Limite e Continuidade
|
|
|
- Pedro Lucas Costa de Lacerda
- 9 Há anos
- Visualizações:
Transcrição
1 Matemática Licenciatura - Semestre 200. Curso: Cálculo Diferencial e Integral I Professor: Robson Sousa Limite e Continuidade Neste caítulo aresentaremos as idéias básicas sobre ites e continuidade de uma função real. Limites Seja f : R! R uma função de nida or 2 +, isto é, f) = 2 +. O grá co de f é uma reta que interceta o eio dos y no onto 0; ) e interceta o eio dos no onto ; 0) con ra Figura ). 2 Figura : Grá co da função f) = 2 +. Vamos considerar as tabelas 0; 5 0; 9 0; 99 0; 999 0; 9999 f) 2 2; 8 2; 98 2; 998 2; 9998 e ; 5 ; ; 0 ; 00 ; 000 f) 4 3; 2 3; 02 3; 002 3; 0002 :
2 2 Pelas tabelas, notamos que, quando se aroima de, notação!, tanto ela esquerda quanto ela direita temos que f) se aroima de 3. Neste caso, dizemos que f) tende ao ite 3 quando se aroima de, neste caso usamos a seguinte simbologia: f) = 3: Mais geralmente, temos a seguinte de nição. De nição 0. Seja f uma função qualquer. Se f aroima-se de uma constante L, quando se aroima de um número 0 tanto ela esquerda quanto ela direita, dizemos que f tende ao ite L. Neste caso, escreveremos f) = L:! 0 O número real L é chamado de ite de f no onto 0 con ra Figura abaio). A notação! 0 signi ca que está muito róimo de 0 mas 6= 0. Figura 2: Reresentação grá ca de!0 f) = L. Eemlo 0.2 Se f) = c é a função constante, então f) = c:! 0 Solução. Pelo grá co de f con ra Figura 3 abaio), temos que o ite de f é igual a c, em qualquer onto 0, ois a medida que nos aroimamos tanto ela esquerda, quanto ela direita de qualquer onto 0, f) se aroima de c.
3 3 Figura 3: Grá co da função f) = c. Eemlo 0.3 Se f) = é a função identidade, então f) = 0 :! 0 Solução. Pelo grá co de f con ra Figura 4), Figura 4: Grá co função f) =. temos que o ite de f é igual a 0, em qualquer onto 0, ois a medida que nos aroimamos tanto ela esquerda, quanto ela direita de qualquer onto 0, f) se aroima de c. Eemlo 0.4 Se f é a função de nida or + se ; f) = se > ; então f) não eiste.
4 4 Figura 5: Grá co da função f) = + se ; se > : Solução. Pelo grá co de f con ra Figura 5), temos que o ite de f é igual a quando se aroima de ela direita e é igual a 2 quando se aroima de ela esquerda. Assim, o ite de f não eiste no onto 0 =, ois ele deende de como se aroima de 0 =. Proriedade 0.5 Proriedades do ite de uma função) Sejam f, g funções quaisquer e c uma constante. Se!0 f) = L e!0 g) = M, então:.!0 f + g)) = L + M; 2.!0 f g)) = L M; 3.!0 cf)) = cl; 4.!0 fg)) = LM; 5.!0 f )) = L, com M 6= 0; g M 6.!0 jf)j = jlj ; 7.!0 [f)] n = L n, 8 n 2 Z e L 6= 0; Eemlo 0.6 Calcular o ite!0 a + b). Solução. Pelos Eemlos acima e as Proriedades e 3, temos que a + b) = a) + b = a + b = a 0 + b:! 0!0!0!0 Mais geralmente, a n n + + a + a 0 ) = a n n a 0 + a 0 :! 0
5 5 Eemlo 0.7 Calcular o ite : Solução. Pelas Proriedades e o Eemlo anterior, temos que = ) 3 + 2) = 4 5 : Mais geralmente, se b m m b 0 + b 0 6= 0. Eemlo 0.8 Calcular o ite a n n + + a + a 0 = a n n a 0 + a 0! 0 b m m + + b + b 0 b m m b 0 + b 0! : Solução. Note que não odemos alicar diretamente as roriedades, ois! =!2 2 4)! ) = 0 0 ; o que é uma forma indeterminada. Neste caso, devemos rimeiro maniular algebricamente a eressão Como temos que! : 2 4 = 2) + 2) e = 2) ) = 2) + 2)!2 2) ) = + 2)!2 ) =!2 + 2)!2 ) = 4 = 4; ois! 2 signi ca que 2) 6= 0. Note que, esse eemlo mostra que, ara uma função ter ite L quando tende 0, não é necessário que seja de nida em 0. Eemlo 0.9 Calcular o ite 3 : Solução. Note que não odemos alicar diretamente as roriedades, ois 3 = 3 ) ) = 3 = 0 0 ;
6 6 o que é uma indeterminação. Neste caso, devemos rimeiro maniular algebricamente a eressão Como temos que 3 : 3 = ) ) 3 = ) ) ) = ) = + + = 3; ois! signi ca que ) 6= 0. Mais geralmente, Eemlo 0.0 Calcular o ite n = n: 3 : Solução. Note que não odemos alicar diretamente as roriedades, ois 3 = 3 ) ) = 3 = 0 0 ; o que é uma indeterminação. Neste caso, devemos rimeiro maniular algebricamente a eressão Como fazendo a = 3 e b =, que 3 : a 3 b 3 = a b)a 2 + ab + b 2 ) = = 3 ) ); ou ainda; 3 = : Portanto, 3 = ) ) = = ) = = 3 ; ois! signi ca que ) 6= 0. Mais geralmente, n = n :
7 Observação 0. Se!0 f) = L, L 6= 0 e!0 g) = 0, então!0 f) g) não eiste. 7 Eemlo 0.2 Mostrar que não eiste Solução. Como temos, ela Observação anterior, que ) = 3 6= 0 e 2 ) = 0 não eiste. Eemlo 0.3 Mostrar que não eiste s ) 2 Solução. Como temos, elo Observação, que não eiste. + 3) = 4 6= 0 e )2 = 0 s ) 2
