MAT001 Cálculo Diferencial e Integral I
|
|
|
- João Pedro Barroso Pinho
- 9 Há anos
- Visualizações:
Transcrição
1 1 MAT001 Cálculo Diferencial e Integral I RESUMO DA AULA TEÓRICA 4 Livro do Stewart: Apêndice D e Seção 16 FUNÇÕES TRIGONOMÉTRICAS O círculo trigonométrico e arcos orientados Num plano cartesiano, considere a circunferência de centro na origem O e raio igual a uma unidade de medida Essa circunferência é chamada de círculo trigonométrico O ponto A (1, 0) será a origem dos arcos orientados que serão construídos sobre essa circunferência Seja um número real entre 0 e Imagine um ponto móvel M deslocando-se no sentido anti-horário sobre o círculo trigonométrico, iniciando seu percurso no ponto A, e percorrendo uma distância igual a unidades de comprimento Ao final desse percurso ele pára num ponto P do círculo trigonométrico A trajetória descrita por M é o arco orientado de medida Nesse caso, dizemos o ângulo central AOP ˆ, que subtende o arco AP, tem medida radianos Relembrar a relação entre graus e radianos: x radianos 180 x graus O seno, o cosseno e a tangente de : Continuando com entre 0 e, sejam A (1, 0) e P ( a, b) as extremidades do arco orientado de medida radianos Definimos e representamos o seno, o cosseno e a tangente de da seguinte maneira: sen( ) b, cos( ) a e sen( ) b tg( ), se cos( ) a x e x 3 Desse modo, pontos sobre o círculo trigonométrico podem ser escritos na P cos( ), sen( ) forma
2 Exemplos: 0 3 seno cosseno tangente As funções trigonométricas reais: Seja x um número real qualquer Existem únicos q Z e 0, tais que x q Definimos o sen( x ), cos( x ) e tg( x ) como sendo, respectivamente, o seno, o cosseno e a tangente de radianos No caso da tangente, devemos ter x k, k Z Os gráficos das funções: y sen( x), y cos( x) e y tg( x) estão representados a seguir
3 3 Observação: cada uma dessas funções é periódica, de período Isso significa que para todo x real: sen( x) sen( x ) cos( x) cos( x ) tg( x) tg( x ) IDENTIDADES TRIGONOMÉTRICAS Para todo número real x valem as igualdades: cos ( x) sen ( x) 1 cos( x) cos( x) cosx sen x sen( x) sen( x) sen x cos x Cosseno da soma: vamos mostrar que para quaisquer números reais a e b é válida a identidade cos( ab) cos( a)cos( b) sen( a)sen( b) b e A (1, 0) sobre o círculo trigonométrico Observe que o raio OP faz ângulo a b com o eixo x positivo Agora, faça uma rotação no triângulo OAP de modo que ele fique na posição do triângulo ORQ (observe as figuras a seguir) Para isso, considere os pontos P cos( a b), sen( a )
4 4 Pela definição das funções seno e cosseno, vemos que as coordenadas dos pontos Q e R são: Q (cos( b), sen( b )) e R (cos( a), sen( a)) Uma vez que os segmentos AP e RQ possuem o mesmo comprimento, pela fórmula da distância entre dois pontos, vemos que AP RQ implica: cos( ab) 1 sen( ab) 0 cos( b) cos( a) sen( b) sen( a) Desenvolvendo essa igualdade e simplificando obtemos a identidade desejada cos( ab) cos( a)cos( b) sen( a)sen( b) Outras identidades trigonométricas semelhantes: cos( a b) cos( a)cos( b) sen( a) sen( b) sen( ab) sen( a)cos( b) sen( b)cos( a) sen( ab) sen( a)cos( b) sen( a)cos( b) Arco duplo e arco metade: para todo número real x cos( x) cos ( x) sen ( x) sen( x) sen( x)cos( x) 1 cos( x) cos ( x) 1 cos( x) sen ( x) Lei dos cossenos: em qualquer triângulo ABC como o da figura, temos: a b c bccos( )
5 5 FUNÇÕES TRIGONOMÉTRICAS INVERSAS A função arco-seno: y sen( x) Na figura abaixo está representada uma parte do gráfico da função Desse gráfico percebe-se que no intervalo e que dado um número x a função y sen( x) y [ 1,1] existe um único x, y Esse número x é chamado de: o arco cujo seno vale x arcsen( y) é crescente, tal que sen( x ) y, e é representado por Mudando de notação, o que foi feito acima define uma nova função y arcsen( x) domínio é o intervalo [ 1,1] e cuja imagem é o intervalo, inversa do seno, quando esse está definido apenas no intervalo, cujo Essa é a função Uma vez que as funções y arcsen( x) e y sen( x) são inversas uma da outra, seus gráficos são simétricos em relação a reta x y Dessa simetria, pode-se construir o gráfico da função y arcsen( x), ilustrado abaixo
