CONTINUIDADE E LIMITES INFINITOS
|
|
|
- Maria Laura Beltrão Gorjão
- 7 Há anos
- Visualizações:
Transcrição
1 MATEMÁTICA I CONTINUIDADE E LIMITES INFINITOS Profa. Dra. Amanda L. P. M. Perticarrari
2 Parte 1 Continuidade de Funções Definição Tipos de Descontinuidade Propriedades Parte 2 Limites Infinitos Definição Assíntotas: horizontal e vertical Limites Fundamentais
3 CONTINUIDADE DE FUNÇÕES No cotidiano, para descrever um fato que ocorre ou ocorreu sem interrupção, geralmente, usamos o termo Contínuo. o Ex.: medicamento de uso contínuo. Na matemática, usamos a expressão Contínua para funções e neste caso a noção é um pouco diferente da usada no cotidiano.
4 INDETERMINAÇÕES Uma função y = f(x) é dita contínua num ponto a se, e somente se, satisfaz às três condições simultaneamente: Se uma função não satisfaz todas as condições acima no ponto a, a função é dita descontínua (no ponto a) e a é um ponto de descontinuidade da função.
5 CONTINUIDADE DE FUNÇÕES Intuitivamente, dizemos que uma função é descontínua num ponto a se o seu gráfico tiver salto, degrau ou ruptura ao passar pelo ponto (a, f(a)). Essa função não é contínua, pois f a Essa função não é contínua, pois lim x a f x
6 TIPOS DE DESCONTINUIDADE a) Descontinuidade removível: as descontinuidades são criadas a partir da remoção de f(a). b) Salto: o gráfico salta ao passar a. c) Descontinuidade infinita: quando x a f x
7 PROPRIEDADES DE FUNÇÕES CONTÍNUAS Se f e g são funções contínuas em a, então: i) (f + g)(x) = f(x) + g(x) é contínua em a. ii) (f g)(x) = f(x) g(x) é contínua em a. iii) (f g)(x) = f(x) g(x) é contínua em a. iv) f g (x) = f(x) g(x), g(a) 0, é contínua em a.
8 PROPRIEDADES DE FUNÇÕES CONTÍNUAS Observação 1: as afirmações são verdadeiras: A função potência y = x n é contínua x R. A função polinomial P n x é contínua x R. A função y = b x é contínua: o x R, se b é ímpar o x > 0, se b é par
9 raízes do denominador. PROPRIEDADES DE FUNÇÕES CONTÍNUAS Observação 1 (continuação): As afirmações são verdadeiras: As funções seno, cosseno são contínuas x R. A função Exponencial é contínua x R. A função Logarítmica é contínua quando x > 0. A função Racional (na forma irredutível!) é contínua em R *x 0 +, onde x o é o conjunto das
10 PROPRIEDADES DE FUNÇÕES CONTÍNUAS Observação 2: Para calcular o limite das funções elementares contínuas, quando x tende ao ponto a, basta substituir x por a na expressão f(x), respeitando D f.
11 Considere a função: f x = EXERCÍCIO x 2 1, 1 < x < 0 2x, 0 < x < 1 3, x = 1 x + 3, 1 < x < 2 1, 2 < x 3 a) Faça o esboço do gráfico da função. b) Determine o domínio e a imagem de f(x)? c) Estude os pontos de descontinuidade da função. d) Qual o novo valor de y para remover a descontinuidade em 1? b) Qual o novo valor de y para remover a descontinuidade em 2?
12 Parte 1 Continuidade de Funções Definição Tipos de Descontinuidade Propriedades Parte 2 Limites Infinitos Definição Assíntotas: horizontal e vertical Limites Fundamentais
13 LIMITES INFINITOS Considere as funções com comportamento ilimitado quando x tende a a. Seja y = f(x) uma função definida por: y = 3 x 2 2 descontínua em x = 2. Qual o comportamento de y = f(x) na vizinhança de 2? y 2 x
14 LIMITES INFINITOS Para f(x) = 3 x 2 2 temos que pois lim f x = x 2 + x 3 2,5 2,33 2,25 2,1 2,01 2,001 y Analogamente, lim f x x 2 =, pois x 1 1,5 1,66 1,75 1,9 1,99 1,999 y
15 DEFINIÇÃO DE LIMITES INFINITOS Se o limite de uma função cresce (ou decresce) ilimitadamente, quando x se aproxima de um valor a, dizemos que o limite é infinito (ou menos infinito). Notação: lim x a f x = ou lim x a f x =. Assim, temos uma descontinuidade infinita.