8 8 De nição Formal de Limite Formalmente, dizemos que f) = L;! 0 se dado um número real " > 0, arbitrariamente equeno, eiste em corresondência um > 0 tal que 8 2 R; 0 < j 0 j < ) jf) Lj < ": Figura 6: Reresentação grá ca de!0 f) = L. Uma vez que j 0 j é a distância de a 0 e jf) Lj é a distância de f) a L, e como " ode ser arbitrariamente equeno, a de nição de ite ode ser escrita em alavras da seguinte forma:!0 f) = L signi ca que a distância entre f) e L ca arbitrariamente equena tomando-se a distância de a a su cientemente equena mais não 0). Ou ainda,!0 f) = L signi ca que os valores de f) odem ser tornados tão róimos de L quanto desejarmos, tomando-se su cientemente róimo de a mas não igual a a). Eemlo 0.4 Mostrar, usando a de nição formal de ite, que 2 3) =!2 Solução. Devemos mostrar que, ara todo " > 0, dado arbitrariamente, odemos encontrar um > 0 tal que 2 R; 0 < j 2j < ) j2 3) j < ": Na resolução deste tio de desigualdade odemos, em geral, obter > 0 desenvolvendo a a rmação envolvendo ". De fato, j2 3) j = j2 4j = 2 j 2j < " ) j 2j < " 2 :
9 9 Assim, dado " > 0, eiste " 2 tal que 0 < j 2j < ) j2 3) j < "; ois j 2j < ) j 2j < " 2 ) 2 j 2j < " ) j2 3) j = 2 j 2j < ": Limites Laterais Seja f : R f0g! R a função de nida or se > 0; f) = + se < 0: O grá co de f é mostrado na Figura 7. Figura 7: Grá co da função f) = se > 0; + se < 0: e Vamos considerar as tabelas 0; 5 0; 0; 0 0; 00 0; 000 f) 0; 5 0; 9 0; 99 0; 999 0; ; 5 0; 0; 0 0; 00 0; 000 f) 0; 5 0; 9 0; 99 0; 999 0; 9999 : Pelas tabelas, notamos que, quando se aroima de 0 ela esquerda, notação! 0, f) se aroima de e quando se aroima de 0 ela direita, notação! 0 +, f) se aroima de. Logo,!0 f) = e f) = :!0 +
10 0 As notações f) = L e f) = L! 0! + 0 signi ca que: f aroima-se do ite L, quando se aroima ela esquerda e ela direita de 0 resectivamente. O número real L é chamado de ite lateral à esquerda ou a direita) de f con ra Figura 8). Figura 8: Grá co da função f. Observação 0.5!0 f) = L se, e somente se,! 0 f) = f) = L;! + 0 ou seja, o ite de uma função em um onto só eiste, se os ites laterais eistirem e forem iguais. Essa observação garante que todas as roriedades de ite continuam válidas ara ites laterais. Eemlo 0.6 Seja f a função de nida or se ; f) = 2 se > : Determinar! f) e! + f). Solução. Como! signi ca que <, logo f) = e, elas roriedades de ites que, ela Observação anterior, continuam válidas ara ites laterais), obtemos! 5 + 5) = 5 ) + 5 = 0: Como! + signi ca que >, temos que f) = :
11 Note que não odemos alicar diretamente as roriedades, ois 2! =! + 2 )! ) = 0 0 ; o que é uma indeterminação. Neste caso, devemos rimeiro maniular algebricamente a eressão Como temos que Note que : 2 = ) + ) e = + ) + 3) 2! = ) + )! + + ) + 3) =! = :! f) 6= f):! + Portanto,! f) não eiste. Eemlo 0.7 Seja f uma função de nida or Determine se ossível,!0 f) = jj : f), f) e f):!0 +!0 Solução. A função f não é de nida em = 0, ois f) = j0j = 0 o que é uma 0 0 indeterminação. Observe que! 0 +, então > 0, logo jj = e assim, f) = =. Portanto, f) = :!0 + Por outro lado,! 0, então < 0, logo jj = e assim f) = modo,!0 f) = : =. Deste Como f) 6= f), temos que f) não eiste.!0 +!0!0 Eemlo 0.8 Seja f uma função de nida or 8 >< 3 se < f) = 4 se = >: 2 + se > Determine se ossível, Solução. Se! f), f) e f): + então <, assim f) = + f) = : 3 ) = 2. Por outro lado, se! + então >, assim 2 + ) = 2. Como f) = f), + + temos que f) = 2:
12 2 Limites In nitos e no In nito Seja f : R f2g! R a função de nida or O grá co de f é mostrado na Figura 9. f) = 3 2) 2 : Figura 9: Grá co da função f) = 3 2) 2. Vamos considerar as tabelas f) e f) : Pelas tabelas, notamos que, quando se aroima de 2 tanto ela esquerda quanto ela direita temos que f) cresce sem ite. Neste caso, dizemos que f) tende ao in nito +) quando se aroima de 2, em símbolos A notação f) = +:!2 f) = + ou f) =! 0!0 signi ca que: f cresce sem ite ou decresce sem ite resectivamente quando se aroima de 0. Neste caso, dizemos que f tem ite in nito ou, equivalentemente, o ite de f quando se aroima de 0 não eiste. Eemlo 0.9 Mostrar que ) 4 = +: Solução. Pelo grá co de f) = ) 4 con ra Figura 0), temos que o ite de f tende ao in nito no onto 0 =. Pois a medida que se aroima de tanto ela esquerda quanto ela direita f) cresce sem ite.