6 6 Propriedades: (1) y sen( x) arcsen( y) x, desde que () sen(arcsen( u)) u para todo u [ 1,1] (3) arcsen(s en( v)) v para todo v, A função arco-cosseno: x e 1 y 1 y cos( x) Na figura abaixo está representada uma parte do gráfico da função y existe um único Desse gráfico é fácil ver que para todo [ 1,1] x 0, tal que cos( x) y Esse número x é chamado de: o arco cujo cosseno vale y, e é representado por x arccos( y) Mudando de notação, o que foi feito acima define uma nova função y arccos( x) cujo domínio é o intervalo [ 1,1] e cuja imagem é o intervalo 0, Essa é a função inversa do cosseno, quando esse está definido apenas no intervalo 0, O gráfico dessa função, ilustrado abaixo, pode ser obtido através da reflexão do gráfico da função cosseno na reta x y Propriedades: (1) y cos( x) arccos( y) x, desde que 0 x e 1 y 1 () cos(arccos( u)) u para todo u [ 1,1] (3) arccos(cos( )) para todo v 0, v v
7 7 A função arco-tangente: O gráfico da função y tg( x) para figura abaixo x está ilustrado na parte da esquerda da Desse gráfico é fácil ver que para todo número real y existe um único x, tal que tg( x) y Esse número x é chamado de: o arco cuja tangente vale y, e é representado por x arctg( y) Mudando de notação, percebemos que isso define uma nova função domínio é o conjunto dos números reais e cuja imagem é o intervalo gráfico dessa função está ilustrado na parte direita da figura acima y arctg( x), cujo O Propriedades: (1) y tg( x) arctg( y) x, desde que () tg(arctg( u)) u para todo u R (3) arct g(tg( v)) v para todo v, x
MAT001 Cálculo Diferencial e Integral I
1 MAT001 Cálculo Diferencial e Integral I GEOMETRIA ANALÍTICA Coordenadas de pontos no plano cartesiano Distâncias entre pontos Sejam e dois pontos no plano cartesiano A distância entre e é dada pela expressão
Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática. MTM Pré-cálculo
Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática MTM3100 - Pré-cálculo 14 a lista de exercícios (0/11/017 a 01/1/017) 1 Resolva as equações abaixo
Capítulo 1 Funções reais de uma variável 1.2 Funções trigonométricas inversas
As funções trigonométricas seno, coseno, tangente e cotangente não são funções injetivas, não sendo portanto invertíveis nos respetivos domínios. Para definir as respetivas funções inversas tem de se considerar
Trigonometria no Círculo - Funções Trigonométricas
Trigonometria no Círculo - Funções Trigonométricas Prof. Márcio Nascimento [email protected] Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em
5 Demonstrações das fórmulas da adição de arcos no contexto da trigonometria no círculo trigonométrico
49 5 Demonstrações das fórmulas da adição de arcos no contexto da trigonometria no círculo trigonométrico Os conceitos inicialmente construídos, tendo o triângulo retângulo como referência serão estendidos
Proposta de correcção
Ficha de Trabalho Matemática A - ºano Temas: Trigonometria (Triângulo rectângulo e círculo trigonométrico) Proposta de correcção. Relembrar que um radiano é, em qualquer circunferência, a amplitude do
MATEMÁTICA MÓDULO 10 EQUAÇÕES E INEQUAÇÕES TRIGONOMÉTRICAS 1. EQUAÇÕES TRIGONOMÉTRICAS BÁSICAS 1.1. EQUAÇÃO EM SENO. sen a arcsena 2k, k arcsena 2k, k
EQUAÇÕES E INEQUAÇÕES TRIGONOMÉTRICAS. EQUAÇÕES TRIGONOMÉTRICAS BÁSICAS Vamos mostrar como resolver equações trigonométricas básicas, onde temos uma linha trigonométrica aplicada sobre uma função e igual
Trigonometria no Círculo - Funções Trigonométricas
Trigonometria no Círculo - Funções Trigonométricas Prof. Márcio Nascimento [email protected] Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em
MAT111 - Cálculo I - IF TRIGONOMETRIA. As Funçoes trigonométricas no triângulo retângulo