16 ASSÍNTOTA VERTICAL A reta vertical x = a é chamada assíntota vertical do gráfico de uma função y = f(x), se y ± quando x a ou x a +. y y a x a x y y a x a x
17 LIMITES INFINITOS Seja y = f(x) uma função definida por y = 2x2 y x 2 +1 Note que, neste caso, temos uma assíntota horizontal em y = 2, assim: lim n 2x x = 2 x
18 ASSÍNTOTA HORIZONTAL A reta horizontal y = L é chamada assíntota horizontal do gráfico de uma função y = f(x), se y L quando x ou x. L L L L
19 LIMITES INFINITOS Seja y = f x. Se y 0, quando x a, então: lim x a 1 f x = ±. Exemplo. Seja f x = x e a = 0 com x R + lim x = f 0 = 0 x 0 + Assim, lim x a 1 f x = lim x x =
20 LIMITES INFINITOS Seja y = f x. Se y 0, quando x a, então: lim x a 1 f x = ±. Se n N, então: 1 i) lim = x 0 + x n 1 ii) lim x 0 x n = para n par para n ímpar
21 LIMITES INFINITOS São considerados limites infinitos no infinito qualquer um dos 4 casos: y quando x y quando x y quando x y quando x
22 Teorema. Se n N, então: LIMITES INFINITOS lim x ± k = 0, k R. xn Se n N, então: i) lim x x n = ii) lim x xn = para n par para n ímpar
23 sen x LF1. lim x 0 x LIMITES FUNDAMENTAIS = 1 y x LF2. lim x ± 1 + k x se k = 1, lim x ± x = e k x x = e a LF3. lim x 1 = ln a x 0 x e se a = e, lim x 1 x 0 x = 1
24
25 LISTA DE EXERCÍCIOS
LIMITES E CONTINIDADE
MATEMÁTICA I LIMITES E CONTINIDADE Prof. Dr. Nelson J. Peruzzi Profa. Dra. Amanda L. P. M. Perticarrari Parte 1 Parte 2 Limites Infinitos Definição de vizinhança e ite Limites laterais Limite de função
MATEMÁTICA I LIMITE. Profa. Dra. Amanda L. P. M. Perticarrari
MATEMÁTICA I LIMITE Profa. Dra. Amanda L. P. M. Perticarrari [email protected] Parte 1 Limites Definição de vizinhança e ite Limites laterais Limite de função real com uma variável real Teorema da existência
Universidade Federal de Pelotas. Instituto de Física e Matemática Pró-reitoria de Ensino. Módulo de Limites. Aula 01. Projeto GAMA
Universidade Federal de Pelotas Instituto de Física e Matemática Pró-reitoria de Ensino Atividades de Reforço em Cálculo Módulo de Limites Aula 0 208/ Projeto GAMA Grupo de Apoio em Matemática Ideia Intuitiva
3. Limites e Continuidade
3. Limites e Continuidade 1 Conceitos No cálculo de limites, estamos interessados em saber como uma função se comporta quando a variável independente se aproxima de um determinado valor. Em outras palavras,
AULA 1 Introdução aos limites 3. AULA 2 Propriedades dos limites 5. AULA 3 Continuidade de funções 8. AULA 4 Limites infinitos 10
Índice AULA 1 Introdução aos limites 3 AULA 2 Propriedades dos limites 5 AULA 3 Continuidade de funções 8 AULA 4 Limites infinitos 10 AULA 5 Limites quando numerador e denominador tendem a zero 12 AULA
Limites e Continuidade
MAT111 p. 1/2 Limites e Continuidade Gláucio Terra [email protected] Departamento de Matemática IME - USP Revisão MAT111 p. 2/2 MAT111 p. 3/2 Limite de uma Função num Ponto DEFINIÇÃO Sejam f : A R R,
CÁLCULO I Aula 11: Limites Innitos e no Innito. Assíntotas. Regra de l'hôspital.
