não possuem inversa.
Capítulo 1 Funções reais de uma variável 1.2 Funções trigonométricas inversas
As funções trigonométricas seno, coseno, tangente e cotangente não são funções injetivas, não sendo portanto invertíveis nos respetivos domínios. Para definir as respetivas funções inversas tem de se considerar
3 Funções reais de variável real (Soluções)
3 Funções reais de variável real (Soluções). a) Como e é crescente, com contradomínio ]0, + [, o contradomínio de f é ]e, + [. Para > 0 e y ] e, + [, temos Logo, a inversa de f é f () = y e = y = log y
A derivada da função inversa, o Teorema do Valor Médio e Máximos e Mínimos - Aula 18
A derivada da função inversa, o Teorema do Valor Médio e - Aula 18 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 10 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014106
3 Limites e Continuidade(Soluções)
3 Limites e Continuidade(Soluções). a) Como e é crescente, com contradomínio ]0, + [, o contradomínio de f é ]e, + [. Para > 0 e y ] e, + [, temos Logo, a inversa de f é f () = y e = y = log y = log y
Complementos de Cálculo Diferencial
Matemática - 009/0 - Comlementos de Cálculo Diferencial 47 Comlementos de Cálculo Diferencial A noção de derivada foi introduzida no ensino secundário. Neste teto retende-se relembrar algumas de nições
Jaime Carvalho e Silva. Princípios de Análise Matemática Aplicada. Suplemento
Jaime Carvalho e Silva Princípios de Análise Matemática Aplicada Suplemento 2002/2003 2 Departamento de Matemática Universidade de Coimbra Contacto com o autor: [email protected] Página de apoio: http://www.mat.uc.pt/~jaimecs/index_aulas.html
1. FUNÇÕES REAIS DE VARIÁVEL REAL
1 1 FUNÇÕES REAIS DE VARIÁVEL REAL 11 Funções trigonométricas inversas 111 As funções arco-seno e arco-cosseno Como as funções seno e cosseno não são injectivas em IR, só poderemos definir as suas funções
Cálculo diferencial. Motivação - exemplos de aplicações à física
Cálculo diferencial Motivação - eemplos de aplicações à física Considere-se um ponto móvel sobre um eio orientado, cuja posição em relação à origem é dada, em função do tempo, pela função s. st posição
4 Cálculo Diferencial
4 Cálculo Diferencial 1 (Eercício IV1 de [1]) Calcule as derivadas das funções: a) tg, b) +cos 1 sen, c) e arctg, d) e log, e) sen cos tg, f) (1 + log ), g) cos(arcsen ) h) (log ), i) sen Derive: a) arctg
Apresente todos os cálculos e justificações relevantes. a) Escreva A e B como intervalos ou união de intervalos e mostre que C = { 1} [1, 3].
Instituto Superior Técnico Departamento de Matemática 1. o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL I - Versão A LEAN, LEMat, MEQ 1. o Sem. 2016/17 12/11/2016 Duração: 1h0m Apresente todos os cálculos e
CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBIOM, MEFT 1 o SEM. 2010/11 2 a FICHA DE EXERCÍCIOS - PARTE 2
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBIOM, MEFT 1 o SEM. 010/11 a FICHA DE EXERCÍCIOS - PARTE I. Representação gráfica
T. Rolle, Lagrange e Cauchy
T. Rolle, Lagrange e Cauchy EXERCÍCIOS RESOLVIDOS. Mostre que a equação 5 + 5 = 5 tem uma única solução em R. Seja f = 5 +5 5. Então f é contínua e diferenciável em R. Temos f = 5 4 + > 0, em R, logo f
4 Cálculo Diferencial
4 Cálculo Diferencial 1. (Eercício IV.1 de [1]) Calcule as derivadas das funções: a) tg, b) +cos 1 sen, c) e arctg, d) e log2, e) sen cos tg, f) 2 (1 + log ), g) cos(arcsen ) h) (log ), i) sen 2. 2. Derive:
Preparação para o Cálculo
Preparação para o Cálculo Referencial cartesiano Representação gráfica Um referencial cartesiano é constituído por duas rectas perpendiculares (fias), com ponto de intersecção O: O diz-se a origem do referencial;
Complementos de Cálculo Diferencial