MAT111 - Cálculo I - IF - 010 TRIGONOMETRIA As Funçoes trigonométricas no triângulo retângulo Analisando a figura a seguir, temos que os triângulos retângulos OA 1 B 1 e OA B, são semelhantes, pois possuem
Ana Carolina Boero. Página: Sala Bloco A - Campus Santo André
Funções de uma variável real a valores reais E-mail: [email protected] Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Funções de uma variável real a valores
CUFSA - FAFIL Graduação em Matemática TRIGONOMETRIA (Resumo Teórico)
1 INTRODUÇÃO CUFSA - FAFIL Graduação em Matemática TRIGONOMETRIA (Resumo Teórico) ARCOS: Dados dois pontos A e B de uma circunferência, definimos Arco AB a qualquer uma das partes desta circunferência
FUNÇÕES TRIGONOMÉTRICAS. Teorema de Pitágoras Razões trigonométricas Circunferência trigonométrica
FUNÇÕES TRIGONOMÉTRICAS Teorema de Pitágoras Razões trigonométricas Circunferência trigonométrica Teorema de Pitágoras Em qualquer triângulo retângulo, o quadrado da medida da hipotenusa é igual à soma
MATEMÁTICA BÁSICA II TRIGONOMETRIA Aula 05
UNIVERSIDADE ESTADUAL VALE DO ACARAÚ CENTRO DE CIÊNCIAS EXATAS E TECNOLOGIA CURSO DE LICENCIATURA EM MATEMÁTICA MATEMÁTICA BÁSICA II TRIGONOMETRIA Aula 05 Prof. Márcio Nascimento [email protected]
1. Arcos de mais de uma volta. Vamos generalizar o conceito de arco, admitindo que este possa dar mais de uma volta completa na circunferência.
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Trigonometria II Prof.: Rogério
1.1. Expressão geral de arcos com uma mesma extremidade Expressão geral de arcos com uma mesma extremidade
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA 1.1. Expressão geral de arcos
Notas de aula: Cálculo e Matemática Aplicados à Notas de aula: Gestão Ambiental
Notas de aula: Cálculo e Matemática Aplicados à Notas de aula: Gestão Ambiental 1 Funções Definição: Sejam A e B, dois conjuntos, A /0, B /0. Uma função definida em A com valores em B é uma lei que associa
TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS
1 TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS Aula 8 Funções Trigonométricas Professor Luciano Nóbrega 2º Bimestre GABARITO: 1) 20 m TESTANDO OS CONHECIMENTOS 1 (UFRN) Observe a figura a seguir e determine a
EBS DA GRACIOSA - ENSINO SECUNDÁRIO 11.º ANO
EBS DA GRACIOSA - ENSINO SECUNDÁRIO.º ANO M A T E M Á T I C A : RES O L U Ç Ã O D A F I C H A D E AV A L I A Ç Ã O P R O F E S S O R C A R L O S MI G U E L SA N T O S GRUPO I. Pelo facto de o triângulo
FORMAÇÃO CONTINUADA FUNDAÇÃO CECIERJ / CONSÓRCIO CEDERJ
FORMAÇÃO CONTINUADA FUNDAÇÃO CECIERJ / CONSÓRCIO CEDERJ Matemática 1º ano 4º Bimestre /2014 Plano de Trabalho-2 Cursista Isa Louro Delbons Grupo - 02 Tutor Rodolfo Gregório de Moraes Um matemático é uma
Olá! Brunna e Fernanda. Matemática. Somos do PET Engenharia Ambiental
Trigonometria Olá! Brunna e Fernanda Somos do PET Engenharia Ambiental Matemática Vamos pensar + Considere cinco circunferências concêntricas de raios diferentes e um mesmo ângulo central subtendendo arcos
Circunferência. É o conjunto de pontos de um plano eqüidistantes de um ponto do plano chamado centro, e essa distância chama-se raio.
Trigonometria Matemática, 1º Ano, Função: conceito Circunferência É o conjunto de pontos de um plano eqüidistantes de um ponto do plano chamado centro, e essa distância chama-se raio. Matemática, 1º Ano,
4 Trigonometria no círculo trigonométrico
37 4 Trigonometria no círculo trigonométrico Com o surgimento do cálculo infinitesimal e posteriormente da análise matemática as noções básicas da trigonometria ganharam uma nova dimensão. Passaremos a
Trigonometria e funções trigonométricas. Funções trigonométricas O essencial
Trigonometria e funções trigonométricas Funções trigonométricas O essencial Funções seno e cosseno Designa-se por função seno (respetivamente, função cosseno) e representa-se por sin ou sen (respetivamente,
Esta é só uma amostra do livro do Prof César Ribeiro.