Limites s CÁLCULO I Aula 11: Limites s e no... Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará Limites s 1 Limites no 2 Limites s 3 4 5 Limites s Denição Seja f uma função denida
UNIVERSIDADE FEDERAL DO OESTE DO PARÁ PRÓ-REITORIA DE ENSINO DE GRADUAÇÃO INSTITUTO DE ENGENHARIA E GEOCIENCIAS-IEG PROGRAMA DE COMPUTAÇÃO
1 UNIVERSIDADE FEDERAL DO OESTE DO PARÁ PRÓ-REITORIA DE ENSINO DE GRADUAÇÃO INSTITUTO DE ENGENHARIA E GEOCIENCIAS-IEG PROGRAMA DE COMPUTAÇÃO NOTAS DE AULA DA DISCIPLINA DE CÁLCULO 1 MATERIAL EM CONSTRUÇÃO
Limites de Funções. Bases Matemáticas. 2 o quadrimestre de o quadrimestre de / 57
2 o quadrimestre de 2017 2 o quadrimestre de 2017 1 / Visão Geral 1 Limites Finitos Limite para x ± 2 Limites infinitos Limite no ponto Limite para x ± 3 Continuidade Definição e exemplos Resultados importantes
Limites. 2.1 Limite de uma função
Limites 2 2. Limite de uma função Vamos investigar o comportamento da função f definida por f(x) = x 2 x + 2 para valores próximos de 2. A tabela a seguir fornece os valores de f(x) para valores de x próximos
Limites. Slides de apoio sobre Limites. Prof. Ronaldo Carlotto Batista. 7 de outubro de 2013
Cálculo 1 ECT1113 Slides de apoio sobre Limites Prof. Ronaldo Carlotto Batista 7 de outubro de 2013 AVISO IMPORTANTE Estes slides foram criados como material de apoio às aulas e não devem ser utilizados
EXERCÍCIOS ADICIONAIS
EXERCÍCIOS ADICIONAIS Capítulo Conjuntos numéricos e os números reais (x ) y Simplifique a expressão (assumindo que o denominador não é zero): 4 x y 6x A y 8x B y 8x C 4 y 6x D y Use a notação de intervalo
Bases Matemáticas Continuidade. Propriedades do Limite de Funções. Daniel Miranda
Daniel De modo intuitivo, uma função f : A B, com A,B R é dita contínua se variações suficientemente pequenas em x resultam em variações pequenas de f(x), ou equivalentemente, se para x suficientemente
Aula 5 Limites infinitos. Assíntotas verticais.
MÓDULO - AULA 5 Aula 5 Limites infinitos. Assíntotas verticais. Objetivo lim Compreender o significado dos limites infinitos lim f(x) = ±, f(x) = ± e lim f(x) = ± + Referências: Aulas 34 e 40, de Pré-Cálculo,
Resolução dos Exercícios Propostos no Livro
Resolução dos Eercícios Propostos no Livro Eercício : Considere agora uma função f cujo gráfico é dado por y 0 O que ocorre com f() quando se aproima de por valores maiores que? E quando se aproima de
MATEMÁTICA A - 12o Ano Funções - Limites e Continuidade Propostas de resolução
MATEMÁTICA A - 2o Ano Funções - Limites e Continuidade Propostas de resolução Exercícios de exames e testes intermédios. Como a função é contínua em R, também é contínua em x 0, pelo que Temos que fx f0
Cálculo Diferencial e Integral I CDI I
Cálculo Diferencial e Integral I CDI I Limites laterais e ites envolvendo o infinito Luiza Amalia Pinto Cantão [email protected] Limites 1 Limites Laterais a à diretia b à esquerda c Definição precisa
Derivadas 1 DEFINIÇÃO. A derivada é a inclinação da reta tangente a um ponto de uma determinada curva, essa reta é obtida a partir de um limite.