MTDI I - 7/8 - Comlementos de Cálculo Diferencial 34 Comlementos de Cálculo Diferencial A noção de derivada foi introduzida no ensino secundário. Neste caítulo retende-se relembrar algumas de nições e
Matemática I - 2 a Parte: Cálculo Diferencial e Integral real
Matemática I - 2 a Parte: Cálculo Diferencial e Integral real Ana Rita Martins Católica Lisbon 1 o Semestre 2012/2013 1 / 99 Funções Uma função é uma correspondência f entre dois conjuntos A e B, que a
Limite - Propriedades Adicionais
Limite - Propriedades Adicionais Juliana Pimentel [email protected] Propriedades Adicionais do Limite Os próximos três teoremas são propriedades adicionais de limites. Teorema (Teste da Comparação)
Trigonometria e funções trigonométricas. Funções trigonométricas O essencial
Trigonometria e funções trigonométricas Funções trigonométricas O essencial Funções seno e cosseno Designa-se por função seno (respetivamente, função cosseno) e representa-se por sin ou sen (respetivamente,
MatemáticaI Gestão ESTG/IPB Departamento de Matemática 28
Cap. Funções Reais de variável Real MatemáticaI Gestão ESTG/IPB Departamento de Matemática 8. Conjuntos de Números,,3 Números Naturais,,, 0,,, Números Inteiros a : a, b, b 0 Números Racionais b Irracionais
Ana Carolina Boero. Página: Sala Bloco A - Campus Santo André
Funções de uma variável real a valores reais E-mail: [email protected] Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Funções de uma variável real a valores
2. Tipos de funções. Funções pares e ímpares Uma função f é par se é simétrica em relação ao eixo y, isto é, f( x) = f(x).
1. Algumas funções básicas 2. Tipos de funções Funções pares e ímpares Uma função f é par se é simétrica em relação ao eio y, isto é, f( ) = f(). Eemplos: A função f() = n onde n inteiro positivo é par?
MAT146 - Cálculo I - Derivada das Inversas Trigonométricas
MAT46 - Cálculo I - Derivada das Inversas Trigonométricas Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira Vimos anteriormente que as funções trigonométricas não são inversíveis, mas
Cálculo Diferencial e Integral I
2 o Ficha B1 x 2 x se x > 0 x + 1 x arctg(x 2 ) x se x 0 i) Estude a função f do ponto de vista da continuidade. iii) O conjunto f([1, 2]) é limitado? Resolução. 1. i) Para x > 0 a função f é contínua
Cálculo Diferencial e Integral I 1 o Sem. 2016/17 - LEAN, MEMat, MEQ FICHA 11 - SOLUÇÕES
Instituto Superior Técnico Departamento de Matemática Cálculo Diferencial e Integral I o Sem 06/7 - LEAN, MEMat, MEQ FICHA - SOLUÇÕES Teorema Fundamental do Cálculo Regra de Barrow Integração por partes
Matemática Computacional I
Universidade da Beira Interior Departamento de Matemática Matemática Computacional I CURSO: ENGENHARIA INFORMÁTICA Alberto Simões [email protected] 204/205 Conteúdo Funções Reais de Variável Real. O Conjunto
Ficha de Problemas n o 6: Cálculo Diferencial (soluções) 2.Teoremas de Rolle, Lagrange e Cauchy
Ficha de Problemas n o 6: Cálculo Diferencial soluções).teoremas de Rolle, Lagrange e Cauchy. Seja f) = 3 e. Então f é contínua e diferenciável em R. Uma vez que f) = +, f0) = conclui-se do Teorema do
1. Polinómios e funções racionais
Um catálogo de funções. Polinómios e funções racionais Polinómios e funções racionais são funções que se podem construir usando apenas as operações algébricas elementares. Recordemos a definição: Definição
Exercícios - Propriedades Adicionais do Limite Aula 10
Exercícios - Propriedades Adicionais do Limite Aula 10 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 05 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia
A derivada da função inversa
A derivada da função inversa Sumário. Derivada da função inversa............... Funções trigonométricas inversas........... 0.3 Exercícios........................ 7.4 Textos Complementares................