Esta é só uma amostra do livro do Prof César Ribeiro Para adquirir este (e outros livros do autor) vá ao site: http://wwwescolademestrescom/dicasemacetes Conheça também nosso Blog: http://blogescolademestrescom
8. AS FÓRMULAS DA ADIÇÃO DE DOIS ARCOS.
8. AS FÓRMULAS DA ADIÇÃO DE DOIS ARCOS. Vamos considerar fórmulas que calculam as funções trigonométricas da soma e diferença de dois arcos quando são dadas as funções trigonométricas desses arcos. Usaremos
Funções Trigonométricas
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Funções Trigonométricas
Capítulo 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 é assim definido:
Capítulo 1 1. Ângulo entre duas retas no espaço Definição 1 O ângulo (r1, r ) entre duas retas r1 e r é assim definido: (r1, r ) 0o se r1 e r são coincidentes, se as retas são concorrentes, isto é, r1
CICLO TRIGONOMÉTRICO
TRIGONOMETRIA CICLO TRIGONOMÉTRICO DEFINIÇÃO O Círculo Trigonométrico ou ciclo Trigonométrico é um recurso criado para facilitar a visualização das proporções entre os lados dos triângulos retângulos.
Prof André Costa de Oliveira. 1 Ano do Ensino médio; Trigonometria: Introdução: ângulos e arcos na circunferência;
Prof André Costa de Oliveira. 1 Ano do Ensino médio; Trigonometria: Introdução: ângulos e arcos na circunferência; Ângulo central: É todo ângulo que possui o seu vértice no centro da circunferência, o
1. Trigonometria no triângulo retângulo
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Trigonometria I Prof.: Rogério
Do estudo dos triângulos e em especial do triângulo retângulo, temos as propriedades:
Trigonometria Trigonometria Introdução A trigonometria é um importante ramo da Matemática. Derivada da Geometria (o termo trigonometria significa medida dos triângulos) é uma importante ferramenta para
Questão 1 (UFMG) Sendo A = 88 o 20', B = 31 o 40' e C = radianos, a expressão A + B - C é igual a: a) radianos b) 116 o 40' ;
APOSTILAS (ENEM) VOLUME COMPLETO Exame Nacional de Ensino Médio (ENEM) 4 VOLUMES APOSTILAS IMPRESSAS E DIGITAIS Questão 1 (UFMG) Sendo A = 88 o 20', B = 31 o 40' e C = radianos, a expressão A + B - C é
Como a PA é decrescente, a razão é negativa. Então a PA é dada por
Detalhamento das Soluções dos Exercícios de Revisão do mestre 1) A PA será dada por Temos Então a PA será dada por:, e como o produto é 440: Como a PA é decrescente, a razão é negativa. Então a PA é dada
Ciclo trigonométrico
COLÉGIO PEDRO II CAMPUS REALENGO II 1ª SÉRIE MATEMÁTICA II Ciclo trigonométrico Ciclo trigonométrico Chamamos de ciclo ou circunferência trigonométrica uma circunferência de raio unitário orientada. Na
Introdução ao Cálculo Vetorial
Introdução ao Cálculo Vetorial Segmento Orientado É o segmento de reta com um sentido de orientação. Por exemplo AB onde: A : origem e B : extremidade. Pode-se ter ainda o segmento BA onde: B : origem
TEMA 1 TRIGONOMETRIA FICHA DE TRABALHO 11.º ANO COMPILAÇÃO TEMA 1 TRIGONOMETRIA. Jorge Penalva José Carlos Pereira Vítor Pereira MathSuccess
FIH DE TRLHO.º NO OMPILÇÃO TEM TRIGONOMETRI Site: http://www.mathsuccess.pt Facebook: https://www.facebook.com/mathsuccess TEM TRIGONOMETRI Matemática.º no Ficha de Trabalho ompilação Tema Trigonometria
Aula 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 se define da seguinte maneira:
Aula 1 1. Ângulo entre duas retas no espaço Definição 1 O ângulo (r1, r ) entre duas retas r1 e r se define da seguinte maneira: (r1, r ) 0o se r1 e r são coincidentes, Se as retas são concorrentes, isto
Acadêmico(a) Turma: Capítulo 5: Trigonometria. Definição: Todo triângulo que tenha um ângulo de 90º (ângulo reto)
1 Acadêmico(a) Turma: 5.1. Triangulo Retângulo Capítulo 5: Trigonometria Definição: Todo triângulo que tenha um ângulo de 90º (ângulo reto) Figura 1: Ângulos e catetos de um triangulo retângulo. Os catetos
Matemática Ensino Médio Anotações de aula Trigonometira