Derivadas 1 DEFINIÇÃO A partir das noções de limite, é possível chegarmos a uma definição importantíssima para o Cálculo, esta é a derivada. Por definição: A derivada é a inclinação da reta tangente a
CONTINUIDADE DE FUNÇÕES REAIS DE UMA VARIÁVEL
BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL CONTINUIDADE DE FUNÇÕES REAIS DE UMA VARIÁVEL a Edição Rio Grande Editora da FURG 206 Universidade Federal
Limites infinitos e limites no infinito Aula 15
Propriedades dos ites infinitos Limites infinitos e ites no infinito Aula 15 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 03 de Abril de 2014 Primeiro Semestre de 2014
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 06: Continuidade de Funções Objetivos da Aula Definir função contínua; Reconhecer uma função contínua através do seu gráfico; Utilizar as
Continuidade. Continuidade
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Continuidade Antes
UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO. Realização:
UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO Realização: Fortaleza, Fevereiro/2010 1. LIMITES 1.1. Definição Geral Se os valores de f(x) puderem
LIMITES. Prof. Danilene Donin Berticelli
LIMITES Prof. Danilene Donin Berticelli Considere um gerente que determina que, quando x% da capacidade de produção de uma fábrica estão sendo usados, o custo total de operação é C centenas de milhares
Propriedades das Funções Contínuas e Limites Laterais Aula 12
Propriedades das Funções Contínuas e Limites Laterais Aula 12 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 27 de Março de 2014 Primeiro Semestre de 2014 Turma 2014106 -
Estudo de funções. Universidade Portucalense Departamento de Inovação, Ciência e Tecnologia Curso Satélite - Módulo I - Matemática.
Universidade Portucalense Departamento de Inovação, Ciência e Tecnologia Curso Satélite - Módulo I - Matemática Estudo de funções Continuidade Consideremos as funções: f : R R g : R R x x + x x +, x 1
Notas de aula: Cálculo e Matemática Aplicados à Notas de aula: Gestão Ambiental
Notas de aula: Cálculo e Matemática Aplicados à Notas de aula: Gestão Ambiental 3 Limites Considere a função f definida por: Qual o domínio dessa função? Se 1, então f () é dada por: (2 + 3)( 1). 1 2 +
CENTRO UNIVERSITÁRIO DA SERRA DOS ÓRGÃOS CURSO DE MATEMÁTICA
1 CENTRO UNIVERSITÁRIO DA SERRA DOS ÓRGÃOS CURSO DE MATEMÁTICA CONSTRUÇÃO DE GRÁFICOS DE FUNÇÕES REAIS DE VARIÁVEIS REAIS A PARTIR DE TRANSFORMAÇÕES ISOMÉTRICAS 1 TRANSFORMAÇÕES GEOMÉTRICAS ISOMÉTRICAS
Limites. Entretanto, os gregos não usaram explicitamente os limites.