Derivada da função composta, derivada da função inversa, derivada da função implícita e derivada de funções definidas parametricamente.
Análise Matemática - 007/008.5.- Derivada da função composta, derivada da função inversa, derivada da função implícita e derivada de funções definidas parametricamente. Teorema.31 Derivada da Função Composta
Apresente todos os cálculos e justificações relevantes
Análise Matemática I 2 o Teste e o Exame Campus da Alameda 9 de Janeiro de 2006, 3 horas Licenciaturas em Engenharia do Ambiente, Engenharia Biológica, Engenharia Civil, Engenharia e Arquitectura Naval,
0.1 Função Inversa. Notas de Aula de Cálculo I do dia 07/06/ Matemática Profa. Dra. Thaís Fernanda Mendes Monis.
Notas de Aula de Cálculo I do dia 07/06/03 - Matemática Profa. Dra. Thaís Fernanda Mendes Monis. 0. Função Inversa Definição. Uma função f : A C é injetiva se f(x) f(y) para todo x y, x, y A. Seja f :
Derivadas. Slides de apoio sobre Derivadas. Prof. Ronaldo Carlotto Batista. 21 de outubro de 2013
Cálculo 1 ECT1113 Slides de apoio sobre Derivadas Prof. Ronaldo Carlotto Batista 21 de outubro de 2013 AVISO IMPORTANTE Estes slides foram criados como material de apoio às aulas e não devem ser utilizados
Funções reais de variável real.
Capítulo 3 Funções reais de variável real. Continuidade. Diferenciabilidade. Este capítulo tem como primeiro objectivo desenvolver as bases da teoria da continuidade de funções reais de variável real.
Instituto Politécnico de Bragança Escola Superior de Tecnologia e Gestão. Análise Matemática I 2003/04
Instituto Politécnico de Bragança Escola Superior de Tecnologia e Gestão Análise Matemática I 00/0 Ficha Prática nº Parte III Função Eponencial Função Logaritmo Funções trigonométricas directas e inversas
FICHA 11 - SOLUÇÕES. b a f(x)g(x)dx b a g(x)dx M,
Instituto Superior Técnico Departamento de Matemática Cálculo Diferencial e Integral I - o Sem 07/8 - LEGM, MEC FICHA - SOLUÇÕES a = f/; b = f; c / = f/ Começe por aplicar o Teorema de Weierstrass a f
FUNÇÕES TRIGONOMÉTRICAS E FUNÇÕES TRIGONOMÉTRICAS INVERSAS
FUNÇÕES TRIGONOMÉTRICAS E FUNÇÕES TRIGONOMÉTRICAS INVERSAS 1. FUNÇÕES TRIGONOMÉTRICAS 1.1. FUNÇÃO SENO Seja P a imagem de um ângulo no ciclo trigonométrico. Já vimos que o seno do ângulo é definido como
Trigonometria no Círculo - Funções Trigonométricas
Trigonometria no Círculo - Funções Trigonométricas Prof. Márcio Nascimento [email protected] Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em
1. Arcos de mais de uma volta. Vamos generalizar o conceito de arco, admitindo que este possa dar mais de uma volta completa na circunferência.
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Trigonometria II Prof.: Rogério
Exercícios de Cálculo Diferencial e Integral I, Amélia Bastos, António Bravo, Paulo Lopes 2011
Eercícios de Cálculo Diferencial e Integral I, Amélia Bastos, António Bravo, Paulo Lopes Introdução Neste teto apresentam-se os enunciados de conjuntos de eercícios para as aulas de problemas do curso
1.1. Expressão geral de arcos com uma mesma extremidade Expressão geral de arcos com uma mesma extremidade
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA 1.1. Expressão geral de arcos
Módulo 3 FUNÇÕES (1ª Parte)
. Módulo 3 FUNÇÕES (ª Parte) Eercícios ) O esquema seguinte representa uma página da agenda teleónica da Maalda Objectivos Recordar: A (nomes) Médico (João) B (teleones) 397345 (casa) 3973456 (consultório)
Estudo de funções. Universidade Portucalense Departamento de Inovação, Ciência e Tecnologia Curso Satélite - Módulo I - Matemática.