Matemática Ensino Médio Anotações de aula Trigonometira Prof. José Carlos Ferreira da Silva 2016 1 ÍNDICE Trigonometria Introdução... 04 Ângulos na circunferência...04 Relações trigonométricas no triângulo
TEMA 1 TRIGONOMETRIA FICHA DE TRABALHO 11.º ANO COMPILAÇÃO TEMA 1 TRIGONOMETRIA. Jorge Penalva José Carlos Pereira Vítor Pereira MathSuccess
FIH DE TRLHO.º NO OMPILÇÃO TEM TRIGONOMETRI Site: http://www.mathsuccess.pt Facebook: https://www.facebook.com/mathsuccess TEM TRIGONOMETRI Matemática.º no Ficha de Trabalho ompilação Tema Trigonometria
1. Com o auxílio de régua graduada e transferidor, calcular sen 42, cos 42 e tg 42. Resolução Traçamos uma perpendicular a um dos lados desse ângulo:
Atividades Complementares 1. Com o auxílio de régua graduada e transferidor, calcular sen 4, cos 4 e tg 4. Traçamos uma perpendicular a um dos lados desse ângulo: Medimos, com auxílio da régua, os lados
Ciclo Trigonomé trico
Ciclo Trigonomé trico Aluno: Professores: Camila Machado, Joelson Rolino, Josiane Paccini, Rafaela Fidelis, Rafaela Nascimento. Aula 1 As origens da trigonometria Não se sabe ao certo da origem da trigonometria,
LISTA DE EXERCICIOS TRIÂNGULOS QUAISQUER. 1) Na figura ao abaixo calcule o valor da medida x. 2) No triângulo abaixo, determine as medidas x e y.
LISTA DE EXERCICIOS TRIÂNGULO RETÂNGULO 1) Um caminhão sobe uma rampa inclinada de 10º em relação ao plano horizontal. Se a rampa tem 30 m de comprimento, a quantos metros o caminhão se eleva, verticalmente
Introdução à Trigonometria 1
Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência c Publicação Eletrônica do KIT http://www.dma.uem.br/kit Introdução à Trigonometria
PROFORM Programa de Formação Diferenciada Curso Introdutório de Matemática para Engenharia CIME
PROFORM Programa de Formação Diferenciada Curso Introdutório de Matemática para Engenharia CIME 2012.2 Parte II Kerolaynh Santos e Tássio Magassy Engenharia Civil Identidades Trigonométricas Definição:
Matemática I Tecnólogo em Construção de Edifícios e Tecnólogo em Refrigeração e Climatização
22. Circunferência trigonométrica. Se inserirmos numa circunferência de raio unitário (r = 1) os eixos do sistema cartesiano ortogonal, de maneira que a origem do plano cartesiano coincida com o centro
Nome do aluno: N.º: Na resposta aos itens de resposta aberta, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias.
Teste de Matemática A 2018 / 2019 Teste N.º 3 Matemática A Duração do Teste (Caderno 1+ Caderno 2): 90 minutos 11.º Ano de Escolaridade Nome do aluno: N.º: Turma: Este teste é constituído por dois cadernos:
FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 3
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Teste.º Ano de escolaridade Versão Nome: N.º Turma: Professor: José Tinoco 0//0 Apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de
Formação continuada em MATEMÁTICA Fundação CECIERJ/ Consórcio CEDERJ
Formação continuada em MATEMÁTICA Fundação CECIERJ/ Consórcio CEDERJ MATEMÁTICA 1º ANO 4º BIMESTRE/ 2013 Sandra Maria Vogas Vieira [email protected] TRIGONOMETRIA NA CIRCUNFERÊNCIA TAREFA 2 CURSISTA:
a a a a a a c c c Trigonometria I Trigonometria I E dessa semelhança podemos deduzir que:
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA. Trigonometria no triângulo
Trigonometria. Trigonometria no Triângulo Retângulo. Pré-Cálculo. Trigonometria. Humberto José Bortolossi. Parte 7. trigonometria
Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Trigonometria Parte 7 Parte 7 Pré-Cálculo 1 Parte 7 Pré-Cálculo 2 Trigonometria trigonometria Trigonometria
Curvas Planas em Coordenadas Polares
Curvas Planas em Coordenadas Polares Sumário. Coordenadas Polares.................... Relações entre coordenadas polares e coordenadas cartesianas...................... 6. Exercícios........................