13 3 Figura 0: Grá co da função f) = ) 4. Eemlo 0.20 Encontre 3 e! 3 : Solução. Quando torna-se muito grande 3 também ca muito grande. Por eemlo: 0 3 = = = : Na realidade, odemos fazer 3 tão grande quanto quisermos tomando grande o su - ciente. Portanto odemos escrever 3 = : Analogamente, quando é muito grande em módulo), orém negativo, 3 também o é. Assim,! 3 = : De nição 0.2 A reta = 0 é uma assíntota vertical do grá co de f se elo menos uma das seguintes condições for satisfeita:.!0 f) = ou!0 f) = +. 2.! + 0 f) = ou! + 0 f) = +. Observação 0.22 Se!0 f) = L, L 6= 0 e!0 g) = 0, então!0 f) + ou!0 f) g) = Geralmente,, isto é, o ite não eiste. n n + + a + a 0 )!+ =!+ n a n + a n + + a n + a 0 n ) n = ; g) =
14 4 ois, n + a n!+ + + a n + a 0 n ) = a n n e!+ n = onde a n > 0 ou a n < 0. Se n 2 N é ímar, então Eemlo 0.23 Encontre a n n + + a + a 0 ) =!! 2 ) : Solução. Seria errado escrever! 2 ) =! 2 =. As! roriedades de ite não odem ser alicadas ara ites in nitos, ois não é um número não odemos de nir! 2 = ) =! ois, como e! com seu roduto.! Agora, seja f : R! R a função de nida or O grá co de f) é mostrado na Figura. ). Contudo, odemos escrever! )! = ; ) tornam-se arbitrariamente grandes, o mesmo acontece f) = 2 : Figura : Grá co da função f) = 2. Vamos considerar as tabelas 0 00 :000 0:000 00:000 f) e 0 00 :000 0:000 00:000 f)
15 Pelas tabelas, notamos que, quando cresce sem ite tanto ela esquerda quanto ela direita temos que f) se aroima de 0. Neste caso, dizemos que f) tende ao ite 0 quando cresce decresce) sem ite, em símbolos A notação!+ 2 = 0 ou f) = L ou!+! 2 = 0: f) = L! signi ca que: f) tem ite L quando cresce sem ite ou decresce sem ite resectivamente. Neste caso, dizemos que f tem ite no in nito. De nição 0.24 A reta y = L é uma assíntota horizontal do grá co de f se elo menos uma das seguintes condições for satisfeita:.! f) = L; 2.!+ f) = L. Observação 0.25 Sejam K 2 R e r 2 Q, r > 0. Então K!+ = 0 e r K! = 0: r Podemos, também, considerar o caso em que tanto como f) cresça ou decresça sem ite. Neste caso, denotaremos or f)!+ = + ou f) =!+ ; f) = :! f) = + ou! Além disso, se g) = L, L 6= 0 e f) =, então f) g) =. n =. Eemlo 0.26 Calcule Solução. Para calcular o ite no in nito de uma função racional, rimeiro dividimos o numerador e o denominador ela maior otência de que ocorre no denominador. Nesse caso a maior otência de no denominador e 2. Logo, = De modo similar, temos que Geralmente, = = = = = 3 5 2! = a n n + + a + a 0 ) = a n + a n!+!+ + + a n + a 0 n ) = a n n onde a n > 0 ou a n < 0. 5
16 6 Eemlo 0.27 Calcular, se eistir, o ite! : Solução. Note que não odemos alicar diretamente as roriedades, ois! =! )! ) = ; o que é uma indeterminação. Pela observação anterior, temos que! =! = + ) ! ) 2 2 = 2!+ + ) 2! ) = = 2 : 2 Eemlo 0.28 Calcular, se eistir, o ite! : Solução. Como a maior otência de no denominador é o rorio, temos:! =! =! = 0: De modo similar, temos que! = 0: Eemlo 0.29 Calcular, se eistir, o ite! : Solução.! =!+ = =!+ q q!+ +!+ 2!+ +!+ =!+ = = q + 2 ) +
17 Teorema 0.30 Teorema do Confronto, do sanduíche ou do imrensamento) Suonhamos que f) h) g) ara todo em um intervalo aberto contendo a, eceto ossivelmente ara o rorio a. Se!a f) = L =!a g) então!a = L: Prova. A demonstração desse teorema ode ser encontrada em tetos mais avançados. 7 Eemlo 0.3 Sabendo que!0 sen não eiste, mostre que!0 2 sen = 0. Solução. Observe inicialmente que não odemos usar 2 sen =!0 or que sen não eiste:no entanto, sabemos que!0 sen ; assim, multilicando a última desigualdade or 2, obtemos 2 2 sen 2 :!0 2 sen!0 Por outro lado, como 2 =!0!0 2 ) = 0, concluimos elo teorema do confronto que!0 2 sen = 0: Continuidade Vamos considerar a função f : R! R de nida or 2 4 se 6= 2; 2 f) = 4 se = 2: Note que:. f2) = 4, isto é, f é de nida no onto 0 = 2; 2.!2 f) =! =!2 + 2) = 4, isto é,!2 f) eiste; 3.!2 f) = 4 = f2). De nição 0.32 Sejam f uma função e 0 2 R ado. Dizemos que f é contínua em 0 se as seguintes condições são satisfeitas:. f 0 ) eiste, isto é, f está de nida no onto 0 ;
18 8 2.!0 f) eiste, isto é,!0 f) é um número real; 3.!0 f) = f 0 ). Observação 0.33 Sejam f uma função e 0 2 X = Dom f um intervalo aberto:. Se f é contínua em 0, então f) = f ):! 0!0 2. Dizemos que f é contínua em X se f é continua em todos os ontos de X. Intuitivamente, f é contínua em X se o grá co de f ode ser traçado, comletamente, sem tirarmos o láis do ael. Se elo menos uma das condições da de nição de função contínua f em 0 não for satisfeita, dizemos que f é descontínua em 0. Neste caso, temos os seguintes tios descontinuidade:. O onto 0 é uma descontinuidade removível de f se f 0 ) não está de nido e!0 f) eistir ou! 0 f) 6= f 0 ): Porque odemos removê-la de nindo adequadamente o valor f 0 ). 2. O onto 0 é uma descontinuidade tio salto de f se os ites laterais eistirem e são diferentes, isto é,! 0 f) 6= f):! O onto 0 é uma descontinuidade essencial de f se f) = ou f) = :! 0! + 0 Eemlo 0.34 Determinar se a função f) = 4 é contínua em 0 = 2. Caso contrário, dizer o tio de descontinuidade. Solução. Neste tio de roblema, devemos rimeiro encontrar o domínio da função f. É fácil veri car que Dom f = R fg. Como 0 = 2 2 Dom f, odemos falar da continuidade ou não de f em 0 = 2. f2) = 24 2 = 5;
19 9 isto é, f está de nida no onto 0 = 2; isto é,!2 f) eiste; 4 f) =!2!2 = 24 2 = 5; f) = 5 = f2):!2 Portanto, f é contínua em 0 = 2. Eemlo 0.35 Determinar se a função f) = é contínua em 0 = 2. Caso contrário, dizer o tio de descontinuidade. Solução. É claro que Dom f = R f2g. Como 0 = 2 =2 Dom f temos que f é descontínua em 0 = 2, isto é, f não está de nida no onto 0 = 2 con ra Figura 2). Figura 2: Grá co da função f) = Neste caso, devemos dizer o tio de descontinuidade de f. 2 2!2 2 =!2 2) + ) 2 =!2 + ) = 3: Assim, 0 = 2 é uma descontinuidade removível de f, ois f não está de nida no onto 0 = 2, no entanto,!2 f) eiste. Note que, a função g : R! R de nida or f) se 6= 2; g) = 3 se = 2; é contínua em 0 = 2. Eemlo 0.36 Determinar se a função se 6= ; f) = 2 se = é contínua em 0 =. Caso contrário, dizer o tio de descontinuidade.