30 Limites O problema da área As origens do cálculo remontam à Grécia antiga, pelo menos 2.500 anos atrás, quando áreas eram calculadas utilizando o chamado método da exaustão. Naquela época, os gregos
MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari
MATEMÁTICA II Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari [email protected] Generalidades Aplicação: integrais cujos integrandos são compostos de: produtos; funções trigonométricas;
Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional
Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional MA11 Números e Funções Reais Avaliação 2 GABARITO 22 de junho de 201 1. Em cada um dos itens abaixo, dê, se possível,
Função Exponencial, Inversa e Logarítmica
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.1 Função Exponencial, Inversa e Logarítmica Bruno Conde Passos Engenharia Civil Rodrigo Vanderlei - Engenharia Civil Função Exponencial Dúvida: Como
Instituto de Matemática - IM/UFRJ Cálculo Diferencial e Integral I - MAC238 Respostas da Prova de Final - 20/12/2013
Página de 8 Instituto de Matemática - IM/UFRJ Cálculo Diferencial e Integral I - MAC38 Respostas da Prova de Final - 0//03 Questão : ( pontos) (a) Dado o gráfico da função f, esboce o gráfico da função
Limites e Continuidade
Limites e Continuidade Gláucio Terra [email protected] Departamento de Matemática IME - USP Elementos de Lógica Matemática p. 1/1 Revisão Elementos de Lógica Matemática p. 2/1 Limite de uma Função num
Cálculo I. Lista de Exercícios Aulão P1
Cálculo I Lista de Exercícios Aulão P1 Lista Resolvida no Aulão Parte I: Revisão de Matemática 1. P1 2018.1 Exercício 1 Diurno (2,0) Resolva, dê o intervalo solução e ilustre a solução sobre a reta real
ATIVIDADES EM SALA DE AULA Cálculo I -A- Humberto José Bortolossi
ATIVIDADES EM SALA DE AULA Cálculo I -A- Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ 08 Continuidade e O Teorema do Valor Intermediário [0] (2008.) (a) Dê um exemplo de uma função
Função Exponencial, Inversa e Logarítmica
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.2 Função Exponencial, Inversa e Logarítmica Bárbara Simionatto Engenharia Civil Jaime Vinícius - Engenharia de Produção Função Exponencial Dúvida:
CÁLCULO I. Estabelecer a relação entre continuidade e derivabilidade; Apresentar a derivada das funções elementares. f f(x + h) f(x) c c
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 11: Derivada de uma função. Continuidade e Derivabilidade. Derivada das Funções Elementares. Objetivos da Aula Denir
Derivada de algumas funções elementares
Universidade de Brasília Departamento de Matemática Cálculo 1 Derivada de algumas funções elementares Vamos lembrar que a função f é derivável no ponto x = a se existe o limite f f(x) f(a) f(a+) f(a) (a).
26 CAPÍTULO 4. LIMITES E ASSÍNTOTAS
Capítulo 4 Limites e assíntotas 4.1 Limite no ponto Considere a função f(x) = x 1 x 1. Observe que esta função não é denida em x = 1. Contudo, fazendo x sucientemente próximo de 1 (mais não igual a1),
Gráficos. Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html
Gráficos Material online: h-p://www.im.ufal.br/professor/thales/calc12010_2.html O que f nos diz sobre f? O que f nos diz sobre f? f (x) < 0 f (x) > 0 f(x) =x 2 f (x) =2x x>0 f (x) > 0 x
Técnicas de. Integração
Técnicas de Capítulo 7 Integração TÉCNICAS DE INTEGRAÇÃO f ( xdx ) a Na definição de integral definida, trabalhamos com uma função f definida em um intervalo limitado [a, b] e supomos que f não tem uma
Funções Reais a uma Variável Real
Funções Reais a uma Variável Real 1 Introdução As funções são utilizadas para descrever o mundo real em termos matemáticos, é o que se chama de modelagem matemática para as diversas situações. Podem, por
Volume de um gás em um pistão
Universidade de Brasília Departamento de Matemática Cálculo Volume de um gás em um pistão Suponha que um gás é mantido a uma temperatura constante em um pistão. À medida que o pistão é comprimido, o volume
Aula 7 Os teoremas de Weierstrass e do valor intermediário.
Os teoremas de Weierstrass e do valor intermediário. MÓDULO - AULA 7 Aula 7 Os teoremas de Weierstrass e do valor intermediário. Objetivo Compreender o significado de dois resultados centrais a respeito
Lista de Exercícios de Calculo I Limites e Continuidade
Lista de Eercícios de Calculo I Limites e Continuidade ) O gráfico a seguir representa uma função f de [ 6, 9] em Determine: ) Dada a função f definida por:, se f ( ), se, se Esboce o gráfico de f e calcule
CÁLCULO I. Apresentar e aplicar a Regra de L'Hospital.