MATEMÁTICA. Questões de 01 a 12
GRUPO 5 TIPO A MAT. 1 MATEMÁTICA Questões de 01 a 12 01. Um circo com a forma de um cone circular reto sobre um cilindro circular reto de mesmo raio está com a lona toda furada. O dono do circo, tendo
A inversa da função seno
UFF/GMA Notas de aula de MB-I Maria Lúcia/Marlene 015-1 PARTE III FUNÇÕES TRIGONOMÉTRICAS INVERSAS Funções inversas. O que isso significa? A cada valor da imagem corresponde um e só um valor do domínio
Relembrando: Ângulos, Triângulos e Trigonometria...
Relembrando: Ângulos, Triângulos e Trigonometria... Este texto é apenas um resumo. Procure estudar esses assuntos em um livro apropriado. Ângulo é a região de um plano delimitada pelo encontro de duas
FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 4
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Teste.º Ano de escolaridade Versão 4 Nome: N.º Turma: Professor: José Tinoco 0//0 Apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de
carga do fio: Q. r = r p r q figura 1
Uma carga Q está distribuída uniformemente ao longo de um fio reto de comprimento infinito. Determinar o vetor campo elétrico nos pontos situados sobre uma reta perpendicular ao fio. Dados do problema
LISTA DE REVISÃO PROVA MENSAL 2º ANO 1º TRIMESTRE
ÁLGEBRA LISTA DE REVISÃO PROVA MENSAL º ANO 1º TRIMESTRE 1) O pêndulo de um relógio tem comprimento 0 cm e faz o movimento ilustrado na figura. Qual a medida do arco AB? A) 10 cm 0 cm 0π cm 0 D) cm E)
MÓDULO 3 FUNÇÕES (2ª parte Trigonometria) ângulo agudo indicadas na figura:
PAT MAT 007/008 MÓDULO FUNÇÕES (ª parte Trigonometria) EXERCÍCIOS OBJECTIVOS. Uma canalização de gás vai ser instalada a partir do ponto A até aos pontos C (igreja) e B (fábrica), Razões trigonométricas
Coordenadas Polares. Exemplos: Representar em um sistema de coordenadas polares, os seguintes pontos: d) P 4,
Coordenadas Polares Existem vários sistemas de coordenadas que mostram a posição de um ponto em um plano. O sistema de coordenadas polares é um deles. No sistema cartesiano, as coordenadas são números
AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática. A figura a seguir ilustra um arco BC de
GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DA EDUCAÇÃO AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática a série do Ensino Médio Turma 1 o Bimestre de 016 Data / / Escola Aluno EM Questão 1 A figura a seguir
LISTA DE EXERCÍCIOS. Trigonometria no Triângulo Retângulo e Funções Trigonométricas
LISTA DE EXERCÍCIOS Pré-Cálculo UFF GMA 09 Trigonometria no Triângulo Retângulo e Funções Trigonométricas [0] (* Em sala de aula vimos como usar um quadrado e um triângulo equilátero para obter os valores
MAT146 - Cálculo I - Derivada das Inversas Trigonométricas
MAT46 - Cálculo I - Derivada das Inversas Trigonométricas Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira Vimos anteriormente que as funções trigonométricas não são inversíveis, mas
FUNÇÕES TRIGONOMÉTRICAS NÉBIA MARA DE SOUZA
FUNÇÕES TRIGONOMÉTRICAS NÉBIA MARA DE SOUZA Vamos lembrar um pouco o ciclo trigonométrico? O eixo y é chamado de eixo das ordenadas e também conhecido como seno, a função seno é positiva no 1º e 2º quadrantes
8-Funções trigonométricas
8-Funções trigonométricas Laura Goulart UESB 25 de Março de 2019 Laura Goulart (UESB) 8-Funções trigonométricas 25 de Março de 2019 1 / 45 Vale mais ter um bom nome do que muitas riquezas; e o ser estimado
Formação Continuada em Matemática Fundação Cecierj/ Consórcio Cederj
Formação Continuada em Matemática Fundação Cecierj/ Consórcio Cederj Matemática 1º ano - 4º bimestre de 2012 Plano de Trabalho Trigonometria na Circunferência Cursista: Luciano Araujo Rêgo Tutor: Lezieti
REVISÃO DE CONCEITOS BÁSICOS
Carlos Aurélio Nadal Doutor em Ciências Geodésicas Professor Titular do Departamento de Geomática - Setor de Ciências da Terra Unidades de medidas que utilizavam o corpo humano 2,54cm 30,48cm 0,9144m 66cm
Fig.6.1: Representação de um ângulo α.