20 20 Solução. É claro que Dom f = R. Como 0 = 2 Dom f temos que f está de nida no onto 0 =, isto é, f) = = + 2) ) = + 2) = 3: Como f) 6= f) temos que f é descontínua em 0 = con ra Figura 3). Figura 3: Grá co da função f) = se 6= ; 2 se = : Assim, 0 = é uma descontinuidade removível de f, ois, aesar de f estar de nida no onto 0 =, f) 6= f). Note que, função g : R! R de nida or f) se 6= ; g) = 3 se = ; é contínua em 0 =. Eemlo 0.37 Determinar se a função f) = + 3 se < ; + 2 se é contínua em 0 =. Caso contrário, dizer o tio de descontinuidade. Solução. É claro que Dom f = R. Como 0 = 2 Dom f temos que f está de nida no onto 0 =, isto é, f) =. Por outro lado, e f) = + 3) = 2 f) = ) = Como f) = 2 6= = + f) temos que f) não eiste e, assim, f é descontínua em 0 = con ra Figura ). Portanto, 0 = é uma descontinuidade tio salto de f, ois, f) 6= + f):
21 2 Eemlo 0.38 Determinar se a função f) = é contínua em 0 = 0. Caso contrário, dizer o tio de descontinuidade. Solução. É claro que Dom f = R f0g. Como 0 = 0 =2 Dom f temos que f é descontínua em 0 = 0, isto é, f não está de nida no onto 0 = 0. Note que,!0 f) =!0 = e f) =!0 +!0 + = +: Portanto, 0 = 0 é uma descontinuidade essencial de f. Proriedade 0.39 Sejam f; g : X R! R duas funções. Se f e g são contínuas em 0 2 X, então:. f + g é contínua em 0 2 X; 2. f g é contínua em 0 2 X; 3. cf, onde c é uma constante, é contínua em 0 2 X; 4. fg é contínua em 0 2 X; 5. f, com g g 0) 6= 0, é contínua em 0 2 X; 6. jfj é contínua em 0 2 X.
22 22 Prova. Vamos rovar aenas o item. Como f e g são contínuas em 0 2 X temos que f) = f 0 ) e! 0 Logo, ela Proriedade de ites, obtemos g) = g 0 ):!0 f + g)) = [f) + g)] = f) + g)! 0!0!0!0 = f 0 ) + g 0 ) = f + g) 0 ): Portanto, f + g é contínua em 0 2 X. Teorema 0.40 Sejam f : X! R e g : Y! R duas funções, com Im f Y. Se f é contínua em 0 2 X e g é contínua em y 0 = f 0 ) 2 Y, então gf é contínua em 0 2 X. Prova. Como f e g são contínuas em 0 e y 0, resectivamente, temos que Assim, f) = f 0 ) e! 0 gy) = gy 0 ) = gf 0 )): y!y0! 0 g f)) =!0 gf)) = g!0 f)) = gf 0 )) = g f) 0 ): Portanto, g f é contínua em 0 2 X. Note que, se f) = a n n + + a + a 0, então f é contínua em todo R. Também, se então f é contínua em todo R, onde ]a; b[ e f) = a n n + + a + a 0 b m m + + b + b 0 ; b m m + + b + b 0 6= 0: Seja f : [a; b]! R uma função. Dizemos que f é contínua em [a; b] se f é contínua em f) = fa) e!a +!b f) = fb): Eemlo 0.4 Mostrar que a função f : [ 3; 3]! R de nida ela regra f) = 9 2 é contínua. Solução. Observe que ara todo 3 < a < 3 ou seja, a 2 ]a; b[) temos que f) = 9 2 = 9 a 2 = fa);!a!a logo ara todo a 2 ]a; b[ a função f é contínua. Além disso, f) =! ) = 0 = f 3) e! 3 +!3 f) =!3 9 2 ) = 0 = f3): Assim, f é contínua em [ 3; 3].
23 Matemática Licenciatura - Semestre 200. Curso: Cálculo Diferencial e Integral I Professor: Robson Sousa a Lista de Eercícios. Determinar, se eistir, os ites abaio: a ) 25 g) 3 00!2 a 2 )! 5 a 3 ) a) b) c) d) e) f) h)! i)!3 2 ) 3 +8 q) r)! t 9 8) j)!4 t!9 3 s) t k) +2 2 t)! ! ! l) 2 m) 2 +6! ! 3 +3 t!0 n)!7! o) h!0 4 6+h h!0 t h) 3 8 h!0 h 2 8!9 3 e e 2!0 3 jj! u) + 3 ) ) h t!8 v) t + ) 3 t + 3) 5 t 2 t! +2 3 ) 7 t!0 t t 2 +t )3 +h 3+h) z) 3 h h!0 h 2. Sabendo que f) = 4, g) = 2 e h) = 0, determine os seguintes!2!2!2 ites: a) b) c) [f) + 5g)] d)!2 g) [g)] 3 g)h) e)!2!2 f) f) f) [h) + f)]!2!2!2 3f) 3. Determinar, se eistir, os seguintes ites laterias: a) b) c) d)! ) e) 9 2 f)!3!3 +! 0 3) !5 +!4 i) +3! j) g) k) 2 3! 8 +0 h) 7 l) 5 + j6 3j): +0) 2!7! Em cada alternativa determine os seguintes ites, caso eistam: f); f); f) +
24 2 2 se < ; a) f) = 4 se : 8 >< 2 se < ; b) f) = 2 se = ; >: 2 se > : 5. Seja f : R! R de nida or f) = se ; + c 2 se < : Determinar o valor c de modo que! f) eista. 6. Seja f : R! R de nida or 8 >< 2 + se < ; f) = c se = ; >: se > : Determinar o valor c de modo que f) eista. 7. Seja f : R! R de nida or f) = c se 2; 2 + c 5 se < 2: Determinar o valor c de modo que!2 f) eista. 8. Seja f : R! R de nida or 8 >< d 2 se 2; f) = c >: 2 + d se 2 < < 2; c se 2: Determinar os valores c e d de modo que o ite de f) eista em todo R. 9. Determinar, se eistir, os seguintes ites no in nito: a) b) c) d) e) f) k) g) 3 ) l)! ) ) h) 2 + m)! 2+7)+2) ) i) ) : j)!! ) n) 2 + +! : o) )
25 3 0. Determinar, se eistir, os seguintes ites in nitos: a) b) c) d) 6!5 +!5 5 f)! k)! 6 5 g) l) 5!4 4! 6 h)!5 5!4 +) m)! +) i) n) 4! + +) 2 ) 2. Mostrar que as seguintes funções são contínuas no onto indicado: a) f) = ; 0 = 4 c) f) = ; 0 = 2 b) f) = ; 0 = 5 d) f) = 3 2+ ; 0 = 8 2. Determinar se a função f) = 2 se < 4 se é contínua em 0 =. Caso contrário, dizer o tio de descontinuidade. 3. Determinar se a função 8 >< 2 + se < f) = se = >: + se > é contínua em 0 =. Caso contrário, dizer o tio de descontinuidade. 4. Determinar se a função f) = f) = 3 se 3 se > é contínua em 0 =. Caso contrário, dizer o tio de descontinuidade. 5. Determinar se a função f) = f) = j + 3j se 6= 2 2 se = 2 é contínua em 0 = 2. Caso contrário, dizer o tio de descontinuidade. 6. Determinar se a função 8 >< se f) = f) = 2 se < < 2 >: + se 2 é contínua em 0 = 2. Caso contrário, dizer o tio de descontinuidade.