Universidade Portucalense Departamento de Inovação, Ciência e Tecnologia Curso Satélite - Módulo I - Matemática Estudo de funções Continuidade Consideremos as funções: f : R R g : R R x x + x x +, x 1
LISTA DE EXERCÍCIOS. Trigonometria no Triângulo Retângulo e Funções Trigonométricas
LISTA DE EXERCÍCIOS Pré-Cálculo UFF GMA 09 Trigonometria no Triângulo Retângulo e Funções Trigonométricas [0] (* Em sala de aula vimos como usar um quadrado e um triângulo equilátero para obter os valores
MATEMÁTICA MÓDULO 10 EQUAÇÕES E INEQUAÇÕES TRIGONOMÉTRICAS 1. EQUAÇÕES TRIGONOMÉTRICAS BÁSICAS 1.1. EQUAÇÃO EM SENO. sen a arcsena 2k, k arcsena 2k, k
EQUAÇÕES E INEQUAÇÕES TRIGONOMÉTRICAS. EQUAÇÕES TRIGONOMÉTRICAS BÁSICAS Vamos mostrar como resolver equações trigonométricas básicas, onde temos uma linha trigonométrica aplicada sobre uma função e igual
ATIVIDADES EM SALA DE AULA Cálculo I -A- Humberto José Bortolossi
ATIVIDADES EM SALA DE AULA Cálculo I -A- Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ 08 Continuidade e O Teorema do Valor Intermediário [0] (2008.) (a) Dê um exemplo de uma função
Cálculo Diferencial e Integral I
Cálculo Diferencial e Integral I Resolução do Eame / Testes de Recuperação I.. (, val.)determine os ites das seguintes sucessões convergentes (i) u n n + n n e n + n, (ii) v n n + π n Resolução: i) A sucessão
Universidade Federal de Viçosa
Universidade Federal de Viçosa Ciências Eatas e Tecnológicas Departamento de Matemática MAT 4 - Lista - 07/. Determine o domínio a imagem as raízes e o estudo de sinal das funções a seguir: (a) f() = 4
Resolução dos Exercícios Propostos no Livro
Resolução dos Eercícios Propostos no Livro Eercício : Considere agora uma função f cujo gráfico é dado por y 0 O que ocorre com f() quando se aproima de por valores maiores que? E quando se aproima de
Seno e cosseno de arcos em todos os. quadrantes
Trigonometria Seno e cosseno de arcos em todos os quadrantes Seno e cosseno de arcos em todos os quadrantes Exemplo: Vamos determinar X, com 0 x < 2π tal que sen x = - 1 2. Seno e cosseno de arcos em todos
Elementos de Matemática I. Manuel Delgado e Elisa Mirra
Elementos de Matemática I Manuel Delgado e Elisa Mirra Versão de de Outubro de 2007 Conteúdo Introdução v I Cálculo 0 Preliminares 3 0. Números reais............................ 3 0.2 Funções...............................
Limites de Funções. Bases Matemáticas. 2 o quadrimestre de o quadrimestre de / 57
2 o quadrimestre de 2017 2 o quadrimestre de 2017 1 / Visão Geral 1 Limites Finitos Limite para x ± 2 Limites infinitos Limite no ponto Limite para x ± 3 Continuidade Definição e exemplos Resultados importantes
TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS
1 TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS Aula 8 Funções Trigonométricas Professor Luciano Nóbrega 2º Bimestre GABARITO: 1) 20 m TESTANDO OS CONHECIMENTOS 1 (UFRN) Observe a figura a seguir e determine a
CÁLCULO I. Figura 1: Círculo unitário x2 + y 2 = 1
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula no 05: Funções Logarítmica, Exponencial e Hiperbólicas. Objetivos da Aula De nir as funções trigonométricas, trigonométricas
ENSINO SECUNDÁRIO 11.º ANO. 1. Pela lei dos Senos, tem-se que: = 5. De onde se tem = Logo, a opção correta é a opção (C).