6. Trigonometria 6.1. Conceitos Iniciais A palavra trigonometria vem do grego [trigōnon = "triângulo", metron "medida"], ou seja, está relacionada com as medidas de um triângulo, sendo estas medidas de
Matemática A. Versão 2 RESOLUÇÃO GRUPO I. Teste Intermédio de Matemática A. Versão 2. Teste Intermédio. Duração do Teste: 90 minutos
Teste Intermédio de Matemática A Versão Teste Intermédio Matemática A Versão Duração do Teste: 90 minutos 7.0.0.º Ano de Escolaridade Decreto-Lei n.º 74/004, de 6 de Março RESOLUÇÃO GRUPO I. Resposta (A)
FUNÇÕES TRIGONOMÉTRICAS9
FUNÇÕES TRIGONOMÉTRICAS9 Gil da Costa Marques 9.1 Coordenadas cartesianas no plano 9.2 A circunferência trigonométrica; orientação 9.3 Definição de seno e cosseno de um número real 9.4 O seno e o cosseno
LISTA DE REVISÃO PROVA MENSAL 2º ANO 1º TRIMESTRE
ÁLGEBRA LISTA DE REVISÃO PROVA MENSAL º ANO 1º TRIMESTRE 1) O pêndulo de um relógio tem comprimento 0 cm e faz o movimento ilustrado na figura. Qual a medida do arco AB? A) 10 cm 0 cm 0π cm 0 D) cm E)
1 35. b) c) d) 8. 2x 1 8x 4. 3x 3 8x 8. 4 tgα ˆ MAN é igual a 4. . e) Sendo x a medida do segmento CN, temos a seguinte figura:
7. Considere um retângulo ABCD em que o comprimento do lado AB é o dobro do comprimento do lado BC. Sejam M o ponto médio de BC e N o ponto médio de CM. A tangente do ângulo MAN ˆ é igual a a) 5. b) 5.
Exercícios sobre Trigonometria
Universidade Federal Fluminense Campus do Valonguinho Instituto de Matemática e Estatística Departamento de Matemática Aplicada - GMA Prof Saponga uff Rua Mário Santos Braga s/n 400-40 Niterói, RJ Tels:
Seno e cosseno de arcos em todos os. quadrantes
Trigonometria Seno e cosseno de arcos em todos os quadrantes Seno e cosseno de arcos em todos os quadrantes Exemplo: Vamos determinar X, com 0 x < 2π tal que sen x = - 1 2. Seno e cosseno de arcos em todos
Extensão da tangente, secante, cotangente e cossecante, à reta.
UFF/GMA Notas de aula de MB-I Maria Lúcia/Marlene 05- Trigonometria - Parte - Tan-Cot_Sec-Csc PARTE II TANGENTE COTANGENTE SECANTE COSSECANTE Agora estudaremos as funções tangente, cotangente, secante
FORMAÇÃO CONTINUADA EM MATEMÁTICA FUNDAÇÃO CERCIERJ CONSÓRCIO CEDERJ MATEMÁTICA 1 ANO - 4 BIMESTRE PLANO DE TRABALHO
FORMAÇÃO CONTINUADA EM MATEMÁTICA FUNDAÇÃO CERCIERJ CONSÓRCIO CEDERJ MATEMÁTICA 1 ANO - 4 BIMESTRE PLANO DE TRABALHO TRIGONOMETRIA CURSISTA: ROBSON DOS SANTOS PRAXEDE TUTOR: MARCELO RODRIGUES NOVEMBRO
Exercícios de testes intermédios
Exercícios de testes intermédios 1. Qual das expressões seguintes designa um número real positivo, para qualquer x pertencente 3 ao intervalo,? (A) sin x cos x (B) cos x tan x tan x sin x sin x tan x Teste
GABARITO PROVA B GABARITO PROVA A. Colégio Providência Avaliação por Área 2ª SÉRIE ENSINO MÉDIO
Colégio Providência Avaliação por Área Matemática e suas tecnologias 1ª ETAPA Data: 11/05/2015 2ª SÉRIE ENSINO MÉDIO GABARITO PROVA A GABARITO PROVA B A B C D 1 XXXX xxxxx xxxxx xxxxx 2 4 5 6 7 8 9 10
Obter as equações paramétricas das cônicas.