26 4 7. Determinar se cada função é contínua ou descontínua em cada intervalo: a) f) = 4, em [4; 8]; b) f) =, em ]; 4[; c) f) = 2, em [ ; ]; 8. Seja f : R! R de nida or f) = 3 se 6= ; c se = : Determinar o valor c ara que f seja contínua em todo R. 9. Seja f : R! R de nida or f) = se ; + c 2 se < : Determinar o valor c ara que f seja contínua em todo R.
3.1 Cálculo de Limites
3. Cálculo de Limites 0. Formas Indeterminadas 0=0 = 0 0 02. Oerações com os símbolos + = = ( ) = = k = ; se k > 0 k = ; se k < 0 ( ) ( ) = ( ) = k = ; se k > 0 = ; se > 0 = 0; se < 0 k=0 = ; k 6= 0 03.
Notas de aula: Cálculo e Matemática Aplicados à Notas de aula: Gestão Ambiental
Notas de aula: Cálculo e Matemática Aplicados à Notas de aula: Gestão Ambiental 3 Limites Considere a função f definida por: Qual o domínio dessa função? Se 1, então f () é dada por: (2 + 3)( 1). 1 2 +
CÁLCULO I. Apresentar e aplicar a Regra de L'Hospital.
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o : Limites Innitos e no Innito. Assíntotas. Regra de L'Hospital Objetivos da Aula Denir ite no innito e ites innitos; Apresentar alguns tipos
Função par e função ímpar
Pré-Cálculo Humberto José Bortolossi Deartamento de Matemática Alicada Universidade Federal Fluminense Função ar e função ímar Parte 3 Parte 3 Pré-Cálculo 1 Parte 3 Pré-Cálculo 2 Função ar Definição Função
3.1 Cálculo de Limites
3. Cálculo de Limites 3.A Em cada caso abaio calcule o ite de f (), quando! a (a) f () = 2 + 5; a = 7 (b) f () = 3 3 + + ; a = 0 (c) f () = 2 + 3 0 ; a = 5 (d) f () = 2 4 + 5 3 + 2 2 ; a = 2 (e) f () =
Resolução dos Exercícios Propostos no Livro
Resolução dos Eercícios Propostos no Livro Eercício : Considere agora uma função f cujo gráfico é dado por y 0 O que ocorre com f() quando se aproima de por valores maiores que? E quando se aproima de
(versão preliminar) exceto possivelmente para x = a. Dizemos que o limite de f(x) quando x tende para x = a é um numero L, e escrevemos
LIMITE DE FUNÇÕES REAIS JOSÉ ANTÔNIO G. MIRANDA versão preinar). Revisão: Limite e Funções Continuas Definição Limite de Seqüências). Dizemos que uma seqüência de números reais n convergente para um número
Limites. 2.1 Limite de uma função
Limites 2 2. Limite de uma função Vamos investigar o comportamento da função f definida por f(x) = x 2 x + 2 para valores próximos de 2. A tabela a seguir fornece os valores de f(x) para valores de x próximos
AULA 1 Introdução aos limites 3. AULA 2 Propriedades dos limites 5. AULA 3 Continuidade de funções 8. AULA 4 Limites infinitos 10
Índice AULA 1 Introdução aos limites 3 AULA 2 Propriedades dos limites 5 AULA 3 Continuidade de funções 8 AULA 4 Limites infinitos 10 AULA 5 Limites quando numerador e denominador tendem a zero 12 AULA
Universidade Federal de Pelotas. Instituto de Física e Matemática Pró-reitoria de Ensino. Módulo de Limites. Aula 01. Projeto GAMA
Universidade Federal de Pelotas Instituto de Física e Matemática Pró-reitoria de Ensino Atividades de Reforço em Cálculo Módulo de Limites Aula 0 208/ Projeto GAMA Grupo de Apoio em Matemática Ideia Intuitiva
Lista de Exercícios de Calculo I Limites e Continuidade
Lista de Eercícios de Calculo I Limites e Continuidade ) O gráfico a seguir representa uma função f de [ 6, 9] em Determine: ) Dada a função f definida por:, se f ( ), se, se Esboce o gráfico de f e calcule
Volume de um gás em um pistão
Universidade de Brasília Departamento de Matemática Cálculo Volume de um gás em um pistão Suponha que um gás é mantido a uma temperatura constante em um pistão. À medida que o pistão é comprimido, o volume
Cálculo I (2015/1) IM UFRJ Lista 2: Limites e Continuidade Prof. Milton Lopes e Prof. Marco Cabral Versão Exercícios de Limite
Eercícios de Limite. Eercícios de Fiação Cálculo I (05/) IM UFRJ Lista : Limites e Continuidade Prof. Milton Lopes e Prof. Marco Cabral Versão 30.03.05 Fi.: Considere o gráco de = f() esboçada no gráco
2.1 O problema das áreas - método de exaustão
Capítulo 2 Limite de uma função Podemos afirmar que o conceito de ite é uma das ideias fundamentais do Cálculo Diferencial. Seu processo de construção surge historicamente a partir de problemas geométricos
CONTINUIDADE E LIMITES INFINITOS
MATEMÁTICA I CONTINUIDADE E LIMITES INFINITOS Profa. Dra. Amanda L. P. M. Perticarrari Parte 1 Continuidade de Funções Definição Tipos de Descontinuidade Propriedades Parte 2 Limites Infinitos Definição
Capítulo 3 Limite de uma função
Departamento de Matemática - ICE - UFJF Disciplina MAT54 - Cálculo Capítulo 3 Limite de uma função Podemos afirmar que o conceito de ite é uma das ideias fundamentais do Cálculo Diferencial. Seu processo
Acadêmico(a) Turma: Capítulo 7: Limites