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o : Limites Innitos e no Innito. Assíntotas. Regra de L'Hospital Objetivos da Aula Denir ite no innito e ites innitos; Apresentar alguns tipos
AT3-1 - Unidade 3. Derivadas e Aplicações 1. Cálculo Diferencial e Integral. UAB - UFSCar. Bacharelado em Sistemas de Informação
AT3-1 - Unidade 3 1 Cálculo Diferencial e Integral Bacharelado em Sistemas de Informação UAB - UFSCar 1 Versão com 34 páginas 1 / 34 Tópicos de AT3-1 1 Uma noção intuitiva Caracterização da derivada Regras
Limite e Continuidade
Matemática Licenciatura - Semestre 200. Curso: Cálculo Diferencial e Integral I Professor: Robson Sousa Limite e Continuidade Neste caítulo aresentaremos as idéias básicas sobre ites e continuidade de
Unidade F. Limites. Débora Bastos IFRS CAMPUS RIO GRANDE
9 Unidade F Limites Débora Bastos IFRS CAMPUS RIO GRANDE 9. Noção de ites Quando queremos saber a ordenada do ponto em uma função, cuja lei é y= f(), em que = a, basta calcularmos f(a). O ponto (a,f(a))
Derivada - Parte 2 - Regras de derivação
Derivada - Parte 2 - Wellington D. Previero [email protected] http://paginapessoal.utfpr.edu.br/previero Universidade Tecnológica Federal do Paraná - UTFPR Câmpus Londrina Wellington D. Previero Derivada
UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, apresentaremos a noção de integral indefinidada. Também discutiremos
CÁLCULO L NOTAS DA DÉCIMA OITAVA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, apresentaremos a noção de integral indefinidada. Também discutiremos a primeira técnica de integração: mudança
Derivadas Parciais. Copyright Cengage Learning. Todos os direitos reservados.
14 Derivadas Parciais Copyright Cengage Learning. Todos os direitos reservados. 14.2 Limites e Continuidade Copyright Cengage Learning. Todos os direitos reservados. Limites e Continuidade Vamos comparar
Derivadas Parciais Capítulo 14
Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS 14.2 Limites e Continuidade Nesta seção, aprenderemos sobre: Limites e continuidade de vários tipos de funções. LIMITES E CONTINUIDADE Vamos comparar o
Limites e continuidade
Limites e continuidade Limite (finito) de uma função em a Salvo indicação em contrário, quando nos referimos a uma função estamos sempre a considerar funções reais de variável real (f.r.v.r.), ou seja,
Cálculo Diferencial e Integral I
Provas e listas: Cálculo Diferencial e Integral I Período 204.2 Sérgio de Albuquerque Souza 4 de maio de 205 UNIVERSIDADE FEDERAL DA PARAÍBA CCEN - Departamento de Matemática http://www.mat.ufpb.br/sergio
Esboço de Curvas. Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html
Esboço de Curvas Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html Roteiro para esboçar uma curva A. Verifique o domínio da função Exemplo: f(x) = 1 x {x x = 0} Roteiro para esboçar
Instituto de Matemática - IM/UFRJ Cálculo I - MAC118 1 a Prova - Gabarito - 13/10/2016
Instituto de Matemática - IM/UFRJ Cálculo I - MAC118 1 a Prova - Gabarito - 13/10/2016 Questão 1: (2 pontos) x (a) (0.4 ponto) Calcule o ite: 2 + 3 2. x 1 x 1 ( πx + 5 ) (b) (0.4 ponto) Calcule o ite:
JOÃO CARLOS MOREIRA CÁLCULO DIFERENCIAL E INTEGRAL
UMA NOVA ABORDAGEM NO ENSINO DA MATEMÁTICA JOÃO CARLOS MOREIRA CÁLCULO DIFERENCIAL E INTEGRAL FUN COLEÇÃO ESCOLA DE CÁLCULO VOLUME 2 - FUNÇÕES RACIONAIS UMA NOVA ABORDAGEM NO ENSINO DA MATEMÁTICA CÁLCULO
Capítulo 1. Funções e grácos