ENSINO SECUNDÁRIO.º ANO M A T E M Á T I C A A: R E S O L U Ç Ã O D O TR A B A L H O I N D I V I D U A L P R O F E S S O R C A R L O S MI G U E L SA N T O S. Pela lei dos Senos, tem-se que: De onde se tem
Capítulo II. Funções reais de variável real. 2.1 Conceitos Básicos sobre Funções. ( x)
Capítulo II Funções reais de variável real. Conceitos Básicos sobre Funções Sejam D e B dois conjuntos. Uma unção deinida em D e tomando valores em B é uma regra que a cada elemento de D az corresponder
cotg ( α ) corresponde ao valor da abcissa do
Capítulo II: Funções Reais de Variável Real 59 Função co-tangente Seja α um ângulo representado no círculo trigonométrico. ( α ) corresponde ao valor da abcissa do ponto que resulta de projectar o lado
Propriedades das Funções Contínuas
Propriedades das Funções Contínuas Juliana Pimentel [email protected] Propriedades das Funções Contínuas Seguem das propriedades do limite, as seguintes propriedades das funções contínuas.
CÁLCULO I. Figura 1: Círculo unitário x2 + y 2 = 1
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Prof. Emerson Veiga Prof. Tiago Coelho Aula no 04: Funções Trigonométricas, Logarítmica, Exponencial e Hiperbólicas. Objetivos
MAT001 Cálculo Diferencial e Integral I
1 MAT001 Cálculo Diferencial e Integral I RESUMO DA AULA TEÓRICA 4 Livro do Stewart: Apêndice D e Seção 16 FUNÇÕES TRIGONOMÉTRICAS O círculo trigonométrico e arcos orientados Num plano cartesiano, considere
Exercícios de Cálculo p. Informática, Ex 1-1 Nas alíneas seguintes use os termos inteiro, racional, irracional, para classificar
Eercícios de Cálculo p. Informática, 2006-07 Números Reais. E - Nas alíneas seguintes use os termos inteiro, racional, irracional, para classificar o número dado: 7 a) b) 6 7 c) 2.(3) = 2.33 d) 2 3 e)
MAT Aula 12/ 23/04/2014. Sylvain Bonnot (IME-USP)
MAT 0143 Aula 12/ 23/04/2014 Sylvain Bonnot (IME-USP) 2014 1 Resumo: 1 Site: http://www.ime.usp.br/~sylvain/courses.html 2 Hoje: correção da prova + derivadas. 3 Derivadas: definição de f (a) e equação
Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática. MTM Pré-cálculo
Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática MTM3100 - Pré-cálculo 14 a lista de exercícios (0/11/017 a 01/1/017) 1 Resolva as equações abaixo
Cálculo Diferencial e Integral I
Provas e listas: Cálculo Diferencial e Integral I Período 204.2 Sérgio de Albuquerque Souza 4 de maio de 205 UNIVERSIDADE FEDERAL DA PARAÍBA CCEN - Departamento de Matemática http://www.mat.ufpb.br/sergio
Trigonometria no Círculo - Funções Trigonométricas
Trigonometria no Círculo - Funções Trigonométricas Prof. Márcio Nascimento [email protected] Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em
( a) ( ) ( ) ( ) 1. A função m : x x x 2 tem por representação gráfica. A C 1 B D Seja f uma função definida em R.