Acadêmico(a) Turma: Capítulo 7: Limites 7.1. Noção Intuitiva de ite Considere a função f(), em que f() = 2 + 1. Para valores de que se aproima de 1, por valores maiores que 1 (Direita) e por valores menores
Valores e vectores próprios
Valores e Vectores Prórios - Matemática II- /5 Valores e vectores rórios De nem-se valores e vectores rórios aenas ara matrizes quadradas, elo que, ao longo deste caítulo e quando mais nada seja eseci
Cálculo - James Stewart - 7 Edição - Volume 1
Cálculo - James Stewart - 7 Edição - Volume. Eercícios. Eplique com suas palavras o significado da equação É possível que a equação anterior seja verdadeira, mas que f? Eplique.. Eplique o que significa
CONTINUIDADE DE FUNÇÕES REAIS DE UMA VARIÁVEL
BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL CONTINUIDADE DE FUNÇÕES REAIS DE UMA VARIÁVEL a Edição Rio Grande Editora da FURG 206 Universidade Federal
Gabarito da Lista 6 de Microeconomia I
Professor: Carlos E.E.L. da Costa Monitor: Vitor Farinha Luz Gabarito da Lista 6 de Microeconomia I Eercício Seja Y um conjunto de ossibilidades de rodução. Dizemos que uma tecnologia é aditiva quando
Limites: Noção intuitiva e geométrica
Eemplo : f : R {} R, f sen a Gráfico de f b Ampliação do gráfico de f perto da origem Limites: Noção intuitiva e geométrica f Apesar de f não estar definida em, faz sentido questionar o que acontece com
MAT-2453 CÁLCULO DIFERENCIAL E INTEGRAL I - BCC Prof. Juan Carlos Gutiérrez Fernández
MAT-2453 CÁLCULO DIFERENCIAL E INTEGRAL I - BCC Prof. Juan Carlos Gutiérrez Fernández Lista 3: Introdução à Derivada, Limites e continuidade. Ano 207. Determine a função derivada e seu domínio para a função
Fundação Universidade Federal de Pelotas Curso de Licenciatura em Matemática Disciplina de Análise II - Prof. Dr. Maurício Zahn Lista 01 de Exercícios
Fundação Universidade Federal de Pelotas Curso de Licenciatura em Matemática Disciplina de Análise II - Prof Dr Maurício Zahn Lista 01 de Eercícios 1 Use a definição de derivada para calcular a derivada
3. Limites e Continuidade
3. Limites e Continuidade 1 Conceitos No cálculo de limites, estamos interessados em saber como uma função se comporta quando a variável independente se aproxima de um determinado valor. Em outras palavras,
Limites. Slides de apoio sobre Limites. Prof. Ronaldo Carlotto Batista. 7 de outubro de 2013
Cálculo 1 ECT1113 Slides de apoio sobre Limites Prof. Ronaldo Carlotto Batista 7 de outubro de 2013 AVISO IMPORTANTE Estes slides foram criados como material de apoio às aulas e não devem ser utilizados
LIMITES E CONTINIDADE
MATEMÁTICA I LIMITES E CONTINIDADE Prof. Dr. Nelson J. Peruzzi Profa. Dra. Amanda L. P. M. Perticarrari Parte 1 Parte 2 Limites Infinitos Definição de vizinhança e ite Limites laterais Limite de função
LIMITE. Para uma melhor compreensão de limite, vamos considerar a função f dada por =
LIMITE Aparentemente, a idéia de se aproimar o máimo possível de um ponto ou valor, sem nunca alcançá-lo, é algo estranho. Mas, conceitos do tipo ite são usados com bastante freqüência. A produtividade
Matemática Licenciatura - Semestre Curso: Cálculo Diferencial e Integral I Professor: Robson Sousa. Diferenciabilidade
Matemática Licenciatura - Semestre 200. Curso: Cálculo Diferencial e Integral I Professor: Robson Sousa Diferenciabilidade Usando o estudo de ites apresentaremos o conceito de derivada de uma função real
Capítulo 1 Números Reais
Departamento de Matemática Disciplina MAT154 - Cálculo 1 Capítulo 1 Números Reais Conjuntos Numéricos Conjunto dos naturais: N = {1,, 3, 4,... } Conjunto dos inteiros: Z = {..., 3,, 1, 0, 1,, 3,... } {
Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática
Universidade Federal de Viçosa Centro de Ciências Eatas e Tecnológicas Departamento de Matemática MAT 040 Estudo Dirigido de Cálculo I 07/II Encontro 5 - /09/07: Eercício : Seja f a função cujo gráfico
ATIVIDADES EM SALA DE AULA Cálculo I -A- Humberto José Bortolossi
ATIVIDADES EM SALA DE AULA Cálculo I -A- Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ 06 Limites, Assíntotas Horizontais e Assíntotas Verticais [0] (2006.2) Considere a função f() =
LIMITES E CONTINUIDADE
LIMITES E CONTINUIDADE Marina Vargas R. P. Gonçalves a a Departamento de Matemática, Universidade Federal do Paraná, [email protected], http:// www.estruturas.ufpr.br 1 NOÇÃO INTUITIVA DE LIMITE
3.1 Cálculo de Limites
3. Cálculo de Limites EXERCÍCIOS & COMPLEMENTOS 3. FORMAS INDETERMINADAS 0 0 0 0 OPERAÇÕES COM OS SÍMBOLOS + = = ( ) = k = ; se k > 0 k = ; se k < 0 ( ) ( ) = k = ; se k > 0 = ; se > 0 = 0; se < 0 k =
Matemática Licenciatura - Semestre Curso: Cálculo Diferencial e Integral I Professor: Robson Sousa. Diferenciabilidade.