MÓDULO 1 - AULA 1 Aula 1 Equações paramétricas das cônicas Objetivo Obter as equações paramétricas das cônicas. Estudando as retas no plano, você viu que a reta s, determinada pelos pontos P = (x 1, y
Equações paramétricas das cônicas
Aula 1 Equações paramétricas das cônicas Ao estudarmos as retas no plano, vimos que a reta r que passa por dois pontos distintos P 1 = x 1, y 1 ) e P = x, y ) é dada pelas seguintes equações paramétricas:
LISTA DE REVISÃO PROVA TRIMESTRAL ÁLGEBRA 2º ANO
LISTA DE REVISÃO PROVA TRIMESTRAL ÁLGEBRA º ANO. (Udesc) Assinale a alternativa que corresponde ao valor da expressão: 7 cos cos sen tg A) B) 5 C) 9 D) E). (Aman) Os pontos P e Q representados no círculo
Coordenadas Polares. Exemplos: Representar em um sistema de coordenadas polares, os seguintes pontos: d) P 4,
Cálculo II Profa. Adriana Cherri 1 Coordenadas Polares Existem vários sistemas de coordenadas que mostram a posição de um ponto em um plano. O sistema de coordenadas polares é um deles. No sistema cartesiano,
Ano: 2º ano Ensino Médio Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 2º BIMESTRE
Nome: Nº: Ano: 2º ano Ensino Médio Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi a) Conteúdos : ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 2º BIMESTRE Razões trigonométricas no triângulo
Aviso. Este material é apenas um resumo de parte do conteúdo da disciplina.
Aviso Este material é apenas um resumo de parte do conteúdo da disciplina. O material completo a ser estudado encontra-se no Capítulo 9 - Seções 9,1 e 9.2 do livro texto da disciplina: Números e Funções
Derivadas das Funções Trigonométricas Inversas
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Derivadas das Funções
RELAÇÕES TRIGONOMÈTRICAS
TÉCNICO EM EDIFICAÇÕES MÓDULO 01 RELAÇÕES TRIGONOMÈTRICAS NOTAS DE AULA: - Prof. Borja 2016.2 MÓDULO 1 Relações Trigonométricas OBJETIVOS Ao final deste módulo o aluno deverá ser capaz de: resolver problemas
10. OUTRAS FUNÇÕES TRIGONOMÉTRICAS
0. OUTRAS FUNÇÕES TRIGONOMÉTRICAS Consideremos um triângulo retângulo ABC e seja t um dos seus ângulos agudos. Figura Relembremos que, sendo 0 < t < π/, temos tg t = b c (= cateto oposto cateto adjacente)
o~~ ~------~
MAT1351 - Cálculo para Funções de uma Variável Real - TRGONOMETRA As Funçoes trigonométricas no triângulo retângulo Analisando a figura a seguir, temos que os triângulos retângulos b.dab e b.da 2 B 2,
EXERCÍCIOS AULÃO ITA PROF. RENATO MADEIRA
EXERCÍCIOS AULÃO ITA PROF. RENATO MADEIRA ) (EN 0) Um observador, de altura desprezível, situado a m de um prédio, observa-o sob um certo ângulo de elevação. Afastando-se mais 0 m em linha reta, nota que
QUESTÕES-AULA 37. (a) O período da função F (x) é T = 3 0 = 3. Dividimos a reta em intervalos da forma:
QUESTÕES-AULA 37 1. Considere a função f(x) = 4 x, 0 x < 3. 3 (a) Construa uma função periódica F (x) definida em todo o R, tal que F (x) = f(x) para todo x [0, 3). (b) Determine o período, a frequência
raio do arco: a; ângulo central do arco: θ 0; carga do arco: Q.
Sea um arco de circunferência de raio a e ângulo central carregado com uma carga distribuída uniformemente ao longo do arco. Determine: a) O vetor campo elétrico nos pontos da reta que passa pelo centro
Atividades de Recuperação Paralela de Matemática
Atividades de Recuperação Paralela de Matemática 2º ANO Ensino Médio 1º Trimestre Leia as orientações de estudos antes de responder as questões. Conteúdos para estudos: ÁLGEBRA Medidas de arcos Ciclo trigonométrico
Unidade 2 Funções Trigonométricas Inversas. Introdução Função Arco Seno Função Arco Cosseno Função Arco Tangente
Unidade 2 Funções Trigonométricas Inversas Introdução Função Arco Seno Função Arco Cosseno Função Arco Tangente Introdução Imagine que dois barcos saiam de um mesmo porto, simultaneamente e em linha reta,