Capítulo 1 Funções e grácos Denição 1. Sejam X e Y dois subconjuntos não vazios do conjunto dos números reais. Uma função de X em Y ou simplesmente uma função é uma regra, lei ou convenção que associa
Cálculo 1 Fuja do Nabo. Resumo e Exercícios P2
Cálculo 1 Fuja do Nabo Resumo e Exercícios P2 Fórmulas e Resumo Teórico Limites Exponenciais e Logarítmicos lim $ &' 1 + 1 x $ = e ou lim $ 0 1 + h 2 3 = e a $ 1 lim $ 0 x = ln a, a > 0 Derivadas Exponenciais
UFRJ - Instituto de Matemática
UFRJ - Instituto de Matemática Programa de Pós-Graduação em Ensino de Matemática www.pg.im.ufrj.br/pemat Mestrado em Ensino de Matemática Seleção 9 Etapa Questão. Determine se as afirmações abaio são verdadeiras
Ana Carolina Boero. Página: Sala Bloco A - Campus Santo André
Funções de uma variável real a valores reais E-mail: [email protected] Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Funções de uma variável real a valores
Limites Uma teoria abordando os principais tópicos sobre a teoria dos limites. José Natanael Reis
Limites Uma teoria abordando os principais tópicos sobre a teoria dos limites Este trabalho tem como foco, uma abordagem sobre a teoria dos limites. Cujo objetivo é o método para avaliação da disciplina
Material Básico: Calculo A, Diva Fleming
1 Limites Material Básico: Calculo A, Diva Fleming O conceito de Limite é importante na construção de muitos outros conceitos no cálculo diferencial e integral, por exemplo, as noções de derivada e de
MAT001 Cálculo Diferencial e Integral I
1 MAT001 Cálculo Diferencial e Integral I GEOMETRIA ANALÍTICA Coordenadas de pontos no plano cartesiano Distâncias entre pontos Sejam e dois pontos no plano cartesiano A distância entre e é dada pela expressão
MÉTODOS MATEMÁTICOS. Claudia Mazza Dias Sandra Mara C. Malta
MÉTODOS MATEMÁTICOS Claudia Mazza Dias Sandra Mara C. Malta 1 Métodos Matemáticos Aulas: De 03/11 a 08/11-8:30 as 11:00h Ementa: 1. Funções 2. Eq. Diferenciais Ordinárias de 1 a ordem 3. Sistemas de Equações
Funções polinomiais, racionais e trigonométricas
Aula 04 FUNÇÕES (continuação) UFPA, 5 de março de 05 Funções polinomiais, racionais e trigonométricas No inal desta aula, você seja capaz de: Dizer o domínio das unções polinomiais, racionais e trigonométricas;
LIMITES E CONTINUIDADE
LIMITES E CONTINUIDADE Marina Vargas R. P. Gonçalves a a Departamento de Matemática, Universidade Federal do Paraná, [email protected], http:// www.estruturas.ufpr.br 1 NOÇÃO INTUITIVA DE LIMITE
CAPÍTULO 1 Operações Fundamentais com Números 1. CAPÍTULO 2 Operações Fundamentais com Expressões Algébricas 12
Sumário CAPÍTULO 1 Operações Fundamentais com Números 1 1.1 Quatro operações 1 1.2 O sistema dos números reais 1 1.3 Representação gráfica de números reais 2 1.4 Propriedades da adição e multiplicação
Apresente todos os cálculos e justificações relevantes. a) Escreva A e B como intervalos ou união de intervalos e mostre que C = { 1} [1, 3].
Instituto Superior Técnico Departamento de Matemática 1. o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL I - Versão A LEAN, LEMat, MEQ 1. o Sem. 2016/17 12/11/2016 Duração: 1h0m Apresente todos os cálculos e
Cálculo Diferencial e Integral I Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU
Cálculo Diferencial e Integral I Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Prof. Dr. Sergio Pilling Parte 1 - Limites Limites envolvendo o infinito, Continuidade, Retas tangentes. 1) Introdução
LIMITES. Tal número L será indicado por lim x p f(x). Suponhamos f definida em p. Então f é dita contínua em p se, e somente se, lim x p f(x) = f(p).