1 Matemática Licenciatura - Semestre 2010.1 Curso: Cálculo Diferencial e Integral I Professor: Robson Sousa Diferenciabilidade Funções Trigonométricas Inicialmente, observe pela gura que para ângulos 0
4.1 Preliminares. 1. Em cada caso, use a de nição para calcular f 0 (x) : (a) f (x) = x 3 ; x 2 R (b) f (x) = 1=x; x 6= 0 (c) f (x) = 1= p x; x > 0:
4. FUNÇÕES DERIVÁVEIS ANÁLISE NO CORPO R - 208. 4. Preinares. Em cada caso, use a de nição para calcular f 0 (x) : (a) f (x) = x 3 ; x 2 R (b) f (x) = =x; x 6= 0 (c) f (x) = = p x; x > 0: 2. Mostre que
3.6 EXERCÍCIOS. o x2 sen 1 x2, V x O. =0. Multiplicando a desigualdade por x2, temos
86 Cálculo A - Funções, Limite, Derivação, Integração 0 < sen 1 1, V O. Multiplicando a desigualdade por 2, temos o 2 sen 1 2, V O. Como lim 0 = O e lim 2 = O, pela proposição 3.5.3 concluímos que ->I3
matematicaconcursos.blogspot.com
Professor: Rômulo Garcia Email: [email protected] Conteúdo Programático: Teoria dos Números Exercícios e alguns conceitos imortantes Números Perfeitos Um inteiro ositivo n diz-se erfeito se e somente
Complementos de Cálculo Diferencial
Matemática - 009/0 - Comlementos de Cálculo Diferencial 47 Comlementos de Cálculo Diferencial A noção de derivada foi introduzida no ensino secundário. Neste teto retende-se relembrar algumas de nições
Limites infinitos e limites no infinito Aula 15
Propriedades dos ites infinitos Limites infinitos e ites no infinito Aula 15 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 03 de Abril de 2014 Primeiro Semestre de 2014
Fundamentos de Matem[atica I LIMITES. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques
LIMITES Gil da Costa Marques. O cálculo. Definição de limite. Funções contínuas e descontínuas.4 Limites quando a variável independente cresce indefinidamente em valor absoluto.5 Limites infinitos.6 Limites
26 CAPÍTULO 4. LIMITES E ASSÍNTOTAS
Capítulo 4 Limites e assíntotas 4.1 Limite no ponto Considere a função f(x) = x 1 x 1. Observe que esta função não é denida em x = 1. Contudo, fazendo x sucientemente próximo de 1 (mais não igual a1),
Módulo (ou valor absoluto) de um número real: a função modular
Matemática Básica Humberto José Bortolossi Deartamento de Matemática Alicada Universidade Federal Fluminense Módulo (ou valor absoluto) de um número real: a função modular Parte 5 Parte 5 Matemática Básica
Aula 3 Propriedades de limites. Limites laterais.
Propriedades de ites. Limites laterais. MÓDULO - AULA 3 Aula 3 Propriedades de ites. Limites laterais. Objetivos Estudar propriedades elementares de ites, tais como: soma, produto, quociente e confronto.
54 CAPÍTULO 2. GEOMETRIA ANALÍTICA ( ) =
54 CAPÍTULO. GEOMETRIA ANALÍTICA.5 Cônicas O grá co da equação + + + + + = 0 (.4) onde,,,, e são constantes com, e, não todos nulos, é uma cônica. A equação (.4) é chamada de equação geral do grau em e
UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO. Realização:
UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO Realização: Fortaleza, Fevereiro/2010 1. LIMITES 1.1. Definição Geral Se os valores de f(x) puderem
54 CAPÍTULO 2. GEOMETRIA ANALÍTICA ( ) =
54 CAPÍTULO. GEOMETRIA ANALÍTICA.5 Cônicas O grá co da equação + + + + + = 0 (.4) onde,,,, e são constantes com, e, não todos nulos, é uma cônica. A equação (.4) é chamada de equação geral do grau em e
CÁLCULO I Aula 11: Limites Innitos e no Innito. Assíntotas. Regra de l'hôspital.
Limites s CÁLCULO I Aula 11: Limites s e no... Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará Limites s 1 Limites no 2 Limites s 3 4 5 Limites s Denição Seja f uma função denida
Capítulo III. Limite de Funções. 3.1 Noção de Limite. Dada uma função f, o que é que significa lim f ( x) = 5
Capítulo III Limite de Funções. Noção de Limite Dada uma unção, o que é que signiica ( 5? A ideia intuitiva do que queremos dizer com isto é: quando toma valores cada vez mais próimos de, a respectiva
Apontamentos de Álgebra Linear
Aontamentos de Álgebra Linear (inclui as alicações não avaliadas) Nuno Martins Deartamento de Matemática Instituto Suerior Técnico Dezembro de 08 Índice Matrizes: oerações e suas roriedades Resolução de
Bases Matemáticas - Turma A3
Bases Matemáticas - Turma A3 a Avaliação - Resolvida Esta resolução é mais do que um mero gabarito. O objetivo é apresentar a solução de cada problema de modo detalhado, com o propósito de ajudar na compreensão
Pré-Cálculo. Humberto José Bortolossi. Aula 7 10 de setembro de Departamento de Matemática Aplicada Universidade Federal Fluminense
Pré-Cálculo Humberto José Bortolossi Deartamento de Matemática Alicada Universidade Federal Fluminense Aula 7 10 de setembro de 2010 Aula 7 Pré-Cálculo 1 Módulo (ou valor absoluto) de um número real x
Aula 11. Considere a função de duas variáveis f(x, y). Escrevemos: lim
Aula 11 Funções de 2 variáveis: Limites e Continuidade Considere a função de duas variáveis f(x, y). Escrevemos: f(x, y) = L (x,y) (a,b) quando temos que, se (x, y) (a, b) então f(x, y) L, isto é, se (x,
LIMITES DE FUNÇÕES REAIS DE UMA VARIÁVEL
BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL LIMITES DE FUNÇÕES REAIS DE UMA VARIÁVEL a Edição Rio Grande Editora da FURG 06 Universidade Federal do Rio
Respostas sem justificativas não serão aceitas. Além disso, não é permitido o uso de aparelhos eletrônicos. x 1 x 1. 1 sen x 1 (x 2 1) 2 (x 2 1) 2 sen
UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL - 07. A VERIFICAÇÃO DE APRENDIZAGEM - TURMA EL Nome Legível RG CPF Respostas sem justificativas
Invertendo a exponencial
Reforço escolar M ate mática Invertendo a exonencial Dinâmica 3 2ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Matemática 2ª do Ensino Médio Algébrico Simbólico Função Logarítmica Aluno Primeira
Lista de Exercícios 2 1
Universidade Federal de Ouro Preto Departamento de Matemática MTM - CÁLCULO DIFERENCIAL E INTEGRAL I Lista de Eercícios Mostre, utilizando a definição formal, que os ites abaio eistem e são iguais ao valor
Bases Matemáticas Continuidade. Propriedades do Limite de Funções. Daniel Miranda
Daniel De modo intuitivo, uma função f : A B, com A,B R é dita contínua se variações suficientemente pequenas em x resultam em variações pequenas de f(x), ou equivalentemente, se para x suficientemente
Prova 2 - Bases Matemáticas
Prova 2 - Bases Matemáticas Resolução comentada Bases Matemáticas - Turma A3 2 a Avaliação - Resolvida Esta resolução é mais do que um mero gabarito. O objetivo é apresentar a solução de cada problema
Notas de Aulas 5 - Funções Elementares e Cálculo de Limites - Parte II Prof Carlos A S Soares
Notas de Aulas 5 - Funções Elementares e Cálculo de Limites - Parte II Prof Carlos A S Soares Noção Intuitiva de ites. O Conceito de Limites Através de Gráficos Nesta subseção estaremos apresentando o
5.1 O Teorema do Valor Médio & Aplicações
5. O Teorema do Valor Médio & Aplicações. Se f () = + 4, encontre o número c que satisfaz a conclusão do TVM (Teorema do Valor Médio) no intervalo [; 8] : 2. Seja f () = j j. Mostre que não eiste um número
A Segunda Derivada: Análise da Variação de Uma Função
A Segunda Derivada: Análise da Variação de Uma Função Suponhamos que a função y = f() possua derivada em um segmento [a, b] do eio-. Os valores da derivada f () também dependem de, ou seja, a derivada
CÁLCULO I. 1 Assíntotas Oblíquas. Objetivos da Aula. Aula n o 19: Grácos.