Para cada uma das seguintes questões, seleccione a resposta correcta entre as quatro alternativas que são indicadas, justificando a sua escolha.. A função m : tem por representação gráfica. A C B D. Seja
Bases Matemáticas Continuidade. Propriedades do Limite de Funções. Daniel Miranda
Daniel De modo intuitivo, uma função f : A B, com A,B R é dita contínua se variações suficientemente pequenas em x resultam em variações pequenas de f(x), ou equivalentemente, se para x suficientemente
MATEMÁTICA 3. Professor Renato Madeira. MÓDULO 4 Função injetora, sobrejetora, bijetora, par, ímpar, crescente, decrescente, limitada e periódica
MATEMÁTICA 3 Professor Renato Madeira MÓDULO 4 Função injetora, sobrejetora, bijetora, par, ímpar, crescente, decrescente, limitada e periódica SUMÁRIO 1. Funções monotônicas (crescente ou decrescente)
Proposta de correcção
Ficha de Trabalho Matemática A - ºano Temas: Trigonometria (Triângulo rectângulo e círculo trigonométrico) Proposta de correcção. Relembrar que um radiano é, em qualquer circunferência, a amplitude do
Maria do Carmo Martins. Novembro de /85
Funções Maria do Carmo Martins Novembro de 2013 1/85 Poema de Luís Soares Cada reta é um caminho interrompido Que curva No desconhecido. Nenhuma reta se traça Entre quem ama e quem não ama A geometria
10. OUTRAS FUNÇÕES TRIGONOMÉTRICAS
0. OUTRAS FUNÇÕES TRIGONOMÉTRICAS Consideremos um triângulo retângulo ABC e seja t um dos seus ângulos agudos. Figura Relembremos que, sendo 0 < t < π/, temos tg t = b c (= cateto oposto cateto adjacente)
Capítulo II. Funções reais de variável real. 2.1 Conceitos Básicos sobre Funções. ( x)
Capítulo II Funções reais de variável real.1 Conceitos Básicos sobre Funções Sejam D e B dois conjuntos. Uma unção deinida em D e tomando valores em B é uma regra que a cada elemento de D az corresponder
Funções - Quarta Lista de Exercícios
Funções - Quarta Lista de Exercícios Módulo 1 - Funções Trigonométricas 1. Converta de graus para radianos: (a) 30 (b) 10 (c) 45 (d) 135 (e) 170 (f) 70 (g) 15 (h) 700 (i) 1080 (j) 36. Converta de radianos
Funções Trigonométricas. A função Seno. Função Seno. Função Seno: Propriedades. f : R R. = medida algébrica do. CD(f ) = R, Im(f ) = [ 1, 1].
Funções Trigonométricas função Seno Função Seno Função Seno: ropriedades (a) sen( + π) = sen() R R f () = sen() segmento (b) sen() = sen( ) Se está no primeiro ou segundo quadrante então sen() é positivo.
Universidade de Trás-os-Montes e Alto Douro. Biomatemática/ Matemática I FOLHAS PRÁTICAS
Universidade de Trás-os-Montes e Alto Douro Biomatemática/ Matemática I FOLHAS PRÁTICAS Licenciaturas em Arquitectura Paisagista, Biologia e Geologia (ensino) e Biologia (cientíco) Ano lectivo 004/005
Funções - Terceira Lista de Exercícios
Funções - Terceira Lista de Exercícios Módulo 1 - Trigonometria e Funções Trigonométricas 1. Converta de graus para radianos: a) 0 b) 10 c) 45 d) 15 e) 170 f) 70 g) 15 h) 700 i) 1080 j) 6. Converta de
Capítulo 5 - Funções Reais de Variável Real
Capítulo 5 - Funções Reais de Variável Real Carlos Balsa [email protected] Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática I - 1 o Semestre 2011/2012 Matemática I 1/
Capítulo 1 Como motivação para a construção dos números complexos aconselha-se o visionamento do quinto do capítulo do documentário Dimensions, disponível em http://www.dimensions-math.org/ Slides de apoio
Primitivação. A primitivação é a operação inversa da derivação.
Primitivação A primitivação é a operação inversa da derivação. Definição: Seja f uma função definida num intervalo I. Qualquer função F definida e diferenciável em I tal que F x fx, para todo o x I, diz-se