Teoria LIMITES Definições Básicas: Sejam f uma função e p um ponto do domínio de f ou extremidade de um dos intervalos que compõem o domínio de f. Dizemos que f tem limite L em p se, para todo ɛ > 0 dado,
Luiz Fernando Barbosa de Queiroz Construções Gráficas Polinomiais Fazendo Uso de Derivadas
Universidade Federal de Juiz de Fora Instituto de Ciências Exatas PROFMAT - Mestrado Profissional em Matemática em Rede Nacional Luiz Fernando Barbosa de Queiroz Construções Gráficas Polinomiais Fazendo
Cálculo Diferencial e Integral I. Jair Silvério dos Santos * Professor Dr. Jair Silvério dos Santos 1
MATEMATICA APLICADA A NEGÓCIOS 3, 0 (200) Cálculo Cálculo Diferencial e Integral I LIMITES LATERAIS Jair Silvério dos Santos * Professor Dr Jair Silvério dos Santos Teorema 0 x x 0 Dada f : A R R uma função
Cálculo I (2015/1) IM UFRJ Lista 2: Limites e Continuidade Prof. Milton Lopes e Prof. Marco Cabral Versão Exercícios de Limite
Eercícios de Limite. Eercícios de Fiação Cálculo I (05/) IM UFRJ Lista : Limites e Continuidade Prof. Milton Lopes e Prof. Marco Cabral Versão 30.03.05 Fi.: Considere o gráco de = f() esboçada no gráco
UFRJ - Instituto de Matemática Programa de Pós-Graduação em Ensino de Matemática Mestrado em Ensino de Matemática
UFRJ - Instituto de Matemática Programa de Pós-Graduação em Ensino de Matemática www.pg.im.ufrj.br/pemat Mestrado em Ensino de Matemática Seleção 0 Etapa Questão. Considere f : [, ] R a função cujo gráfico
Metas/Objetivos/Domínios Conteúdos/Conceitos Número de Aulas
DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA: MATEMÁTICA A ANO:11.º Planificação (Conteúdos)... Período Letivo: 1.º Metas/Objetivos/Domínios Conteúdos/Conceitos Número de Aulas Trigonometria e Funções
1. Funções Reais de Variável Real Vamos agora estudar funções definidas em subconjuntos D R com valores em R, i.e. f : D R R
. Funções Reais de Variável Real Vamos agora estudar funções definidas em subconjuntos D R com valores em R, i.e. f : D R R D x f(x). Uma função é uma regra que associa a cada elemento x D um valor f(x)
MAT 111 Cálculo Diferencial e Integral I. Prova 2 5 de junho de 2014
MAT 111 Cálculo Diferencial e Integral I Prof. Paolo Piccione Prova 2 5 de junho de 2014 Nome: Número USP: Assinatura: Instruções A duração da prova é de duas horas. Assinale as alternativas corretas na
MAT 111 Cálculo Diferencial e Integral I. Prova 2 5 de junho de 2014
MAT 111 Cálculo Diferencial e Integral I Prof. Paolo Piccione Prova 2 5 de junho de 2014 Nome: Número USP: Assinatura: Instruções A duração da prova é de duas horas. Assinale as alternativas corretas na
Bons estudos e um ótimo semestre a todos!
Cálculo 206.2 Caro aluno, O Dáskalos tem como objetivo proporcionar aos universitários um complemento de ensino de qualidade, por meio de aulas particulares, apostilas e aulões. Tendo isso em vista, a
Derivadas. Slides de apoio sobre Derivadas. Prof. Ronaldo Carlotto Batista. 21 de outubro de 2013
Cálculo 1 ECT1113 Slides de apoio sobre Derivadas Prof. Ronaldo Carlotto Batista 21 de outubro de 2013 AVISO IMPORTANTE Estes slides foram criados como material de apoio às aulas e não devem ser utilizados