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 9: Grácos. Objetivos da Aula Denir e determinar as assíntotas oblíquas ao gráco de uma função, Utilizar o Cálculo Diferencial
Notas sobre primitivas
MTDI I - 007/08 - Notas sobre primitivas Notas sobre primitivas Seja f uma função real de variável real de nida num intervalo real I: Chama-se primitiva de f no intervalo I a uma função F cuja derivada
Limites de Funções. Bases Matemáticas. 2 o quadrimestre de o quadrimestre de / 57
2 o quadrimestre de 2017 2 o quadrimestre de 2017 1 / Visão Geral 1 Limites Finitos Limite para x ± 2 Limites infinitos Limite no ponto Limite para x ± 3 Continuidade Definição e exemplos Resultados importantes
Limites, derivadas e máximos e mínimos
Limites, derivadas e máimos e mínimos Psicologia eperimental Definição lim a f ( ) b Eemplo: Seja f()=5-3. Mostre que o limite de f() quando tende a 1 é igual a 2. Propriedades dos Limites Se L, M, a,
1.1 Domínios & Regiões
1. CAMPOS ESCALARES CÁLCULO 2-2018.2 1.1 Domínios & Regiões 1. Esboce o conjunto R do plano R 2 dada abaixo e determine sua fronteira. Classi que R em: aberto, fechado, itado, compacto, ou conexo. (a)
Capítulo III. Limite de Funções. 3.1 Noção de Limite. Dada uma função f, o que é que significa lim f ( x) = 5
Capítulo III Limite de Funções. Noção de Limite Dada uma unção, o que é que signiica ( 5? A ideia intuitiva do que queremos dizer com isto é: quando toma valores cada vez mais próimos de, a respectiva
Notas de Aula de Cálculo Diferencial e Integral
Notas de Aula de Cálculo Diferencial e Integral Volume I Fábio Henrique de Carvalho Copright c 03 Publicado por Fundação Universidade Federal do Vale do São Francisco Univasf) www.univasf.edu.br Todos
Unidade F. Limites. Débora Bastos IFRS CAMPUS RIO GRANDE
9 Unidade F Limites Débora Bastos IFRS CAMPUS RIO GRANDE 9. Noção de ites Quando queremos saber a ordenada do ponto em uma função, cuja lei é y= f(), em que = a, basta calcularmos f(a). O ponto (a,f(a))
Derivadas. Capítulo O problema da reta tangente
Capítulo 5 Derivadas Este capítulo é sobre derivada, um conceito fundamental do cálculo que é muito útil em problemas aplicados. Este conceito relaciona-se com o problema de determinar a reta tangente
Limites. Uma introdu»c~ao intuitiva
Aula 4 Limites. Uma introdu»c~ao intuitiva Nos cap ³tulos anteriores, zemos uso de um ite especial para calcular derivadas: f 0 f(+ ) f() () =.!0 Neste cap ³tulo veremos os ites como ferramentas de estudo
Instituto de Matemática - IM/UFRJ Gabarito da Primeira Prova Unificada de Cálculo I Politécnica e Engenharia Química
Página de 5 Questão : (3.5 pontos) Calcule: + Instituto de Matemática - IM/UFRJ Politécnica e Engenharia Química 3 2 + (a) 3 + 2 + + ; + (b) ; + (c) 0 +(sen )sen ; (d) f (), onde f() = e sen(3 + +). (a)
Capítulo 5 Derivadas
Departamento de Matemática - ICE - UFJF Disciplina MAT54 - Cálculo Capítulo 5 Derivadas Este capítulo é sobre derivada, um conceito fundamental do cálculo que é muito útil em problemas aplicados. Este
5.7 Aplicações da derivada ao estudo das funções.
Capítulo V: Derivação 0.. 4. 7. tg( ) 0 tg( π ( + + ) sen( ) + ) sen( ) Resolução: cos( ) Repare que não eiste sen( ). + 5. ( e + ) 6. 0 π ( + cos( )) cos( ) sen( ) sen( ) Mas, e como 0, então 0 + + +
4. AS FUNÇÕES EXPONENCIAL E LOGARÍTMICA
43 4. AS FUNÇÕES EXPONENCIAL E LOGARÍTMICA 4.1. A FUNÇÃO EXPONENCIAL Vimos no capítulo anterior que dado a R +, a potência a pode ser definida para qualquer número R. Portanto, fiando a R +, podemos definir
1. Em cada caso, obtenha a equação e esboce o grá co da circunferência.
3.1 A Circunferência EXERCÍCIOS & COMPLEMENTOS 3.1 1. Em cada caso, obtenha a equação e esboce o grá co da circunferência. (a) Centro C ( 2; 1) e raio r = 5: (b) Passa elos ontos A (5; 1) ; B (4; 2) e
Assíntotas. Assíntotas. Os limites infinitos para a função f(x) = 3/(x 2) podem escrever-se como
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Assíntotas Os limites
Limites e Continuidade de Funções Reais de Uma Variável Real
Limites e Continuidade de Funções Reais de Uma Variável Real Carla Montorfano João César Guirado João Roberto Gerônimo Jorge Ferreira Lacerda Rui Marcos de Oliveira Barros Valdeni Soliani Franco Apresentação
